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Abstract

Parameter reduction has been an impor-
tant topic in deep learning due to the ever-
increasing size of deep neural network mod-
els and the need to train and run them on
resource limited machines. Despite many ef-
forts in this area, there were no rigorous the-
oretical guarantees on why existing neural
net compression methods should work. In
this paper, we provide provable guarantees
on some hashing-based parameter reduction
methods in neural nets. First, we introduce
a neural net compression scheme based on
random linear sketching (which is usually im-
plemented efficiently via hashing), and show
that the sketched (smaller) network is able to
approximate the original network on all in-
put data coming from any smooth and well-
conditioned low-dimensional manifold. The
sketched network can also be trained directly
via back-propagation. Next, we study the
previously proposed HashedNets architecture
and show that the optimization landscape
of one-hidden-layer HashedNets has a local
strong convexity property similar to a normal
fully connected neural network. We comple-
ment our theoretical results with empirical
verifications.!

1 Introduction

In the past decade, deep neural networks have become
the new standards for many machine learning appli-
cations, including computer vision Krizhevsky et al.
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(2012); He et al. (2016), natural language processing
Zaremba et al. (2014); Gehring et al. (2017), speech
recognition Graves et al. (2013); Amodei et al. (2016),
robotics Lillicrap et al. (2015), game playing Silver
et al. (2016, 2017), etc. Such model usually contains an
enormous number of parameters, which is often much
larger than the number of available training samples.
Therefore, these networks are usually trained on mod-
ern computer clusters which have a huge amount of
memory and computation power. On the other hand,
there is an increasing need to train and run personal-
ized machine learning models on mobile and embed-
ded devices instead of transferring mobile data to a
remote computation center on which all the computa-
tions are performed. This is because real-time process-
ing of deep learning models on mobile devices brings
the benefits of better privacy and less Internet band-
width. However, mobile devices like smart phones do
not have the memory or computation capability of
training large neural networks or even storing these
models.

These trends motivate the study of neural network
compression, with the goal of reducing the memory
overhead required to train, store and run neural net-
works. There is a recent line of research in this di-
rection, for example Chen et al. (2015); Iandola et al.
(2016); Han et al. (2016). Despite their empirical ef-
fectiveness, there is little theoretical understanding on
why these methods perform well.

The goal of this paper is to bridge the gap between the-
ory and practice in neural network compression. Our
focus is on hashing-based methods, which have been
studied empirically in e.g. Chen et al. (2015, 2016),
with the hope that the randomness in hash functions
helps preserve the properties of neural networks de-
spite a reduction in the number of effective parame-
ters. We make this intuition formal by giving theoret-
ical guarantees on the approrimation power and the
parameter recovery of such networks.

First, we propose a neural net compression scheme
based on random linear sketching, which can be ef-
ficiently implemented using a hash function. Simi-
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lar idea has been proposed in Kasiviswanathan et al.
(2017) and demonstrated high performance empiri-
cally, but no formal theoretical guarantee was known.
We show that such compression has strong approxima-
tion power. Namely, the small network obtained after
sketching can approximate the original network on all
input data coming from any low-dimensional manifold
with some regularity properties. The sketched network
is also directly trainable via back-propagation. In fact,
sketching is a principled technique for dimensionality
reduction, which has been shown to be very powerful in
solving various problems arising in statistics Raskutti
and Mahoney (2016); Wang et al. (2017) and numeri-
cal linear algebra Woodruff (2014). Given its theoret-
ical success, it is natural to ask whether sketching can
be applied to the context of neural net compression
with theoretical guarantees. Our result makes partial
progresses on this question.

Next we study HashedNets, a simple method proposed
in Chen et al. (2015) which appears to perform well in
practice. HashedNets directly applies a random hash
function on the connection weights in a neural net and
to enforce all the weights mapped to the same hash
bucket to take the same value. In this way the number
of trainable parameters is reduced to be the number
of different hash buckets, and training can still be per-
formed via back-propagation while taking the weight
sharing structure into account. From the perspective
of optimization, we show that the training objective
for a one-hidden-layer hashed neural net has a local
strong convexity property, similar to that of a normal
fully connected network Zhong et al. (2017b). Addi-
tionally, we can apply the initialization algorithm in
Zhong et al. (2017b) to obtain a good initialization for
training. Therefore it implies that the parameters in
one-hidden-layer HashedNets can be provably recov-
ered under milde assumptions.

