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This supplementary document is the appendix section of the AISTATS’19 paper entitled “Distributed Inexact Newton-type
Pursuit for Non-Convex Sparse Learning”. It is organized as follows: In Section A we present several technical lemmas that
will be used for proving the main results. In Section B we give the proofs of main results appeared in Section 3 of the paper.
In Section C, we proivde the proof of Theorem 3 in Section 4 of the paper.

A Technical Lemmas

The following lemma shows that the estimation error of the truncated average of estimators is well upper bounded by the
average error of those estimators.

Lemma 2. Let w̄ be k̄-sparse vector. For a set of k-sparse vectors {wj}mj=1 with k ≥ k̄, it holds that∥∥∥∥∥∥Hk
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Moreover, if k > k̄, then ∥∥∥∥∥∥Hk

 1

m

m∑
j=1

wj

− w̄
∥∥∥∥∥∥ ≤ 1

m

√
1 + 2

√ k̄

k − k̄

m∑
j=1

‖wj − w̄‖.

Proof. The first claim follows readily from (Shen & Li, 2017, Theorem 1) and triangle inequality. The second claim is a
direct consequence of the result in (Li et al., 2016, Lemma 3.3).

The following lemma is key to our analysis.

Lemma 3. Let w̄ be a k̄-sparse target vector with k̄ ≤ k. Assume that each component Fj(w) is µ3k-strongly-convex and
ηF (w)− Fj(w)− γ

2 ‖w‖
2 has α3k-RLG. Then

‖w(t) − w̄‖ ≤ 3.24α3k
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.

Moreover, assume that each Fj(w) has β3k-RLH. Let H̄j = ∇2Fj(w̄) and H̄ = 1
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j=1 H̄j . Then
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Proof. For any j ∈ [m], since Fj(w) is µ3k-strongly-convex, we have that Pj(w;w(t−1) | η, γ) is (γ+µ3k)-strongly-convex.
Let S(t)
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where “ξ1” follows from the definition of w(t) as an ε-approximate k-sparse minimizer of Pj(w;w(t−1) | η, γ). By
rearranging both sides of the above inequality with proper elementary calculation we get
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where ζ1 is according to the assumption that ηF (w)− Fj(w)− γ
2 ‖w‖

2 has α3k-RLG. Since w(t) = Hk
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,

by applying the first claim in Lemma 2 we obtain
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This shows the validity of the first part.

Next we prove the second part. Similar to the above argument we can derive the following:
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Again, from the definition of w(t) and by applying the first claim in Lemma 2 we have∥∥∥w(t) − w̄
∥∥∥

≤3.24(γ + maxj ‖H̄j − ηH̄‖)
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This proves desired bound in the second part.

B Proofs for the Main Results in Section 3

B.1 Proof of Proposition 1

Proof. Consider an index set S with cardinality |S| ≤ s and all w,w′ with supp(w)∪supp(w′) ⊆ S. Since σ(z) is Lipschitz
continuous with constant 1, we have that

|σ(2yiw
>xi)− σ(2yiw

′>xi)| ≤ |2(w − w′)>yixi| ≤ 2‖[xi]S‖‖w − w′‖ ≤ 2rs‖w − w′‖.

Using this above inequality and the fact that σ(z) ≤ 1 we obtain
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where the “ζ1” follows from the standard matrix norm equality ‖A‖2 = ‖AA>‖. This proves the desired result.

B.2 Proof of Theorem 1 and Corollary 1

Proof of Theorem 1. Since the local objective functions Fj are quadratic, we can simply set βs = 0 for all cardinality s.
By assumption Fj(w) is µ3k-strongly-convex. Then by invoking the second part of Lemma 3 with β3k = 0, γ = 0 and

ε ≤ kη2‖∇F (w̄)‖2∞
5.29µ3k

we get

‖w(t) − w̄‖ ≤ 3.24 maxj ‖H̄j − ηH̄‖
µ3k

‖w(t−1) − w̄‖+
6.62η

√
k

µ3k
‖∇F (w̄)‖∞.

