
Distributed Inexact Newton-type Pursuit for Non-Convex Sparse Learning

Bo Liu†,‡ Xiao-Tong Yuan§ Lezi Wang† Qingshan Liu§ Junzhou Huang] Dimitris N. Metaxas†
†Rutgers, The State University of New Jersey, Piscataway, NJ, USA

‡JD Digits, Mountain View, CA, USA
§B-DAT Lab, Nanjing University of Information Science and Technology, Nanjing, China

] Tencent AI Lab, Shenzhen, China

Abstract

In this paper, we present a sample distributed
greedy pursuit method for non-convex sparse
learning under cardinality constraint. Given the
training samples uniformly randomly partitioned
across multiple machines, the proposed method
alternates between local inexact sparse minimiza-
tion of a Newton-type approximation and cen-
tralized global results aggregation. Theoretical
analysis shows that for a general class of convex
functions with Lipschitze continues Hessian, the
method converges linearly with contraction fac-
tor scaling inversely to the local data size; whilst
the communication complexity required to reach
desirable statistical accuracy scales logarithmi-
cally with respect to the number of machines for
some popular statistical learning models. For non-
convex objective functions, up to a local estima-
tion error, our method can be shown to converge to
a local stationary sparse solution with sub-linear
communication complexity. Numerical results
demonstrate the efficiency and accuracy of our
method when applied to large-scale sparse learn-
ing tasks including deep neural nets pruning.

1 Introduction

The following cardinality-constrained empirical risk mini-
mization (ERM) problem is ubiquitous in high-dimensional
sparse statistical learning:

min
w∈Rp

F (w) :=
1

N

N∑
i=1

f(w;xi, yi), s.t. ‖w‖0 ≤ k, (1)

where {xi, yi}Ni=1 are training samples, f is a general loss
function, ‖w‖0 represents the number of non-zero entries in
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the parameter vector w, and k is an integer controlling the
cardinality. Due to the presence of cardinality constraint, the
problem is non-convex and NP-hard even when f is convex.
In this paper, we are interested in distributed computing
methods for solving such a non-convex ERM problem. In
particular, we assume the training data D = {D1, ..., Dm}
with N = mn samples is evenly and randomly distributed
over m different machines; each machine j locally stores
and accesses n training samples Dj = {xji, yji}ni=1. Let
Fj(w) := 1

n

∑n
i=1 f(w;xji, yji) be the local empirical risk

evaluated onDj . The global goal is to minimize the average
of these local objectives under cardinality constraint:

min
w∈Rp

F (w) =
1

m

m∑
j=1

Fj(w), s.t. ‖w‖0 ≤ k. (2)

We will refer to this model as `0-ERM throughout this paper.

1.1 Related work and motivation

Iterative hard thresholding. For the generic `0-
minimization problem (1), the iterative hard thresholding
(IHT) methods have demonstrated superior scalability in
statistical learning models (Beck & Eldar, 2013; Yuan et al.,
2014; Jain et al., 2014). The iteration procedure of IHT is
as simple as a truncated version of gradient descent step:
w(t) = Hk

(
w(t−1) − η∇F (w(t−1))

)
, where Hk(x) is a

truncation operator which preserves the top k (in magni-
tude) entries of vector x and sets the remaining to be ze-
ro. Let w̄ be a k̄-sparse target solution. If F (w) is L-
smooth and µs-strongly-convex over any s-sparse vector
space with s = O(k), then it is known from (Jain et al.,
2014) that with some sparsity level k = O

(
L2

µ2
s
k̄
)

, IHT-

style methods reach the estimation error level ‖w(t)− w̄‖ =

O
(√

k‖∇F (w̄)‖∞/µs
)

after

O

(
L

µs
log

(
µs‖w(0) − w̄‖√
k‖∇F (w̄)‖∞

))
(3)

rounds of iteration. A direct approach for distributed `0-
ERM is a centralized map-reduce implementation of I-
HT: in the map step each machine calculates local gradi-
ent ∇Fj(w(t−1)) at w(t−1), and in the reduce step these
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are averaged to obtain the full gradient ∇F (w(t−1)) =
1
m