Below we describe our contributions in more detail.

Approximation Power Our result on the approx-
imation power of sketched nets is based on a classi-
cal concept, “subspace embedding”, which originally
appears in numerical linear algebra Sarlos (2006).
Roughly speaking, it says that there exist a wide
family of random matrices S € R**"  such that for
any d-dimensional subspace U C R™, with probability
1 — 6 we have (Sz,Sz’) = (x,2') + €||z||2||z'||2 for all
z,2' € U, provided s = Q((d+1log1/d) /e?). This
result means that the inner product between every
two points in a subspace can be approximated simul-
taneously after applying a random sketching matriz S,
which is interesting if s <« n. There has been a line of
work trying to do subspace embedding using different
sketching matrices (e.g. Nelson and Nguyén (2013);

Cohen (2016)). Sparse matrices are of particular in-
terests, since for a sparse matrix S, one can compute
Sz more efficiently. For example, Nelson and Nguyén
(2013) showed that it is possible to construct S with
only 9] (1/€) nonzero entries per column, which signifi-
cantly improves the trivial upper bound 6(d/ €2). Fur-
thermore, many of these sketching matrices can be effi-
ciently implemented by k-wise independent hash func-
tions where k is very small, which only takes a small
amount of space to store, and multiplying S with a
vector can be computed efficiently.

We extend the idea of subspace embedding to deep
learning and show that a feed-forward fully connected
network with Lipschitz-continuous activation func-
tions can be approximated using random sketching
on all input data coming from a low-dimensional sub-
space. Below we describe our result for one-hidden-
layer neural nets, and this can be generalized to mul-
tiple layers.

Consider a one-hidden-layer neural net with input di-
mension n and k hidden nodes. It can be parameter-
ized by a weight matrix W € R"** and a weight vec-
tor v € R*, and the function this network computes
is  +— v ¢(WTx), where x € R" is the input, and
¢ should be viewed as a nonlinear activation function
acting coordinate-wise on a vector. Our result says
that under appropriate assumptions, one can choose a
random sketching matrix S € R**", such that for any
d-dimensional subspace U C R", we have

’vT([)(WTx) — quﬁ(WTSTSx)’ <eVaxel,l|z| <1

This result essentially says that the weight matrix W T
can be replaced by W T STS, which has rank s. When
s < n, this means that the effective number of pa-
rameters can be reduced from kn to ks. As we men-
tioned, the sketching matrix S can be implemented by
hash functions in small space and multiplying it with
a vector is efficient. The sketched network is also di-
rectly trainable, because we can train the s x k matrix
W = SW, regarding another factor S in the decom-
position WTSTS = WS as a known layer.

This result can be generalized to multi-layer neural
nets, and we present the details in Section 3. We also
note that our result can be easily generalized to low-
dimensional manifolds under some regularity condition
(see Definition 2.3 in Baraniuk and Wakin (2009)),
which is a much more realistic assumption on data.

Parameter Recovery. It is known that training a
neural net is NP-hard in the worst case, even if it only
has 3 hidden nodes Blum and Rivest (1993). Recently,
there has been some theoretical progress on under-
standing the optimization landscapes of shallow neu-
ral nets under special input distributions. In particu-
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lar, Zhong et al. (2017b) gave a recovery guarantee for
one-hidden-layer neural nets. They showed that if the
input distribution is Gaussian and the ground-truth
weight vectors corresponding to hidden nodes are lin-
early independent, then the true parameters can be re-
covered in polynomial time given finite samples. This
was proved by showing that the training objective is lo-
cally strongly convex and smooth around the ground-
truth point, together with an initialization method
that can output a point inside the locally “nice” re-
gion. In this work, we show that local strong convex-
ity and smoothness continue to hold if we replace the
fully connected network by HashedNets which has a
weight sharing structure enforced by a hash function.
We present this result in Section 4.

