Structure of This Document

This supplementary document is the appendix section of the AISTATS'19 paper entitled "Distributed Inexact Newton-type Pursuit for Non-Convex Sparse Learning". It is organized as follows: In Section A we present several technical lemmas that will be used for proving the main results. In Section B we give the proofs of main results appeared in Section 3 of the paper. In Section C, we provide the proof of Theorem 3 in Section 4 of the paper.

A Technical Lemmas

The following lemma shows that the estimation error of the truncated average of estimators is well upper bounded by the average error of those estimators.

Lemma 2. Let \bar{w} be \bar{k} -sparse vector. For a set of k-sparse vectors $\{w_j\}_{j=1}^m$ with $k \geq \bar{k}$, it holds that

$$\left\| \mathbf{H}_k \left(\frac{1}{m} \sum_{j=1}^m w_j \right) - \bar{w} \right\| \le \frac{1.62}{m} \sum_{j=1}^m \| w_j - \bar{w} \|.$$

Moreover, if $k > \bar{k}$ *, then*

$$\left\| \mathbf{H}_{k} \left(\frac{1}{m} \sum_{j=1}^{m} w_{j} \right) - \bar{w} \right\| \leq \frac{1}{m} \sqrt{1 + 2\sqrt{\frac{\bar{k}}{k - \bar{k}}}} \sum_{j=1}^{m} \|w_{j} - \bar{w}\|.$$

Proof. The first claim follows readily from (Shen & Li, 2017, Theorem 1) and triangle inequality. The second claim is a direct consequence of the result in (Li et al., 2016, Lemma 3.3).

The following lemma is key to our analysis.

Lemma 3. Let \bar{w} be a \bar{k} -sparse target vector with $\bar{k} \leq k$. Assume that each component $F_j(w)$ is μ_{3k} -strongly-convex and $\eta F(w) - F_j(w) - \frac{\gamma}{2} \|w\|^2$ has α_{3k} -RLG. Then

$$||w^{(t)} - \bar{w}|| \le \frac{3.24\alpha_{3k}}{\gamma + \mu_{3k}} ||w^{(t-1)} - \bar{w}|| + \frac{5.62\eta\sqrt{k}}{\gamma + \mu_{3k}} ||\nabla F(\bar{w})||_{\infty} + 2.3\sqrt{\frac{\epsilon}{\gamma + \mu_{3k}}}.$$

Moreover, assume that each $F_j(w)$ has β_{3k} -RLH. Let $\bar{H}_j = \nabla^2 F_j(\bar{w})$ and $\bar{H} = \frac{1}{m} \sum_{j=1}^m \bar{H}_j$. Then

$$||w^{(t)} - \bar{w}|| \leq \frac{3.24(\gamma + \max_{j} ||\bar{H}_{j} - \eta \bar{H}||)}{\gamma + \mu_{3k}} ||w^{(t-1)} - \bar{w}|| + \frac{1.62(1+\eta)\beta_{3k}}{\gamma + \mu_{3k}} ||w^{(t-1)} - \bar{w}||^{2} + \frac{5.62\eta\sqrt{k}}{\gamma + \mu_{3k}} ||\nabla F(\bar{w})||_{\infty} + 2.3\sqrt{\frac{\epsilon}{\gamma + \mu_{3k}}}.$$

Proof. For any $j \in [m]$, since $F_j(w)$ is μ_{3k} -strongly-convex, we have that $P_j(w; w^{(t-1)} \mid \eta, \gamma)$ is $(\gamma + \mu_{3k})$ -strongly-convex. Let $S_j^{(t)} = \operatorname{supp}(w_j^{(t)})$, $S^{(t-1)} = \operatorname{supp}(w^{(t-1)})$ and $\bar{S} = \operatorname{supp}(\bar{w})$. Consider $S = S_j^{(t)} \cup S^{(t-1)} \cup \bar{S}$. Then