It can be readily verified that the factor 3.24 maxj ‖H̄j−ηH̄‖
µ3k

≤ θ < 1. Based on the above recursion inequality we can show

‖w(t) − w̄‖ ≤ θt‖w(0) − w̄‖+
6.62η

√
k‖∇F (w̄)‖∞

(1− θ)µ3k
.

Based on the inequality 1− x ≤ exp(−x) we need

t ≥ 1

1− θ
log

(1− θ)µ3k‖w(0) − w̄‖
η
√
k‖∇F (w̄)‖∞

rounds of iteration/communication to achieve the precision of ‖w(t) − w̄‖ ≤ 7.62η
√
k‖∇F (w̄)‖∞

(1−θ)µ3k
. This proves the desired

complexity bound.

Based on the results in Theorem 1 and Lemma 1 we can straightforwardly prove Corollary 1.
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Proof of Corollary 1. From the definition of θ and Lemma 1 we get maxj ‖Hj −H‖ ≤ θµ3k

3.24 holds with probability at least

1− δ. Since n > 336L2 log(mp/δ)
µ2
3k

, we have θ ∈ (0, 1). The desired bound is then directly implied by Theorem 1.

Implications for distributed sparse linear regression. Given a k̄-sparse parameter vector w̄, assume the samples are
generated according to the linear model y = w̄>x + ε where ε is a zero-mean Gaussian random noise variable with
parameter σ. Assume the data samples {Dj = {xji, yji}ni=1}

m
j=1 are distributed over m machines and let Fj(w) =

1
2n

∑n
i=1 ‖yji − w>xji‖2, j ∈ [m] be the least square loss over Dj and F (w) = 1

m

∑m
j=1 Fj(w) be the average of

local loss. This example belongs to the quadratic case for which the performance of DINPS is analyzed in Section 3.2.
Suppose xji are drawn from Gaussian distribution with covariance Σ. Then it holds with high probability that Fj(w) has
restricted strong-convexity constant µ3k ≥ λmin(Σ) − O(k log p/n) and smoothness constant L ≤ maxj,i ‖xji‖; and

‖∇F (w̄)‖∞ = O
(
σ
√

log p/(mn)
)

and ‖∇Fj(w̄)‖∞ = O
(
σ
√

log p/n
)

. Consider the local initialization strategy of

w(0) ≈ arg min‖w‖0≤k F1(w). Then according to the bound in (6), if the sample size n = O
(
L2 log(mp)

µ2
3k

)
is sufficiently

large, DINPS needs O(logm) rounds of iteration/communication to reach the statistical error level O
(
σ
√
k log p/(mn)

)
.

B.3 Proof of Theorem 2 and Corollary 2

Proof of Theorem 2. We first claim that ‖w(t) − w̄‖ ≤ µ3kθ
3.24(1+η)β3k

holds for all t ≥ 0. This can be shown by induction.

Based on the theorem assumptions the claim holds for t = 0. Now suppose that ‖w(t−1) − w̄‖ ≤ µ3kθ
3.24(1+η)β3k

for some
t ≥ 1. Since γ = 0, according to Lemma 3 we have
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2

3.24(1 + η)β3k
+

µ3kθ(1− θ)
3.24(1 + η)β3k

=
µ3kθ

3.24(1 + η)β3k
,

where “ζ1” follows from the assumptions on maxj ‖H̄j−ηH̄‖ and ε, and “ζ2” follows from the condition of ‖∇F (w̄)‖∞ ≤
(1−θ)θµ2

3k

21.45η(1+η)β3k

√
k

. Thus by induction ‖w(t) − w̄‖ ≤ µ3kθ
3.24(1+η)β3k

holds for all t ≥ 1. Then it follows from the inequality
below “ζ1” we get that for all t ≥ 0,

‖w(t) − w̄‖ ≤ θ‖w(t−1) − w̄‖+
6.62η

√
k

µ3k
‖∇F (w̄)‖∞.

By recursively applying the above inequality we get

‖w(t) − w̄‖ ≤ θt‖w(0) − w̄‖+
6.62η

√
k

(1− θ)µ3k
‖∇F (w̄)‖∞.