1.1 Related Works

Parameter Reduction in Deep Learning. There
has been a series of empirical works on reducing the
number of free parameters in deep neural networks:
Denil et al. (2013) show a method to learn low-rank
decompositions of weight matrices in each layer, Chen
et al. (2015) propose an approach to use a hash func-
tion to enforce parameter sharing, Cheng et al. (2015)
adopt a circulant matrix structure for parameter re-
duction, Sindhwani et al. (2015) study a more general
class of structured matrices for parameter reduction.

Sketching and Neural Networks. Daniely et al.
(2016) show that any linear or sparse polynomial func-
tion on sparse binary data can be computed by a small
single-layer neural net on a linear sketch of the data.
Kasiviswanathan et al. (2017) apply a random sketch-
ing on weight matrices/tensors, but they only prove
that given a fixed layer input, the output of this layer
using sketching matrices is an unbiased estimator of
the original output of this layer and has bounded vari-
ance; however, this does not provide guarantees on
the approximation power of the whole sketching-based
deep net.

Subspace Embedding. Subspace embedding Sar-
16s (2006) is a fundamental tool for solving numerical
linear algebra problems, e.g. linear regression, ma-
trix low-rank approximation Clarkson and Woodruff
(2013); Nelson and Nguyeén (2013); Razenshteyn et al.
(2016); Song et al. (2017b), tensor low-rank approxi-
mation Song et al. (2019). See also Woodruff (2014)
for a survey on this topic.

Recovery Guarantee of Neural Networks.
Since learning a neural net is NP-hard in the worst
case Blum and Rivest (1993), many attempts have
been made to design algorithms that learns a neu-
ral net provably in polynomial time and sample com-

plexity under additional assumptions, e.g., Sedghi and
Anandkumar (2014); Zhang et al. (2015); Janzamin
et al. (2015); Goel et al. (2017); Goel and Klivans
(2017a,b). Another line of work focused on analyz-
ing (stochastic) gradient descent on shallow networks
for Gaussian input distributions, e.g., Brutzkus and
Globerson (2017); Zhong et al. (2017a,b); Tian (2017);
Li and Yuan (2017); Du et al. (2017); Soltanolkotabi
(2017).

Other Related Works Instead of understanding
the parameter reduction as our work, there are several
results working on developing over-parameterization
theory of deep ReLU neural networks, e.g. Allen-
Zhu et al. (2018a,b). Thirty years ago, Blum and
Rivest proved training neural network is NP-hard
Blum and Rivest (1993). Later, neural networks have
been shown hard in several different perspectives Kli-
vans and Sherstov (2009); Livni et al. (2014); Daniely
(2016); Daniely and Shalev-Shwartz (2016); Goel et al.
(2017); Song et al. (2017a); Katz et al. (2017); Weng
et al. (2018); Manurangsi and Reichman (2018) in the
worst case regime.

Arora et al. proved a stronger generalization for deep
nets via a compression approach Arora et al. (2018).
There is a long line of works targeting on explaining
GAN from theoretical perspective Arora and Zhang
(2017); Arora et al. (2017b,a); Bora et al. (2017); Li
et al. (2018); Santurkar et al. (2018); Van Veen et al.
(2018); Xiao et al. (2018). There is also a long line
of provable results about adversarial examples Madry
et al. (2017); Bubeck et al. (2018b,a); Weng et al.
(2018); Schmidt et al. (2018); Tran et al. (2018).

2 Preliminaries

For any positive integer n, we use [n] to denote the
set {1,2,---,n}. Let a + b represent any number in
the interval [a — b,a + b]. For any vector € R"™, we
use ||z||2, ||z||1 and ||z]|c to denote its £, ¢1 and £
norms, respectively. For z,y € R", we use (z,y) to
denote the standard Euclidean inner product z .

For a matrix A, let det(A) denote its determinant (if A
is a square matrix), let AT denote the Moore-Penrose
pseudoinverse of A, and let ||A||r and ||A||2 denote
respectively the Frobenius norm and the spectral norm
of A. Denote by o;(A) the i-th largest singular value
of A. We use nnz(A) to denote the number of non-zero
entries in A.