$$\begin{split} &P_{j}(w_{j}^{(t)};w^{(t-1)}\mid\eta,\gamma)\\ \geq &P_{j}(\bar{w};w^{(t-1)}\mid\eta,\gamma) + \langle\nabla P_{j}(\bar{w};w^{(t-1)}\mid\eta,\gamma),w_{j}^{(t)}-\bar{w}\rangle + \frac{\gamma+\mu_{3k}}{2}\|w_{j}^{(t)}-\bar{w}\|^{2}\\ =&P_{j}(\bar{w};w^{(t-1)}\mid\eta,\gamma) + \langle\nabla_{S}P_{j}(\bar{w};w^{(t-1)}\mid\eta,\gamma),w_{j}^{(t)}-\bar{w}\rangle + \frac{\gamma+\mu_{3k}}{2}\|w_{j}^{(t)}-\bar{w}\|^{2}\\ \geq &P_{j}(w^{(t)};w^{(t-1)}\mid\eta,\gamma) - \epsilon - \|\nabla_{S}P_{j}(\bar{w};w^{(t-1)}\mid\eta,\gamma)\|\|w_{j}^{(t)}-\bar{w}\| + \frac{\gamma+\mu_{3k}}{2}\|w_{j}^{(t)}-\bar{w}\|^{2}, \end{split}$$

where " ξ_1 " follows from the definition of $w^{(t)}$ as an ϵ -approximate k-sparse minimizer of $P_j(w; w^{(t-1)} \mid \eta, \gamma)$. By rearranging both sides of the above inequality with proper elementary calculation we get

$$\begin{split} &\|w_{j}^{(t)} - \bar{w}\| \\ &\leq \frac{2}{\gamma + \mu_{3k}} \|\nabla_{S}P_{j}(\bar{w}; w^{(t-1)} \mid \eta, \gamma)\| + \sqrt{\frac{2\epsilon}{\gamma + \mu_{3k}}} \\ &= \frac{2}{\gamma + \mu_{3k}} \|\eta\nabla_{S}F(w^{(t-1)}) - \nabla_{S}F_{j}(w^{(t-1)}) + \gamma(\bar{w} - w^{(t-1)}) + \nabla_{S}F_{j}(\bar{w})\| + \sqrt{\frac{2\epsilon}{\gamma + \mu_{3k}}} \\ &= \frac{2}{\gamma + \mu_{3k}} \|\eta\nabla_{S}F(w^{(t-1)}) - \eta\nabla_{S}F(\bar{w}) - (\nabla_{S}F_{j}(w^{(t-1)}) - \nabla_{S}F_{j}(\bar{w})) + \gamma(\bar{w} - w^{(t-1)}) + \eta\nabla_{S}F(\bar{w})\| + \sqrt{\frac{2\epsilon}{\gamma + \mu_{3k}}} \\ &\stackrel{\xi_{1}}{\leq} \frac{2}{\gamma + \mu_{3k}} \|\left(\eta\nabla_{S}F(w^{(t-1)}) - \nabla_{S}F_{j}(w^{(t-1)}) - \gamma w^{(t-1)}\right) - (\eta\nabla_{S}F(\bar{w}) - \nabla_{S}F_{j}(\bar{w}) - \gamma \bar{w})\right\| + \frac{2\eta}{\gamma + \mu_{3k}} \|\nabla_{S}F(\bar{w})\| \\ &+ \sqrt{\frac{2\epsilon}{\gamma + \mu_{3k}}} \\ &\leq \frac{2\alpha_{3k}}{\gamma + \mu_{3k}} \|w^{(t-1)} - \bar{w}\| + \frac{2\eta\sqrt{3k}}{\gamma + \mu_{3k}} \|\nabla F(\bar{w})\|_{\infty} + \sqrt{\frac{2\epsilon}{\gamma + \mu_{3k}}}, \end{split}$$

where ζ_1 is according to the assumption that $\eta F(w) - F_j(w) - \frac{\gamma}{2} ||w||^2$ has α_{3k} -RLG. Since $w^{(t)} = H_k \left(\frac{1}{m} \sum_{j=1}^m w_j^{(t)} \right)$, by applying the first claim in Lemma 2 we obtain

$$\|w^{(t)} - \bar{w}\| = 1.62 \left\| \frac{1}{m} \sum_{j=1}^{m} w_j^{(t)} - \bar{w} \right\|$$

$$\leq \frac{1.62}{m} \sum_{j=1}^{m} \left\| w_j^{(t)} - \bar{w} \right\| \leq \frac{3.24\alpha_{3k}}{\gamma + \mu_{3k}} \|w^{(t-1)} - \bar{w}\| + \frac{5.62\eta\sqrt{k}}{\gamma + \mu_{3k}} \|\nabla F(\bar{w})\|_{\infty} + 2.3\sqrt{\frac{\epsilon}{\gamma + \mu_{3k}}}.$$

This shows the validity of the first part.