∑m
j=1 Fj(w

(t−1)) on a master machine, followed by the
truncated gradient step. This distributed IHT approach was
first introduced in (Patterson et al., 2014) for compressive
sensing. As the iterates of distributed IHT are standard IHT
iterates, the iteration complexity, and so the communication
complexity, is identical to that of standard IHT. However,
as suggested by (3), the linear dependence of the iteration
complexity on the restricted condition number L/µs obvi-
ously makes the distributed IHT communication inefficient
in ill-conditioned problems.

Distributed approximate Newton-type methods. For
classical distributed ERM problems, the iteration complexi-
ty of first-order distributed approaches including gradient
descent and ADMM (Boyd et al., 2011) also suffer from the
unsatisfactory polynomial dependence on condition num-
ber. To alleviate this issue, Shamir et al. (2014) proposed a
distributed approximate Newton-type (DANE) method that
takes advantage of the stochastic nature of problem: the i.i.d.
data samples {xi, yi} are uniformly distributed and each
local problem will become sufficiently similar to the global
problem when data size increases. If F (w) is quadratic with
condition number L/µ, the communication complexity (in
high probability) of DANE to reach ε-precision was shown
to beO

(
L2

µ2n log(mp) log
(

1
ε

))
, which has an improved de-

pendence on the condition number L/µ which could scale
as large as O(

√
mn) in regularized learning problems. By

applying Nesterov’s acceleration technique, AIDE (Reddi
et al., 2016b) further reduces the communication complexity
of DANE toO

(√
L

µn1/2 log(mp) log
(

1
ε

))
in the quadratic

case, which is nearly optimal for first-order distributed learn-
ing problems. For more general self-concordant empirical
risk functions, Zhang & Lin (2015) proposed DiSCO as a
distributed inexact damped Newton method with compa-
rable communication complexity to AIDE. More recently,
the EDSL (Wang et al., 2017) and TWT (Ren et al., 2017)
methods extend DANE to solving `1-norm regularized ER-
M problems, obtaining similarly improved dependence of
communication complexity on condition number. The com-
mon finding of this line of existing work is: when the local
subproblems are well structured and sufficiently correlat-
ed to each other, the distributed Newton-type methods are
able to approximate the global optimal solution in consider-
ably fewer rounds of communication than the conventional
first-order distributed learning methods.

Motivation. Despite the success of distributed approximate
(inexact) Newton-type methods in regularized convex ERM
learning, it is so far not clear if this class of methods gener-
alizes equally well, both in theory and practice, to the non-
convex `0-ERM model (2). This motivates us to explore the
potential of DANE-type distributed `0-minimization meth-
ods in gaining improved communication efficiency over
those first-order alternatives such as distributed IHT.

1.2 Overview of our approach and contribution

We propose the Distributed Inexact Newton-type PurSuit (D-
INPS) method as a natural extension of DANE to distributed
`0-ERM. The algorithm iterates between two main steps: 1)
each worker machine (inexactly) solves a variance-reduced
local `0-ERM which is constructed based on the local loss
function and the current global gradient information; and 2)
the master machine generates the next iterate via properly
aggregating the local sparse solutions received from worker
machines. In practice, the proposed method has been imple-
mented on parameter server platform (Li et al., 2014) with
actual performance evaluated on synthetic and real data high
dimensional statistical learning tasks.