For any function f, we define 5(]") to be f-logo(l)(f).
In addition to O(-) notation, for two functions f, g, we
use the shorthand f < g (resp. 2) to indicate that
f < Cg (resp. >) for an absolute constant C. We use
f =~ gtomean cf < g < Cf for constants ¢, C.



Towards a Theoretical Understanding of Hashing-Based Neural Nets

We define the ¢; and ¢; balls in R™ as: By (B,n) = {x €
R" | [als < B}, Ba(B,n) = {o € " | a2 < BY.
We also need the definitions of Lipschitz-continuous
functions and k-wise independent hash families.

Definition 2.1. A function f : R — R is L-Lipshitz
continuous, if for all x1,x9 € R, |f(z1) — f(x2)] <
L|£L’1 — CL’Q|.

Definition 2.2. A family of hash functions H C {h |
h : U — [B]} is said to be k-wise independent if for
any x1,...,2, € U and any y1,...,yx € [B] we have
PI‘hNH[h(J?i) = yi,Vi S U{EH = ﬁ

3 The Approximation Power of
Parameter-Reduced Neural
Networks

In this section, we study the approximation power of
parameter-reduced neural nets based on hashing. Any
weight matrix W in a neural net acts on a vector x as
Wax. We replace Wz by WST Sz for some sketching
(#rows < #columns) matrix S defined in the follow-
ing section. Then the new weight matrix W ST has
much fewer parameters. We show that if S is cho-
sen properly as a subspace embedding (formally de-
fined later in this section), the sketched network can
approximate the original network on all inputs com-
ing from a low-dimensional subspace or manifold. Our
sketching matrix is chosen as a Johnson-Lindenstrauss
(JL) Johnson and Lindenstrauss (1984) transforma-
tion matrix. In Section 3.1, we provide some prelim-
inaries on subspace embedding. In Sections 3.2 and
3.3, we present our result on one-hidden-layer neural
nets. Then in Section 3.4 we extend this result to
multi-layer neural nets and show a similar approxima-
tion guarantee. This provides a theoretical guarantee
for hashing-based parameter-reduced networks used in
practice.

3.1 Subspace Embedding

We first present some basic definitions of sketching
and subspace embedding. These mathematical tools
are building blocks for us to understand parameter-
reduced neural networks.

Definition 3.1 (Subspace Embedding). A (1 * ¢)
ly-subspace embedding for the column space of an
n X d matric U is a matrix S for which for all
x € colspan(U), ||Sz|3 = (1 £ €)||z||%,0r equiva-
lently, for all x,x" € colspan(U), (Sz, Sz’) = (z,2') +
el l2fl2"]l2-

Constructions of subspace embedding can be found in
e.g. Nelson and Nguyén (2013) where the following
theorem is presented.

Theorem 3.2 (Nelson and Nguyén (2013)). There is
a (14 €) oblivious® fy-subspace embedding for n x d
matriz U with s = d - polylog(d/(ed))/e® rows and
error probability 5. Further, S - U can be computed
in time O(nnz(U)poly log(d/(ed))/e). We call S a
SPARSEEMBEDDING matriz.

There are also other subspace embedding matrices,
e.g., COUNTSKETCH. We provide additional defini-
tions and examples in Section B.1.

Remark 3.3. We remark that the subspace embedding
in Definition 3.1 naturally extends to low dimensional
manifolds. For example, for a d-dimensional Rieman-
nian submanifold of R™ with volumn V and geodesic
covering regularity R (see Definition 2.3 in Baraniuk
and Wakin (2009)), Theorem 3.2 holds by replacing
d with Rdlog(V). For ease of presentation, we only
present our results for subspaces. All our results can be
extended to low-dimensional manifolds satisfying reg-
ularity conditions.