Next we prove the second part. Similar to the above argument we can derive the following:

$$\begin{split} &\|w_{j}^{(t)} - \bar{w}\| \\ &\leq \frac{2}{\gamma + \mu_{3k}} \|\nabla_{S}P_{j}(\bar{w}; w^{(t-1)} \mid \eta, \gamma)\| + \sqrt{\frac{2\epsilon}{\gamma + \mu_{3k}}} \\ &\leq \frac{2}{\gamma + \mu_{3k}} \left\| \gamma(w^{(t-1)} - \bar{w}) + \eta \nabla_{S}F(w^{(t-1)}) - \eta \nabla_{S}F(\bar{w}) - (\nabla_{S}F_{j}(w^{(t-1)}) - \nabla_{S}F_{j}(\bar{w})) \right\| \\ &+ \frac{2\eta}{\gamma + \mu_{3k}} \|\nabla_{S}F(\bar{w})\| + \sqrt{\frac{2\epsilon}{\gamma + \mu_{3k}}} \\ &\leq \frac{2}{\gamma + \mu_{3k}} \left\| \gamma(w^{(t-1)} - \bar{w}) + \eta \nabla_{S}^{2}F(\bar{w})(w^{(t-1)} - \bar{w}) - \nabla_{S}^{2}F_{j}(\bar{w})(w^{(t-1)} - \bar{w}) \right\| \\ &+ \frac{2\eta}{\gamma + \mu_{3k}} \|\nabla_{S}F(\bar{w})\| + \frac{2\eta}{\gamma + \mu_{3k}} \left\| \nabla_{S}F(w^{(t-1)}) - \nabla_{S}F(\bar{w}) - \nabla_{S}^{2}F(\bar{w})(w^{(t-1)} - \bar{w}) \right\| \\ &+ \frac{2}{\gamma + \mu_{3k}} \left\| \nabla_{S}F_{j}(w^{(t-1)}) - \nabla_{S}F_{j}(\bar{w}) - \nabla_{S}^{2}F_{j}(\bar{w})(w^{(t-1)} - \bar{w}) \right\| + \sqrt{\frac{2\epsilon}{\gamma + \mu_{3k}}} \\ &\leq \frac{2}{\gamma + \mu_{3k}} \left(\gamma + \|\eta \nabla_{S}^{2}F(\bar{w}) - \nabla_{S}^{2}F_{j}(\bar{w}) \| \right) \|w^{(t-1)} - \bar{w}\| + \frac{2\eta}{\gamma + \mu_{3k}} \|\nabla_{S}F(\bar{w})\| \\ &+ \frac{(1 + \eta)\beta_{3k}}{\gamma + \mu_{3k}} \|w^{(t-1)} - \bar{w}\|^{2} + \sqrt{\frac{2\epsilon}{\gamma + \mu_{3k}}} \\ &\leq \frac{2(\gamma + \max_{j'} \|\bar{H}_{j'} - \eta\bar{H}\|)}{\gamma + \mu_{3k}} \|w^{(t-1)} - \bar{w}\| + \frac{(1 + \eta)\beta_{3k}}{\gamma + \mu_{3k}} \|v^{(t-1)} - \bar{w}\|^{2} + \sqrt{\frac{2\epsilon}{\gamma + \mu_{3k}}} \|\nabla_{S}F(\bar{w})\|_{\infty} + \sqrt{$$

