Structure of This Document

This supplementary document is the appendix section of the AISTATS 19 paper entitled “Distributed Inexact Newton-type
Pursuit for Non-Convex Sparse Learning”. It is organized as follows: In Section A we present several technical lemmas that
will be used for proving the main results. In Section B we give the proofs of main results appeared in Section 3 of the paper.
In Section C, we proivde the proof of Theorem 3 in Section 4 of the paper.

A Technical Lemmas

The following lemma shows that the estimation error of the truncated average of estimators is well upper bounded by the
average error of those estimators.

Lemma 2. Let w be k-sparse vector. For a set of k-sparse vectors {wj} », with k > k, it holds that
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Moreover; if k > k, then
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Proof. The first claim follows readily from ( , , Theorem 1) and triangle inequality. The second claim is a
direct consequence of the result in ( s , Lemma 3.3). O

The following lemma is key to our analysis.

Lemma 3. Let w be a k-sparse target vector with k < k. Assume that each component F. i (w) is psk-strongly-convex and
nF(w) — Fj(w) — 2 has as-RLG. Then
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Moreover; assume that each Fj(w) has 3,-RLH. Let H; = V?Fj(w) and H = - 3" | H;. Then
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Proof. Forany j € [ ], since Fj(w) is pu3x-strongly-convex, we have that P; (w; w1 | 5, 7) is (y+ a1, )-strongly-convex.
Let S( ) = supp( My, §t=1) = supp(w(t=1) and S = supp(w). Consider § = S](-t) USt=Y U S. Then
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where “£,” follows from the definition of w(*) as an e-approximate k-sparse minimizer of Pj(w; w®Y | n,7). By
rearranging both sides of the above inequality with proper elementary calculation we get
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where (; is according to the assumption that nF'(w) — F;(w) — %||w||? has a3,-RLG. Since w® = Hy, (% Z;" 1 w(t))
by applying the first claim in Lemma 2 we obtain
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This shows the validity of the first part.

Next we prove the second part. Similar to the above argument we can derive the following:
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Again, from the definition of w(*) and by applying the first claim in Lemma 2 we have
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This proves desired bound in the second part. O

B Proofs for the Main Results in Section 3

B.1 Proof of Proposition 1

Proof. Consider an index set S with cardinality |S| < s and all w, w’ with supp(w)Usupp(w’) C S. Since o(z) is Lipschitz
continuous with constant 1, we have that
lo(2yiw " zi) — o 2yiw' a)| < [2(w —w') Tyszi| < 2| [zi] sl — @] < 2rllw — ')
Using this above inequality and the fact that o(z) < 1 we obtain
lo(2v;w T us) (1 — o (2w T w;)) — o (2vaw' T w;) (1 — o (20w uy))]
<lo(2viw "us) — o (2vaw' T w)|(1 + o (2v;w T w;) + o (2uw' ;)

<3lo(2vaw " w;) — o (2uw' T ug)| < 6rg|lw — w'||.

This yields ||A(w) — A(w')|| < 24rs||w — w'||. Therefore,
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where the “(;” follows from the standard matrix norm equality || A||> = || AAT||. This proves the desired result. O

B.2 Proof of Theorem 1 and Corollary 1

Proof of Theorem 1. Since the local objective functions F; are quadratic, we can simply set 3, = 0 for all cardinality s.
By assumption F(w) is psk-strongly-convex. Then by invoking the second part of Lemma 3 with 83, = 0, v = 0 and
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It can be readily verified that the factor o nH]l < 6 < 1. Based on the above recursion inequality we can show
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rounds of iteration/communication to achieve the precision of ||w® — || < 7‘62"@9%. This proves the desired

complexity bound. O

Based on the results in Theorem | and Lemma | we can straightforwardly prove Corollary 1.
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Proof of Corollary I. From the definition of § and Lemma | we get max; || H; — H| < %k holds with probability at least
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Implications for distributed sparse linear regression. Given a k-sparse parameter vector w, assume the samples are
generated according to the linear model y = w 'z + ¢ where ¢ is a zero-mean Gaussian random noise variable with
parameter . Assume the data samples {D; = {z,;, yji}?zl};.nzl are distributed over m machines and let Fj(w) =
=" llyji — w'xjil|% j € [m] be the least square loss over D; and F(w) = L >oj-1 Fj(w) be the average of
local loss. This example belongs to the quadratic case for which the performance of DINPS is analyzed in Section 3.2.
Suppose xj; are drawn from Gaussian distribution with covariance . Then it holds with high probability that F;(w) has
restricted strong-convexity constant g, > Amin(X) — O(klogp/n) and smoothness constant L < max; ; ||xj;|; and

IVF ()] = O ( logp/(mn)> and ||VE;(0)]|ec = O (a\/logp/n). Consider the local initialization strategy of
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w® ~ arg min 1, <x F1(w). Then according to the bound in (6), if the sample size n = O ( :

) is sufficiently
large, DINPS needs O(log m) rounds of iteration/communication to reach the statistical error level O (o« /klogp/ (mn))

B.3 Proof of Theorem 2 and Corollary 2

Proof of Theorem 2. We first claim that ||w®) — || < % holds for all ¢ > 0. This can be shown by induction.

Based on the theorem assumptions the claim holds for ¢ = 0. Now suppose that ||w*~1) — || < for some
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where “(;” follows from the assumptions on max; | ; —nH|| and €, and “Cy” follows from the condition of ||V F (10)]|oe <
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below “(;” we get that for all ¢t > 0,

Thus by induction ||w(®) — @] < 324("13% holds for all ¢ > 1. Then it follows from the inequality
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rounds of iteration/communication to achieve ||w(t) — =073 . This proves the desired complexity
bound. O

Corollary 2 can be readily proved by applying Lemma 1 to Theorem 2.



Proof of Corollary 2. From the definition of § and Lemma | we get that max; ||[H; — H|| < 22& holds with probability at
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least 1 — 4. Since n > m , we have 6 € (0, 1). By invoking Theorem 2 we get the desired result. O
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C Proof of Theorem 3 in Section 4

Proof. Recall that we update w*) = wgt)

implies

in this non-convex setting. Then the assumption ||V Py (w; ), cwD | g,y <e
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By rearranging the terms on both sides of the above we get
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By adding both sides of the above from index 1 to ¢ we obtain
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From (C.1) and triangle inequality we can derive that

1 2
IWFmﬁ”mP<(#Wﬂwﬂh—vﬂwﬁ*U+%M“—M“”M+Q

2
< 2(L2k;"7) ”w(t) —

w(t—l) ||2 + 262.
n

By combining the preceding two inequalities we get
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The desired bound then follows from the setting of v = (1 + 2) Loj. This completes the proof. O