3.2 One Hidden Layer - Part I

We consider one-hidden-layer neural nets in the form
> vidi(w, x), where x is the input vector, w; is a
weight vector, v; is a weight scalar, and ¢; : R — R is
a nonlinear activation function. In this subsection, we
show how to sketch the weights between the input layer
and the hidden layer with guaranteed approximation
power. The main result is Theorem 3.4 and its proofs
are in the full version Lin et al. (2018).

Theorem 3.4. Given parameters ng > 1,n1 > 1,¢ €
(0,1),0 € (0,1) and n = max(ng,n1). Given ng ac-
tivation functions ¢; : R — R that are L-Lipshitz-
continuous, a fired matriz U € R™*¢, weight matriz
W e R™"*"2 with |Wlle < B, v € R"2 with ||v|; < B.
Choose a SPARSEEMBEDDING matriz S € R**™ with
s = O(dL?B*A%¢ 2 poly log(nLBA/(€d))), then with
probability 1 — 0, we have : for all x € colspan(U) N
Ba(A,n1),

(v, 6(W T a)) = (0, p(W T ST Sz))| < e.

3.3 One-hidden layer - Part 11

In this section, we show the approximation power of
the compressed network if the weight matrices of both
the input layer and output layer are sketched. One of
the core idea in the proof is a recursive e-net argument,
which plays a crucial role in extending the result to
multiple hidden layer. The goal of this section is to
prove the following theorem and present the recursive
e-net argument.

2The construction of S is oblivious to the subspace U.
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Theorem 3.5. Given parameters ng > 1,ny > 1,€ €
(0,1),6 € (0,1) and n = max(ng,n1). Given ny ac-
tivation functions ¢; : R — R with L-Lipshitz and
normalized by 1/\/na, a fixzed matric U € Rmxd,
and weight matric W € R™>™ with |W|2 < B,
v € R™ with ||v]|s < B. Choose a SPARSEEM-
BEDDING matriz S; € R%1*X™ gnd Sy € R%2%X"2
with s1,s2 = O(dL?B*A%e¢=2 polylog(nLBA/(¢f))),
then with probability 1 — §, we have : for all x €
colspan(U) N Bz (A, n1),

[(v, (W T 2)) — (Sov, S2p(WT S Sy2))| < e.

The high level idea is as follows. Firstly, we prove that
for any fixed input z, the theorem statement holds
with high probability. Then we build an sufficiently
fine e-net over the input space of x and argue that
our statement holds for every input point z from the
e-net. Condition on this event, the statement holds
by applying the Lipshitz continuity of the activation
function. The detailed proof is presented in the full
version Lin et al. (2018).

3.4 Multiple hidden layer

In this section, we generalize our approximation power
result to a multi-layer neural network and delay the
proofs to the Appendix of the full version Lin et al.
(2018). Inspired by the batch normalization Ioffe and
Szegedy (2015), which has been widely used in prac-
tice?, we make an additional assumption by requiring
the activations to be normalized by 1/,/n;11 at each
layer j. The way we deal with multiple hidden layers
is, first recursively argue an e-net can be constructed
for all the layers with the same size. Then we use
triangle inequality to split error into ¢ 4+ 1 terms and
bounding them separately. The result is the following
theorem.

Theorem 3.6. Given parameters ¢ > 1, n; > 1,Vj €
[¢ +1],e € (0,1),6 € (0,1) and n = maxjcpg41] Ny
For each j € [q], for each i € [njy1] let ¢j, : R —
R denote an activation function with L-Lipshitz and
normalized by 1/,/mjy1. Given a fired matriv U €
R %4 g weight matrices W; € R™+1%"i V5 € [q] with
(the ij-th column of W;) w;;, € Ba(B,nj), a weight
vector v € R™+1 with v € By(B,njt1). For each j €
[¢ + 1], we choose a SPARSEEMBEDDING matriz S; €
R %™ with

s; = O(dg*L*1B*7"2 A%e 2 poly log(ngLBA/(€6))).

Then with probability 1 — &, we have : for all x €

colspan(U) N Ba(A,n1),
(v, fD(@)) = (Sgr10, Sgi1 D ()| < e,

Shttps://wuw.tensorflow.org/api_docs/python/tf/
nn/batch_normalization

where @ (z) and fD () are defined recursively. The

base case is O (z) = fO)(z) =z, and for j >0,

FO (@) = ¢;(W, fU=1(2)),Vj € [q]
and fU)(z) = ¢;(W;'S] S; F9V(a)),Vj € [g].