Again, from the definition of $w^{(t)}$ and by applying the first claim in Lemma 2 we have

$$\begin{split} & \left\| w^{(t)} - \bar{w} \right\| \\ & \leq & \frac{3.24 (\gamma + \max_{j} \|\bar{H}_{j} - \eta \bar{H}\|)}{\gamma + \mu_{3k}} \|w^{(t-1)} - \bar{w}\| + \frac{1.62 (1 + \eta) \beta_{3k}}{\gamma + \mu_{3k}} \|w^{(t-1)} - \bar{w}\|^{2} + \frac{5.62 \eta \sqrt{k}}{\gamma + \mu_{3k}} \|\nabla F(\bar{w})\|_{\infty} \\ & + 2.3 \sqrt{\frac{\epsilon}{\gamma + \mu_{3k}}}. \end{split}$$

This proves desired bound in the second part.

B Proofs for the Main Results in Section 3

B.1 Proof of Proposition 1

Proof. Consider an index set S with cardinality $|S| \le s$ and all w, w' with $\operatorname{supp}(w) \cup \operatorname{supp}(w') \subseteq S$. Since $\sigma(z)$ is Lipschitz continuous with constant 1, we have that

$$|\sigma(2y_i w^\top x_i) - \sigma(2y_i w'^\top x_i)| \le |2(w - w')^\top y_i x_i| \le 2||[x_i]_S|| ||w - w'|| \le 2r_s ||w - w'||.$$

Using this above inequality and the fact that $\sigma(z) \leq 1$ we obtain

$$|\sigma(2v_i w^{\top} u_i)(1 - \sigma(2v_i w^{\top} u_i)) - \sigma(2v_i w'^{\top} u_i)(1 - \sigma(2v_i w'^{\top} u_i))|$$

$$\leq |\sigma(2v_i w^{\top} u_i) - \sigma(2v_i w'^{\top} u_i)|(1 + \sigma(2v_i w^{\top} u_i) + \sigma(2v_i w'^{\top} u_i))$$

$$\leq 3|\sigma(2v_i w^{\top} u_i) - \sigma(2v_i w'^{\top} u_i)| \leq 6r_s ||w - w'||.$$

This yields $\|\Lambda(w) - \Lambda(w')\| \le 24r_s \|w - w'\|$. Therefore,

$$\left\|\nabla_{SS}^{2}f(w) - \nabla_{SS}^{2}f(w')\right\| \leq \frac{1}{n}\|X_{S}^{n}\|^{2}\|\Lambda(w) - \Lambda(w')\| \leq 24r_{s}\left\|\frac{1}{n}X_{S}^{n}(X_{S}^{n})^{\top}\right\|\|w - w'\| \leq 24r_{s}\rho_{s}^{\max}(\Sigma_{n})\|w - w'\|,$$

where the " ζ_1 " follows from the standard matrix norm equality $||A||^2 = ||AA^{\top}||$. This proves the desired result.

B.2 Proof of Theorem 1 and Corollary 1

Proof of Theorem 1. Since the local objective functions F_j are quadratic, we can simply set $\beta_s=0$ for all cardinality s. By assumption $F_j(w)$ is μ_{3k} -strongly-convex. Then by invoking the second part of Lemma 3 with $\beta_{3k}=0$, $\gamma=0$ and $\epsilon \leq \frac{k\eta^2\|\nabla F(\bar{w})\|_{\infty}^2}{5.29\mu_{3k}}$ we get

$$||w^{(t)} - \bar{w}|| \le \frac{3.24 \max_{j} ||\bar{H}_{j} - \eta \bar{H}||}{\mu_{3k}} ||w^{(t-1)} - \bar{w}|| + \frac{6.62 \eta \sqrt{k}}{\mu_{3k}} ||\nabla F(\bar{w})||_{\infty}.$$

It can be readily verified that the factor $\frac{3.24\max_j \|\bar{H}_j - \eta \bar{H}\|}{\mu_{3k}} \le \theta < 1$. Based on the above recursion inequality we can show

$$||w^{(t)} - \bar{w}|| \le \theta^t ||w^{(0)} - \bar{w}|| + \frac{6.62\eta \sqrt{k} ||\nabla F(\bar{w})||_{\infty}}{(1 - \theta)\mu_{3k}}.$$

Based on the inequality $1 - x \le \exp(-x)$ we need

$$t \ge \frac{1}{1-\theta} \log \frac{(1-\theta)\mu_{3k} \|w^{(0)} - \bar{w}\|}{\eta \sqrt{k} \|\nabla F(\bar{w})\|_{\infty}}$$

rounds of iteration/communication to achieve the precision of $||w^{(t)} - \bar{w}|| \le \frac{7.62\eta\sqrt{k}||\nabla F(\bar{w})||_{\infty}}{(1-\theta)\mu_{3k}}$. This proves the desired complexity bound.