Based on the inequality 1− x ≤ exp(−x) we need

t ≥ 1

1− θ
log

(
(1− θ)µ3k‖w(0) − w̄‖
η
√
k‖∇F (w̄)‖∞

)

rounds of iteration/communication to achieve ‖w(t) − w̄‖ ≤ 7.62η
√
k‖∇F (w̄)‖∞

(1−θ)µ3k
. This proves the desired complexity

bound.

Corollary 2 can be readily proved by applying Lemma 1 to Theorem 2.



Proof of Corollary 2. From the definition of θ and Lemma 1 we get that maxj ‖Hj −H‖ ≤ θµ3k

6.48 holds with probability at

least 1− δ. Since n > 1344L2 log(mp/δ)
µ2
3k

, we have θ ∈ (0, 1). By invoking Theorem 2 we get the desired result.

C Proof of Theorem 3 in Section 4

Proof. Recall that we update w(t) = w
(t)
1 in this non-convex setting. Then the assumption ‖∇P1(w

(t)
1 ;w(t−1) | η, γ)‖ ≤ ε

implies
‖∇F1(w(t)) + η∇F (w(t−1))−∇F1(w(t−1)) + γ(w(t) − w(t−1))‖ ≤ ε. (C.1)

Since F (w) is L2k-smooth,

F (w(t))

≤F (w(t−1)) + 〈∇F (w(t−1)), w(t) − w(t−1)〉+
L2k

2
‖w(t) − w(t−1)‖2

=F (w(t−1))− 1

η
〈∇F1(w(t))−∇F1(w(t−1)) + γ(w(t) − w(t−1)), w(t) − w(t−1)〉+

L2k

2
‖w(t) − w(t−1)‖2

+
1

η
〈∇F1(w(t)) + η∇F (w(t−1))−∇F1(w(t−1)) + γ(w(t) − w(t−1)), w(t) − w(t−1)〉

≤F (w(t−1))− 2γ − (η + 1)L2k

2η
‖w(t) − w(t−1)‖2 +

ε

η
‖w(t) − w(t−1)‖.

By rearranging the terms on both sides of the above we get

2γ − (η + 1)L2k

2η
‖w(t) − w(t−1)‖2 − ε

η
‖w(t) − w(t−1)‖ ≤ F (w(t−1))− F (w(t)).

By adding both sides of the above from index 1 to t we obtain

min
τ=1,...,t

2γ − (η + 1)L2k

2η
‖w(τ) − w(τ−1)‖2 − ε

η
‖w(τ) − w(τ−1)‖

≤1

t

t∑
τ=1

2γ − (η + 1)L2k

2η
‖w(τ) − w(τ−1)‖2 − ε

η
‖w(τ) − w(τ−1)‖

≤1

t
(F (w(0))− F (w(t))) ≤ 1

t
(F (w(0))− F (w∗)).

From the above and the basic fact that ax2 − bx− c < 0 implies x2 ≤ 2b2

a2 + 2c
a for a, b, c > 0, we can verify

min
τ=1,...,t

‖w(τ) − w(τ−1)‖2 ≤ 8ε2

(γ − (η + 1)L2k)2
+

4η(F (w(0))− F (w∗))

(γ − (η + 1)L2k)t
.

From (C.1) and triangle inequality we can derive that

‖∇F (w(t−1))‖2 ≤
(

1

η
‖∇F1(w(t))−∇F1(w(t−1)) + γ(w(t) − w(t−1))‖+ ε

)2

≤ 2(L2k + γ)2

η2
‖w(t) − w(t−1)‖2 + 2ε2.

By combining the preceding two inequalities we get

min
τ=1,...,t

‖∇F (w(τ))‖2 ≤
(

16(L2k + γ)2

η2(γ − (η + 1)L2k)2
+ 2

)
ε2 +

(
8(L2k + γ)2(F (w(0))− F (w∗))

η(γ − (η + 1)L2k)

)
1

t
.

The desired bound then follows from the setting of γ = (η + 2)L2k. This completes the proof.