Note that similar results also hold for the case without
using Sg41. In other words, we only choose ¢ matrices
for ¢ hidden layers.

4 Recovery Guarantee

In this section, we study the recovery guarantee of
parameter-reduced neural nets. In particular, we
study whether (stochastic) gradient descent can learn
the true parameters in a one-hidden-layer Hashed-
Nets when starting from a sufficiently good initializa-
tion point, under appropriate assumptions. We show
that even under the special weight sharing structure
depicted by the hash function, the resulting neural
net still has sufficiently nice properties - namely, lo-
cal strong convexity and smoothness around the mini-
mizer. Our proof technique is by reducing our case to
that of the fully connected network studied in Zhong
et al. (2017b). After that, the recovery guarantee fol-
lows similarly. We present our result here and give the
detailed proof in the full version Lin et al. (2018).

We consider the following regression prob-
lem : given a set of m samples S =
{(xlvyl)u(‘r27y2)7"' 7(xmaym)} C Rn X R Let

D be an underlying distribution over R x R with pa-
rameters w* € RZ and v* € R¥, such that each sample
(z,y) € S is sampled ii.d. from this distribution,

with z ~ N(0,1),y = Y0, v} - (X7 wi ) - 7).
Here h : [k] X [n] — [B] is a random hash function
drawn from a t¢-wise independent hash family #H,

where t = O(log(nk)), and ¢ is an activation function.

Note that w* has a corresponding matrix W+ € Rkxn
defined as W7 = wy, .y, which is the actual weight
matrix in the HashedNets with a weight sharing struc-

ture.

Our goal is to recover the ground-truth parameters
w*,v* given the sample S. Note that how to recover
v* has been discussed in Zhong et al. (2017a,b); their
method also applies to our situation. Therefore we
focus on recovering w* in this section, assuming v* is
known.

For a given weight vector w € RZ, we define its ex-
pected risk and empirical risk as

k n 2
1 *


https://www.tensorflow.org/api_docs/python/tf/nn/batch_normalization
https://www.tensorflow.org/api_docs/python/tf/nn/batch_normalization

Towards a Theoretical Understanding of Hashing-Based Neural Nets

Fs(w) :% Z [<X;vf¢ (2“%(1‘,3‘) '%‘) —y) ] .

(z,y)~S

We first show a structural result for ¢-wise independent
hash family, which says the pre-image of each bucket
is pretty balanced.

Lemma 4.1 (Concentration of hashing buckets, part
of Lemma C.12). Given integers N and B < N/log N.
Let h : [N] — [B] denote a t-wise independent hash
function such that Prp.y[h(i) = j] = 1/B,Vi €
[N],Vj € [B]. Then, if t = O(log N), with probabil-
ity at least 1 — 1/ poly(N), we have for all j € [B],
0.9N/B < SN 14y=; < 1.IN/B.

The previous work Zhong et al. (2017b) showed that
a fully connected network whose ground-truth weight
matrix W* € R¥*" has rank k has local strong con-
vexity and smoothness around W* in its loss function
(see their Lemma D.3).

Using Lemma 4.1 as our core reduction tool, we can
reduce HashedNets to a fully connected net and obtain
the following result:

Theorem 4.2 (Local strong convexity and smooth-
ness). Suppose rank(W*) = k. Then we have

0.5(kn/B) - Apin - I = V2Fp(w*) < 2(kn/B) - Amax - I,

where Amax and Amin are positive parameters that de-
pend on W* and the activation function ¢.

Remark 4.3. A crucial_assumption in Theorem /.2
is that the weight matriz W* has rank k. In Section 5,
we use numerical experiment to verify this assumption
in learned HashedNets.

For the empirical risk Fg, we can show that its Hessian
V2Fg(w*) at the optimal point also satisfies similar
properties given enough samples. See Theorem C.7
for details.