Based on the results in Theorem 1 and Lemma 1 we can straightforwardly prove Corollary 1.

Proof of Corollary 1. From the definition of θ and Lemma 1 we get $\max_j \|H_j - H\| \le \frac{\theta \mu_{3k}}{3.24}$ holds with probability at least $1 - \delta$. Since $n > \frac{336L^2 \log(mp/\delta)}{\mu_{3k}^2}$, we have $\theta \in (0,1)$. The desired bound is then directly implied by Theorem 1.

Implications for distributed sparse linear regression. Given a \bar{k} -sparse parameter vector \bar{w} , assume the samples are generated according to the linear model $y = \bar{w}^\top x + \varepsilon$ where ε is a zero-mean Gaussian random noise variable with parameter σ . Assume the data samples $\{D_j = \{x_{ji}, y_{ji}\}_{i=1}^n\}_{j=1}^m$ are distributed over m machines and let $F_j(w) = \frac{1}{2n} \sum_{i=1}^n \|y_{ji} - w^\top x_{ji}\|^2$, $j \in [m]$ be the least square loss over D_j and $F(w) = \frac{1}{m} \sum_{j=1}^m F_j(w)$ be the average of local loss. This example belongs to the quadratic case for which the performance of DINPS is analyzed in Section 3.2. Suppose x_{ji} are drawn from Gaussian distribution with covariance Σ . Then it holds with high probability that $F_j(w)$ has restricted strong-convexity constant $\mu_{3k} \geq \lambda_{\min}(\Sigma) - \mathcal{O}(k\log p/n)$ and smoothness constant $L \leq \max_{j,i} \|x_{ji}\|$; and $\|\nabla F_j(\bar{w})\|_{\infty} = \mathcal{O}\left(\sigma\sqrt{\log p/(mn)}\right)$ and $\|\nabla F_j(\bar{w})\|_{\infty} = \mathcal{O}\left(\sigma\sqrt{\log p/n}\right)$. Consider the local initialization strategy of $w^{(0)} \approx \arg\min_{\|w\|_0 \leq k} F_1(w)$. Then according to the bound in (6), if the sample size $n = \mathcal{O}\left(\frac{L^2 \log(mp)}{\mu_{3k}^2}\right)$ is sufficiently large, DINPS needs $\mathcal{O}(\log m)$ rounds of iteration/communication to reach the statistical error level $\mathcal{O}\left(\sigma\sqrt{k\log p/(mn)}\right)$.

B.3 Proof of Theorem 2 and Corollary 2

Proof of Theorem 2. We first claim that $\|w^{(t)} - \bar{w}\| \le \frac{\mu_{3k}\theta}{3.24(1+\eta)\beta_{3k}}$ holds for all $t \ge 0$. This can be shown by induction. Based on the theorem assumptions the claim holds for t=0. Now suppose that $\|w^{(t-1)} - \bar{w}\| \le \frac{\mu_{3k}\theta}{3.24(1+\eta)\beta_{3k}}$ for some $t \ge 1$. Since $\gamma=0$, according to Lemma 3 we have