Although our method shares a similar algorithmic frame-
work with DANE, its iteration complexity analysis turns
out to be more challenging due to the presence of non-
convex cardinality constraint ‖w‖0 ≤ k. Provided that n is
sufficiently large and F (w) is convex with restricted Lips-
chitz continuous Hessian (see Definition 2) and restricted
condition number L/µs, we show in Theorem 2 that the
estimation error ‖w(t) − w̄‖ = O

(√
k‖∇F (w̄)‖∞/µs

)
can be guaranteed in overwhelming probability after

O

 1

1− L
µs

√
log(mp)

n

log

(
µs‖w(0) − w̄‖√
k‖∇F (w̄)‖∞

) (4)

rounds of communication. To compare with (3), this above
bound has clearly improved dependence on restricted con-
dition number when data size is sufficiently large. In sharp
contrast to the analysis of DANE (Shamir et al., 2014)
and AIDE (Reddi et al., 2016b) which are restricted to
quadratic problems, our bound in (4) is applicable to a much
wider problem spectrum in machine learning. Provided that
n = O

(
L2 log(mp)

µ2
s

)
is sufficiently large and equipped with

proper initialization, the bound can be shown to imply for
some popular statistical learning models that the communi-
cation complexity scales logarithmically with respect to the
number of machines. In comparison, the sample complexity
in (Wang et al., 2017; Ren et al., 2017) for `1-regularized
ERM is n = O

(
s2L2 log p

µ2
s

)
which is inferior to ours. As an-

other highlight of analysis, we have analyzed our method for
non-convex functions, which to our knowledge has not been
addressed in previous DANE-type sparse learning methods.

1.3 Notation and organization

Notation. We denote Hk(x) as a truncation operator
which preserves the top k (in magnitude) entries of vec-
tor x and forces the remaining to be zero. The notation
supp(x) represents the index set of nonzero entries of x.
We conventionally define ‖x‖∞ = maxi |[x]i| and define
xmin = mini∈supp(x) |[x]i|. For an index set S, we define
[x]S and [A]SS as the restriction of x to S and the restriction



of rows and columns of A to S, respectively. For an integer
n, we abbreviate the index set {1, ..., n} to [n].

Organization. The rest of this paper is structured as fol-
lows: In Section 2 we introduce our distributed approxi-
mated Newton-type greedy pursuit method. The theoreti-
cal properties of the proposed method for convex and non-
convex functions are then analyzed in Section 3 and Sec-
tion 4, respectively. A brief survey on some other related
work is given in Section 5. The numerical evaluation results
are presented in Section 6. Finally, the concluding remarks
are made in Section 7. Due to space limit, all the technical
proofs of results are deferred to the supplement.

2 The DINPS Method

The high level algorithmic procedure of DINPS is outlined
in Algorithm 1. Starting from an initial k-sparse approx-
imation w(0), the procedure generates a sequence of in-
termediate k-sparse iterate {w(t)}t≥1 via distributed local
sparse estimation and global synchronization among ma-
chines. More precisely, each iteration loop of DINPS can
be decomposed into the following three consequent steps:

Map-reduce gradient computation. In this step, the glob-
al gradient∇F (w(t−1)) = 1

m

∑m
j=1∇Fj(w(t−1)) is evalu-

ated at the current iterate via simple map-reduce averaging
and distributed to all machines for local computation.

Local inexact sparse approximation. Based on the re-
ceived gradient ∇F (w(t−1)), each machine j construct-
s at the current iterate a local objective function (5) and
then inexactly estimate a local k-sparse solution w(t)

j ≈
arg min‖w‖0≤k Pj(w;w(t−1), η, γ) up to sparsity level k̄ ≤
k and ε-suboptimality. This inexact sparse optimization
step can be implemented using IHT-style algorithms which
have been witnessed to offer fast and accurate solutions for
`0-estimation (Yuan et al., 2014; Jain et al., 2014).

Centralized results aggregation. We compute the truncat-
ed average w(t) = Hk

(
1
m

∑m
j=1 w

(t)
j

)
as the next iterate

generated from local sparse predictors. Here the truncation
operation is conducted to maintain sparsity of output. As an
alternative option, setting w(t) = w

(t)
1 also works reason-

ably well in theory and practice. However, our numerical
experience indicates that the truncated averaging strategy
tends to make more balanced workload among machines and
thus can produce slightly more accurate and stable solutions,
especially for deep neural networks pruning.