Using the tensor initialization method in Zhong et al.
(2017b), we can find a point in the locally “nice re-
gion” around w*, and then we can show that gradient
descent on the empirical risk function Fs converges
linearly to w*. The result is summarized as follows.

Theorem 4.4 (Recovery guarantee). There exist pa-
rameters 1 and 7o that depend on W* and ¢ such
that the following is true. Let w® be any point sat-
isfying [lw® — w*|la < y1||w*||2, and let S denote a
set of i.i.d. samples from the distribution D. Define
mo = 9(%Amin) and My = @(%‘Amax) where Amax
and Anin are the same ones in Theorem 4.2. For any
t > 1, if we choose |S| > n - poly(logn,t) - k*ve and
perform gradient descent with step size 1/My on Fg
and obtain the next iterate, W = w° — ﬁUVFS(wC),

then with probability at least 1 — n=" we have

[ — w3 < (1 = mo/Mo)||w® — w*||3.

The above theorem states that once a constantly-
accurate initialization point is specified, we can obtain
a solution up to precision exp(— poly(n)) in a poly-
nomial number of gradient descent iterations. This
concludes the recovery guarantee. We give the formal
statements and proofs in Section C.

5 Experiments

In this section, we perform some simple experiments
on MNIST dataset to evaluate the performance of
HashedNets, as well as empirically verify the full rank
assumption (as in Theorem 4.2) on weight matrices in
HashedNets. Each image in MNIST dataset has a di-
mensionality of 28 x 28. The HashedNets in the experi-
ment have single-hidden-layer, i.e., two fully connected
layers. To validate the effectiveness of HashedNets, we
construct two baselines.

e SmallNets. A single-hidden-layer network is
constructed with the same amount of effective
weights as that of HashedNets. For example, for a
HashedNets with 1000 hidden units in the hidden
layer with compression ratio 64, a corresponding
SmallNets have [1390] = 16 hidden units in the
hidden layer.

e ThinNets. A two-hidden-layer network is con-
structed with the same amount of effective weights
as that of HashedNets. By replacing the first
fully connected layer in HashedNets with a thin
hidden layer, a same amount of weights can be
achieved. For example, for a HashedNets with
1000 hidden units in the hidden layer with com-
pression ratio 64, a corresponding ThinNets have

[%] = 7 hidden units for the first hid-

den layer and 1000 hidden units for the second
hidden layer.

The accuracy of HashedNets, SmallNets, and Thin-
Nets is compared under various compression ratios.

The HashedNets were implemented in Torch7 Col-
lobert et al. (2011); Chen et al. (2015) and validated
on NVIDIA GTX 1080 GPU. We used 32 bit precision
floating point numbers throughout the experiments.
Stochastic gradient descent was adopted as the nu-
merical optimizer with a dropout keep rate of 0.9, mo-
mentum of 0.9, and a batch size of 50. ReLU was
used as the activation function. We ran 1000 epochs
for each experiment and experiments on two single-
hidden-layer HashedNets with 500 and 1000 hidden
units are conducted, respectively. The amount of units
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Figure 1: (a) Ratio= 1; (b) ratio= 8; (c) ratio= 64; (d) ratio= 128. We run two one-hidden layer algorithms on MNIST
dataset. Comparison of accuracy distribution with different random seeds for HashedNets and SmallNets. Choose 50
random seeds in total. HashedNets have 1000 hidden units in this case.
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Figure 2: (a) Ratio= 1; (b) ratio= 8; (c) ratio= 64; (d) ratio= 128. The testing error during training of different networks

with random seed 100.

in SmallNets and ThinNets is adjusted to match the
amount of weights in HashedNets.