$$\begin{split} &\|w^{(t)} - \bar{w}\| \\ &\leq \frac{3.24 \max_{j} \|\bar{H}_{j} - \eta \bar{H}\|}{\mu_{3k}} \|w^{(t-1)} - \bar{w}\| + \frac{1.62(1+\eta)\beta_{3k}}{\mu_{3k}} \|w^{(t-1)} - \bar{w}\|^{2} + \frac{5.62\eta\sqrt{k}}{\mu_{3k}} \|\nabla F(\bar{w})\|_{\infty} + 2.3\sqrt{\frac{\epsilon}{\mu_{3k}}} \\ &\stackrel{\zeta_{1}}{\leq} \frac{\theta}{2} \|w^{(t-1)} - \bar{w}\| + \frac{1.62(1+\eta)\beta_{3k}}{\mu_{3k}} \|w^{(t-1)} - \bar{w}\|^{2} + \frac{6.62\eta\sqrt{k}}{\mu_{3k}} \|\nabla F(\bar{w})\|_{\infty} \\ &\leq \theta \|w^{(t-1)} - \bar{w}\| + \frac{6.62\eta\sqrt{k}}{\mu_{3k}} \|\nabla F(\bar{w})\|_{\infty} \\ &\stackrel{\zeta_{2}}{\leq} \frac{\mu_{3k}\theta^{2}}{3.24(1+\eta)\beta_{3k}} + \frac{\mu_{3k}\theta(1-\theta)}{3.24(1+\eta)\beta_{3k}} = \frac{\mu_{3k}\theta}{3.24(1+\eta)\beta_{3k}}, \end{split}$$

where " ζ_1 " follows from the assumptions on $\max_j \|\bar{H}_j - \eta \bar{H}\|$ and ϵ , and " ζ_2 " follows from the condition of $\|\nabla F(\bar{w})\|_{\infty} \leq \frac{(1-\theta)\theta\mu_{3k}^2}{21.45\eta(1+\eta)\beta_{3k}\sqrt{k}}$. Thus by induction $\|w^{(t)} - \bar{w}\| \leq \frac{\mu_{3k}\theta}{3.24(1+\eta)\beta_{3k}}$ holds for all $t \geq 1$. Then it follows from the inequality below " ζ_1 " we get that for all $t \geq 0$,

$$||w^{(t)} - \bar{w}|| \le \theta ||w^{(t-1)} - \bar{w}|| + \frac{6.62\eta\sqrt{k}}{\mu_{3k}}||\nabla F(\bar{w})||_{\infty}.$$

By recursively applying the above inequality we get

$$||w^{(t)} - \bar{w}|| \le \theta^t ||w^{(0)} - \bar{w}|| + \frac{6.62\eta\sqrt{k}}{(1-\theta)u_{3k}}||\nabla F(\bar{w})||_{\infty}.$$

Based on the inequality $1 - x \le \exp(-x)$ we need

$$t \ge \frac{1}{1-\theta} \log \left(\frac{(1-\theta)\mu_{3k} \| w^{(0)} - \bar{w} \|}{\eta \sqrt{k} \| \nabla F(\bar{w}) \|_{\infty}} \right)$$

rounds of iteration/communication to achieve $\|w^{(t)} - \bar{w}\| \leq \frac{7.62\eta\sqrt{k}\|\nabla F(\bar{w})\|_{\infty}}{(1-\theta)\mu_{3k}}$. This proves the desired complexity bound.

Corollary 2 can be readily proved by applying Lemma 1 to Theorem 2.

Proof of Corollary 2. From the definition of θ and Lemma 1 we get that $\max_j \|H_j - H\| \le \frac{\theta \mu_{3k}}{6.48}$ holds with probability at least $1 - \delta$. Since $n > \frac{1344L^2 \log(mp/\delta)}{\mu_{3k}^2}$, we have $\theta \in (0,1)$. By invoking Theorem 2 we get the desired result.

C Proof of Theorem 3 in Section 4

Proof. Recall that we update $w^{(t)} = w_1^{(t)}$ in this non-convex setting. Then the assumption $\|\nabla P_1(w_1^{(t)}; w^{(t-1)} \mid \eta, \gamma)\| \le \epsilon$ implies

$$\|\nabla F_1(w^{(t)}) + \eta \nabla F(w^{(t-1)}) - \nabla F_1(w^{(t-1)}) + \gamma (w^{(t)} - w^{(t-1)})\| \le \epsilon.$$
(C.1)