The construction of the local objective (5) is inspired by
the idea of leveraging the first-order gradient information
and local higher-order information for local processing as
originally introduced in DANE (Shamir et al., 2014). Com-
pared to those first-order distributed methods (Boyd et al.,
2011; Jaggi et al., 2014), such a way of local computation
is known to be able to take advantage of inter-machine s-

Algorithm 1: Distributed Inexact Newton-type PurSuit (D-
INPS)
Input :Loss functions {Fj(w)}mj=1, sparsity level k, parameter

γ ≥ 0 and η > 0.
Initialization w(0) = 0 or w(0) ≈ arg min

‖w‖0≤k
F1(w).

for t = 1, 2, ... do
Compute∇F (w(t−1)) = 1

m

∑m
j=1∇Fj(w

(t−1)) and
broadcast it to all workers;
for all the workers j = 1, ...,m in parallel do

(i) Construct a local objective function:

Pj(w;w(t−1) | η, γ) := Fj(w) + 〈η∇F (w(t−1))

−∇Fj(w(t−1)), w〉+
γ

2
‖w − w(t−1)‖2,

(5)

(ii) Estimate a k-sparse vector w(t)
j such that for any

k̄-sparse w̄ with k̄ ≤ k:

Pj(w
(t)
j ;w(t−1) | η, γ) ≤ Pj(w̄;w(t−1) | η, γ) + ε;

end
Compute w(t) = Hk

(
1
m

∑m
j=1 w

(t)
j

)
.

end
Output :w(t).

tatistical correlation to dramatically reduce the frequency
of communication. Similar local optimization strategy was
also considered by (Wang et al., 2017; Ren et al., 2017)
for l1-regularized sparse learning. Different from these
existing DANE-type approaches for convex optimization,
our method is designed for the `0-ERM problem with non-
convex cardinality constraint.

Concerning initialization, the simplest way is to set w(0) =
0, i.e., starting the iteration from scratch. Since the data sam-
ples are assumed to be evenly and randomly distributed over
machines, another reasonable option is to initialize with one
of the local minimizers, say w(0) ≈ arg min‖w‖0≤k F1(w),
which is expected to be close to the global solution.

3 Analysis for Convex Functions

In this section, we analyze the rate-of-convergence perfor-
mance of DINPS for convex objective functions.

3.1 Preliminaries

We start by introducing the concept of restricted strong
convexity and smoothness which are conventionally used
in analyzing greedy pursuit methods (Shalev-Shwartz et al.,
2010; Yuan et al., 2014; Jain et al., 2014).

Definition 1 (Restricted Strong Convexity/Smoothness).
For any integer s > 0, we say f(w) is restricted µs-strongly-
convex and Ls-smooth if µs2 ‖w −w

′‖2 ≤ f(w)− f(w′)−
〈∇f(w′), w − w′〉 ≤ Ls

2 ‖w − w
′‖2 holds for any ∀w,w′
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satisfying ‖w − w′‖0 ≤ s.

We next introduce the concept of restricted Lipschitz con-
tinuous gradient and Hessian which characterizes the conti-
nuity of the gradient vector and Hessian matrix over sparse
subspaces. To simplify the notation, we will use abbrevia-
tions ∇Sf := [∇f ]S and ∇2

SSf := [∇2f ]SS .