For different compression ratios, we plot the distri-
bution of testing errors for 50 runs of HashedNets,
ThinNets, and SmallNets with 50 different random
seeds, as shown in Figure 1. Due to random initial-
ization, SmallNets still gives different results with in-
dependent runs. In Figure 1(a), when the compression
ratio is 1, which indicating no compression, the distri-
butions for both HashedNets and SmallNets are very
close, i.e., with means of 1.37% and 1.40%, standard
deviations of 0.050% and 0.038%, respectively. Thin-
Nets provides slightly better testing error with a mean
of 1.27% and a standard deviation of 0.057%. In Fig-
ure 1(b), when the compression ratio is 8, HashedNets
provides smaller testing errors than that of SmallNets,
i.e., with means of 1.43% v.s. 1.76%, and standard
deviations of 0.052% v.s. 0.070%, respectively. Thin-
Nets provides slightly better testing errors than that of
HashedNets, i.e., with means of 1.32% v.s. 1.44%, and
standard deviations of 0.060% v.s. 0.056%. In other
words, both HashedNets and ThinNets can achieve
higher and more robust accuracy with improvements
in both mean and standard deviation than SmallNets
for this compression ratio. With the compression ratio
increasing to 64, as shown in Figure 1(c), the benefit of
HashedNets is more significant. The mean of testing
errors for HashedNets degrades to 2.80%, while that
for SmallNets increases to 6.09%. The errors for Small-

Nets are more instable due to larger standard devia-
tions. Meanwhile, HashedNets can also provide bet-
ter accuracy than ThinNets, i.e., with means of 2.80%
v.s. 5.03%, and standard deviations of 0.090% v.s.
0.196%. When the compression ratio is 128, as shown
in Figure 1(d), HashedNets achieves a mean accuracy
of 4.20% and a standard deviation of 0.116%, which is
much better than that of ThinNets, a mean accuracy
of 11.09% and a standard deviation of 0.160%, and
that of SmallNets, a mean accuracy of 10.28% and a
standard deviation of 0.810%. In summary, from the
aspect of accuracy degradation, when the compression
ratio increases from 1 to 128, there is on average 2.83%
degradation in accuracy for HashedNets, while the ac-
curacy of SmallNets degrades by 8.88% and that of
ThinNets degrades by 9.82%. ThinNets may achieve
comparable error to HashedNet for small compression
ratios (e.g., 1 and 8), while for large compression ratio,
HashedNet tends to be more stable.

Figure 2 plots the training curves of different networks
under different compression ratios with random seed
100. The testing errors align with the observation
from Figure 1. That is, HashedNets provides high
and stable accuracy across various compression ratios;
ThinNets achieves good accuracy for small compres-
sion ratios (e.g., 1 and 8, the accuracy is close to that
of HashedNets), while degrades significantly with the
increase of compression ratios; SmallNets are also very
sensitive to large compression ratios like ThinNets.
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Figure 3: Input dimension is 784. Distributions of singular values, condition numbers, and stable ranks for two weight
matrices W7 and W5 in HashedNets with 1000 hidden units for 50 random seeds.

We further verify the full rank assumption of weight
matrices in HashedNets. Figure 3 plots the distribu-
tions of minimum and maximum singular values, con-
dition numbers, and stable ranks of the two weight
matrices W7 and W5 in HashedNets with 1000 hidden
units. The dimensions of Wy is 1000 x 784 and that of
Wy is 10 x 1000. The distributions are extracted from
the aforementioned 50 runs. Figure 4 (in the full ver-
sion Lin et al. (2018)) gives one example of all singular
values sorted from large to small in one experiment.
All the singular values and condition numbers are dis-
tributed in reasonable scales, i.e., neither too close to
zero, nor too large. This experiment indicates that the
assumption of full rank holds in practice. Same set of
figures are also provided for HashedNets with 500 hid-
den units, as shown in Figure 5 (in the full version Lin
et al. (2018)), where the dimensions of W7 is 500 x 784
and that of W5 is 10 x 500.

6 Conclusion

In this paper, we study the theoretical properties of
hashing-based neural networks. We show that (i)
parameter-reduced neural nets have uniform approx-
imation power on inputs from any low-dimensional
subspace or smooth and well-conditioned manifold;
(ii) one-hidden-layer HashedNets have similar recov-
ery guarantee to that of fully connected neural nets.
We also empirically explore an alternative compression
scheme, ThinNets, which is a very interesting direction
for further study, so we plan to explore its property
and theoretical insights in the future.
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