Since F(w) is L_{2k} -smooth,

$$\begin{split} &F(w^{(t)})\\ \leq &F(w^{(t-1)}) + \langle \nabla F(w^{(t-1)}), w^{(t)} - w^{(t-1)} \rangle + \frac{L_{2k}}{2} \| w^{(t)} - w^{(t-1)} \|^2 \\ = &F(w^{(t-1)}) - \frac{1}{\eta} \langle \nabla F_1(w^{(t)}) - \nabla F_1(w^{(t-1)}) + \gamma(w^{(t)} - w^{(t-1)}), w^{(t)} - w^{(t-1)} \rangle + \frac{L_{2k}}{2} \| w^{(t)} - w^{(t-1)} \|^2 \\ &+ \frac{1}{\eta} \langle \nabla F_1(w^{(t)}) + \eta \nabla F(w^{(t-1)}) - \nabla F_1(w^{(t-1)}) + \gamma(w^{(t)} - w^{(t-1)}), w^{(t)} - w^{(t-1)} \rangle \\ \leq &F(w^{(t-1)}) - \frac{2\gamma - (\eta + 1)L_{2k}}{2\eta} \| w^{(t)} - w^{(t-1)} \|^2 + \frac{\epsilon}{\eta} \| w^{(t)} - w^{(t-1)} \|. \end{split}$$

By rearranging the terms on both sides of the above we get

$$\frac{2\gamma - (\eta + 1)L_{2k}}{2\eta} \|w^{(t)} - w^{(t-1)}\|^2 - \frac{\epsilon}{\eta} \|w^{(t)} - w^{(t-1)}\| \le F(w^{(t-1)}) - F(w^{(t)}).$$

By adding both sides of the above from index 1 to t we obtain

$$\min_{\tau=1,\dots,t} \frac{2\gamma - (\eta+1)L_{2k}}{2\eta} \|w^{(\tau)} - w^{(\tau-1)}\|^2 - \frac{\epsilon}{\eta} \|w^{(\tau)} - w^{(\tau-1)}\| \\
\leq \frac{1}{t} \sum_{\tau=1}^t \frac{2\gamma - (\eta+1)L_{2k}}{2\eta} \|w^{(\tau)} - w^{(\tau-1)}\|^2 - \frac{\epsilon}{\eta} \|w^{(\tau)} - w^{(\tau-1)}\| \\
\leq \frac{1}{t} (F(w^{(0)}) - F(w^{(t)})) \leq \frac{1}{t} (F(w^{(0)}) - F(w^*)).$$

From the above and the basic fact that $ax^2-bx-c<0$ implies $x^2\leq \frac{2b^2}{a^2}+\frac{2c}{a}$ for a,b,c>0, we can verify

$$\min_{\tau=1,\dots,t} \|w^{(\tau)} - w^{(\tau-1)}\|^2 \le \frac{8\epsilon^2}{(\gamma - (\eta + 1)L_{2k})^2} + \frac{4\eta(F(w^{(0)}) - F(w^*))}{(\gamma - (\eta + 1)L_{2k})t}.$$

From (C.1) and triangle inequality we can derive that

$$\|\nabla F(w^{(t-1)})\|^{2} \leq \left(\frac{1}{\eta} \|\nabla F_{1}(w^{(t)}) - \nabla F_{1}(w^{(t-1)}) + \gamma(w^{(t)} - w^{(t-1)})\| + \epsilon\right)^{2}$$

$$\leq \frac{2(L_{2k} + \gamma)^{2}}{\eta^{2}} \|w^{(t)} - w^{(t-1)}\|^{2} + 2\epsilon^{2}.$$

By combining the preceding two inequalities we get

$$\min_{\tau=1,\dots,t} \|\nabla F(w^{(\tau)})\|^2 \le \left(\frac{16(L_{2k}+\gamma)^2}{\eta^2(\gamma-(\eta+1)L_{2k})^2} + 2\right)\epsilon^2 + \left(\frac{8(L_{2k}+\gamma)^2(F(w^{(0)}) - F(w^*))}{\eta(\gamma-(\eta+1)L_{2k})}\right)\frac{1}{t}.$$

The desired bound then follows from the setting of $\gamma = (\eta + 2)L_{2k}$. This completes the proof.