Definition 2 (Restricted Lipschitz Gradient/Hessian). We
say f(w) has Restricted Lipschitz Gradient with constant
αs ≥ 0 (or αs-RLG) if ‖∇Sf(w)−∇Sf(w′)‖ ≤ αs‖w −
w′‖ holds for all w,w′ with ‖w − w′‖0 ≤ s and S =
supp(w) ∪ supp(w′). Moreover, suppose that f(w) is twice
continuously differentiable. We say f(w) has Restricted
Lipschitz Hessian with constant βs ≥ 0 (or βs-RLH) if∥∥∇2

SSf(w)−∇2
SSf(w′)

∥∥ ≤ βs‖w − w′‖.
The RLH property of logistic loss function. Consider the
logistic loss f(w) = 1

n

∑n
i=1 log(1+exp(−2yiw

>xi)) for
some y = (yi) ∈ {−1,+1}n and Xn = (xi) ∈ Rn×p. We
need to access the gradient and Hessian of the logistic loss
f(w). Let σ(z) = 1/(1+exp(−z)) be the sigmoid function.
It is easy to show that the gradient ∇f(w) = Xa(w)/n
where a(w) ∈ Rn with [a(w)]i = −2yi(1− σ(2xiw

>ui));
and the Hessian ∇2f(w) = XΛ(w)X>/n where Λ(w) is
an n×n diagonal matrix whose diagonal entries [Λ(w)]ii =
4σ(2viw

>ui)(1−σ(2viw
>ui)). The following proposition

shows that the logistic loss has RLH. See Appendix B.1 for
a proof of this result.

Proposition 1. Given a cardinality number s. Assume that
‖[xi]s‖ ≤ rs holds for all xi. Let Σn = 1

nXX
> be the

sample covariance matrix. Then the logistic loss f(w) has
βs-RLH with βs = 24rsρ

max
s (Σn).

3.2 Results for quadratic objective functions

We first consider a special case where F (w) is quadratic
with RLH strength parameter βs ≡ 0 for all s. The widely
applied sparse least square regression model belongs to
this case. We need in our analysis the concept of sparse
largest/smallest eigenvalue of a square matrix.

Definition 3 (Sparse Largest/Smallest Eigenvalues). Let
H ∈ Rp×p be a square matrix. we define the
largest s-sparse eigenvalue of H as ρmax

s (H) =
maxw∈Rp

{
w>Hw | ‖w‖0 ≤ s, ‖w‖ = 1

}
, and the s-

mallest s-sparse eigenvalue of H as ρmin
s (H) =

minw∈Rp
{
w>Hw | ‖w‖0 ≤ s, ‖w‖ = 1

}
.

The following is a deterministic result on the sparse param-
eter estimation error of DINPS when the objective function
F (w) is quadratic.

Theorem 1. Let w̄ be a k̄-sparse target vector with k̄ ≤ k.
Assume that each component Fj(w) is quadratic with a
Hessian matrix Hj and ρmin

3k (Hj) ≥ µ3k > 0. Let H =
1
m

∑m
j=1Hj . Assume that maxj ‖Hj − ηH‖ ≤ θµ3k

3.24 for

some θ ∈ (0, 1) and ε ≤ kη2‖∇F (w̄)‖2∞
5.29µ3k

. Set γ = 0. Then

Algorithm 1 will output solution w(t) satisfying

‖w(t) − w̄‖ ≤ 7.62η
√
k‖∇F (w̄)‖∞

(1− θ)µ3k

after t ≥ 1
1−θ log

(
µ3k‖w(0)−w̄‖
η
√
k‖∇F (w̄)‖∞

)
rounds of iteration.

Proof. A proof of this result is given in Appendix B.2.

The result established in Theorem 1 shows that under proper
conditions: 1) the estimation error of DINPS is controlled by
the multiplier of

√
k‖∇F (w̄)‖∞ which usually represents

the optimal statistical error in high dimensional learning
models; and 2) it enjoys a linear rate of convergence before
moving into the error region.

We now turn to a stochastic setting where the samples are
uniformly randomly distributed over m machines. The fol-
lowing lemma, which is based on a matrix concentration
bound (Tropp, 2012), shows that the Hessian Hj is close to
H when the sample size of each machine j is sufficiently
large. The same result appears in (Shamir et al., 2014).

Lemma 1. Assume that ‖∇2f(w>xji, yji)‖ ≤ L hold-
s for all j ∈ [m] and i ∈ [n]. Let Hj =
1
n

∑n
i=1∇2f(w>xji, yji) and H = 1

m

∑m
j=1Hj . Then

for each j, with probability at least 1− δ over the samples,

max
j
‖Hj −H‖ ≤

√
32L2 log(mp/δ)

n
.

Equipped with Lemma 1, we are able to derive the following
result as a specialization of Theorem 1 to the considered
stochastic setting.

Corollary 1. Let w̄ be a k̄-sparse target vector with k̄ ≤ k.
Assume that the samples are uniformly randomly distribut-
ed on m machines and the conditions in Theorem 1 hold.
Assume ‖∇2f(w>xji, yji)‖ ≤ L holds for all j ∈ [m] and
i ∈ [n]. Set γ = 0 and η = 1. For any δ ∈ (0, 1), if
n > 336L2 log(mp/δ)

µ2
3k

, then with probability at least 1 − δ,

Algorithm 1 will output solution w(t) satisfying

‖w(t) − w̄‖ ≤ 7.62η
√
k‖∇F (w̄)‖∞

(1− θ)µ3k

after t ≥ 1
1−θ log

(
µ3k‖w(0)−w̄‖√
k‖∇F (w̄)‖∞

)
rounds of iteration with

θ = L
µ3k

√
336 log(mp/δ)

n < 1.

Proof. See Appendix B.2 for a proof of this corollary.

The main message conveyed by Corollary 1 is that for s-
tochastic quadratic minimization, the contraction factor θ
can be arbitrarily small given that the sample size n =



O
(
L2 log(mp)

µ2
3k

)
is sufficiently large. This sample size com-

plexity is superior to the corresponding n = O
(
k2L2 log p

µ2
3k

)
complexity established in (Wang et al., 2017; Ren et al.,
2017) for `1-regularized sparse linear regression models.

3.3 Results for objective functions with RLH

Let us now consider the more general setting where the
objective functions are twice differentiable with RLH. The
following is a deterministic result on sparse parameter esti-
mation error of DINPS in the considered setting.

Theorem 2. Let w̄ be a k̄-sparse target vector with k̄ ≤
k. Let H̄j = ∇2Fj(w̄) and H̄ = 1

m

∑m
j=1 H̄j . As-

sume that: (a) Fj(w) is µ3k-strongly-convex and has β3k-
RLH; (b) maxj ‖H̄j − ηH̄‖ ≤ θµ3k

6.48 for some θ ∈ (0, 1),

‖∇F (w̄)‖∞ ≤ θ(1−θ)µ2
3k

21.45η(1+η)β3k

√
k

, and ε ≤ kη2‖∇F (w̄)‖2∞
5.29µ3k

;

(c) ‖w(0) − w̄‖ ≤ θµ3k

3.24(1+η)β3k
. Set γ = 0. Then Algorith-

m 1 will output w(t) satisfying

‖w(t) − w̄‖ ≤ 7.62η
√
k‖∇F (w̄)‖∞

(1− θ)µ3k

after t ≥ 1
1−θ log

(
µ3k‖w(0)−w̄‖
η
√
k‖∇F (w̄)‖∞

)
rounds of iteration.

Proof. A proof of this result is given in Appendix B.3.

Given that w(0) is properly initialized and the gradient in-
finity norm ‖∇F (w̄)‖∞ is sufficiently small, the estimation
error of DINPS for RLH objectives is controlled by the
multiplier of

√
k‖∇F (w̄)‖∞ which typically represents the

optimal statistical error in sparse learning models; and the
rate of convergence towards this error level is linear.

As a direct consequence of Theorem 2, if we further as-
sume w̄min > 7.62η

√
k‖∇F (w̄)‖∞

(1−θ)µ3k
, then support recovery

supp(w(t)) ⊇ supp(w̄) can be guaranteed at w(t).

Stochastic result. By plugging Lemma 1 to Theorem 2
we obtain the following stochastoc result of DINPS for
objective functions with RLH.

Corollary 2. Let w̄ be a k̄-sparse target vector with k̄ ≤ k.
Assume that the samples are uniformly randomly distributed
on m machines and the conditions in Theorem 2 and Lem-
ma 1 hold. Set γ = 0 and η = 1. For any δ ∈ (0, 1), if
n > 1344L2 log(mp/δ)

µ2
3k

, then with probability at least 1 − δ,

Algorithm 1 will output w(t) satisfying

‖w(t) − w̄‖ ≤ 7.62
√
k‖∇F (w̄)‖∞

(1− θ)µ3k

after t ≥ 1
1−θ log

(
µ3k‖w(0)−w̄‖√
k‖∇F (w̄)‖∞

)
rounds of iteration with

θ = L
µ3k

√
1344 log(mp/δ)

n < 1.

Proof. See Appendix B.3 for a proof of this corollary.

Corollary 2 shows that when objective functions have RL-
H, provided that sample size n = O

(
L2 log(mp)

µ2
3k

)
is suf-

ficiently large, the contraction factor θ can be well con-
trolled to remove the dependency on condition number
L/µ3k. This sample complexity improves the correspond-
ing n = O

(
k2L2 log p

µ2
3k

)
bound presented in (Wang et al.,

2017; Ren et al., 2017) for distributed Lasso-type program.

On local initialization. The iteration complexity results
established in Theorem 2 and Corollary 2 rely on the ini-
tialization error ‖w(0) − w̄‖. Let us consider an ideal local
initialization strategy of w(0) = arg min‖w‖0≤k F1(w). If
the component F1(w) is µ3k-strongly convex then it can be
verified that ‖w(0) − w̄‖ ≤ 2.84

√
k‖∇F1(w̄)‖∞
µ3k

. By plugging
this error bound to Corollary 2, the iteration complexity of
DINPS for RLH objectives can be bounded from above by

O

 1

1− L
µs

√
log(mp)

n

log

(
‖∇F1(w̄)‖∞
‖∇F (w̄)‖∞

). (6)

In the following example, we will show that the term
log
(
‖∇F1(w̄)‖∞
‖∇F (w̄)‖∞

)
scales as log(m) in logistic regression.

Implications for distributed sparse logistic regression.
As an example, we briefly discuss the implications of
our results for distributed sparse logistic regression mod-
els. The logistic loss over data Dj is defined as
Fj(w) = 1

n

∑n
i=1 log

(
1+exp(−yjiw>xji)

)
. Let F (w) =

1
m

∑m
j=1 Fj(w) be the average of local loss. From Propo-

sition 1 we know that each local logistic loss has RL-
H. Suppose xji are sub-Gaussian with parameter σ. It

is known that ‖∇F (w̄)‖∞ = O
(
σ
√

log p/(mn)
)

and

‖∇Fj(w̄)‖∞ = O
(
σ
√

log p/n
)

hold with high proba-
bility (Yuan et al., 2014). Then with the local initialization
w(0) ≈ arg min‖w‖0≤k F1(w), the bound in (6) suggest-
s that DINPS essentially needs O(logm) rounds of iter-
ation/communication to reach the statistical error barrier
O
(
σ
√
k log p/(mn)

)
.

4 Analysis for Non-Convex Functions

We now turn to study the case when F (w) is non-convex
which is of particular interest to deep learning. To ana-
lyze the global convergence behavior, we follow the con-
vention to use the value ‖∇F (w)‖2 as a measurement of
quality for approximate stationary solutions, keeping in
mind that the estimation error criterion for convex prob-
lems is not applicable due to the hardness of non-convex
problems (Reddi et al., 2016a). For our global analysis,
we make two slight modifications of Algorithm 1 to adapt
to non-convexity: i) estimate a k-sparse vector w(t)

j such
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that ‖∇Pj(w(t)
j ;w(t−1) | η(t), γ)‖ ≤ ε; and ii) update

w(t) = w
(t)
1 , that is, we always set w(t) as the local so-

lution of the first (or alternatively any other fixed) machine.

Theorem 3. Assume that for all j, Fj(w) is L2k-smooth.
Set γ = (η + 2)L2k. Then

min
1≤τ≤t

‖∇F (w(τ))‖2

≤
(

8(η + 3)2L2k(F (w(0))− F (w∗))

η

)
1

t
+

18(η + 3)2

η2
ε2,

where F (w∗) = min‖w‖0≤k F (w).

Proof. A proof of this result is given in Appendix C.

Remark 1. To our knowledge, Theorem 3 is the first con-
vergence result for IHT-style methods with non-convex ob-
jective functions. The precision barrier O(ε2) appeared in
the bound is introduced by the local sparse solution whose
gradient is generally non-vanishing. In the extreme case
of dense learning where the cardinality constraint is inac-
tive, the local solution precision ε can be arbitrarily small.
This leads to a sub-linear convergence rate for the original
DANE method with non-convex objective functions, which
matches the bound established in (Reddi et al., 2016b).

5 Other Related Work

`0-Minimization methods. Among numerous methods de-
signed for the `0-ERM problem (1) (Bahmani et al., 2013;
Liu et al., 2014), the IHT-style methods (Yuan et al., 2014;
Jain et al., 2014, 2016) have gained significant interests
and they have been witnessed to offer the fastest and most
scalable solutions in many cases. The stochastic and vari-
ance reduction variants of IHT were developed to make
the algorithm more efficient to handle large-scale data (Li
et al., 2016; Nguyen et al., 2017; Zhou et al., 2018). More
recently, a duality theory of `0-ERM along with a dual coor-
dinate ascent based IHT algorithm was investigated in (Liu
et al., 2017). In addition to these first-order sparsity recover
methods, several Newton-type second-order greedy pursuit
methods were proposed in (Yuan & Liu, 2014; Chen & Gu,
2017) to achieves faster rate of convergence.

Distributed optimization. A straight-forward single-
iteration distributed estimation approach is averaging es-
timators locally optimized by different machines (Zinkevich
et al., 2010; Huang & Huo, 2015). Although simple for
implementation, it was shown in (Shamir et al., 2014) that
such a one-shot estimator can be unsatisfactory in mini-
mizing the population objective. Another popular class of
distributed estimators are generated by distributed imple-
mentation of first-order multi-round approaches (Boyd et al.,
2011; Shamir & Srebro, 2014). The iteration complexity,
and so also the communication complexity, of these dis-
tributed estimators usually has strong dependence on the

conditioning of problem. There is a recent trend to study
the so called communication-efficient distributed learning
methods (Jaggi et al., 2014; Jordan et al., 2018). A main
theme of these methods is to reduce the number of inter-
machine communication rounds through designing more ag-
gressive and balanced local computation schemes. Recently,
a family of distributed approximate/inexact Newton-type
methods (Shamir et al., 2014; Zhang & Lin, 2015; Reddi
et al., 2016b; Wang et al., 2018) has become popular for
communication-efficient learning, due to their milder depen-
dence on the condition number when the local problems are
sufficiently correlated to the global one. The distributed al-
gorithm for network, such as gossip algorithms are proposed
in (Boyd et al., 2006; Colin et al., 2016).

6 Experiments

In this section, we present empirical results of DINPS on a
number of synthetic and real-world sparse learning problem-
s, including sparse linear/logistic regression, sparse bilinear
regression and deep neural nets pruning. The considered
algorithms are implemented with C++ and tested on multi-
ple machines with 3.0GHz CPU interconnected by Ethernet.
The machine communication interface is implemented by
parameter server (Li et al., 2014).

6.1 Sparse linear regression

We first compare DINPS with distributed IHT (Dist-
IHT) (Patterson et al., 2014), efficient distributed sparse
learning (EDSL) (Wang et al., 2017) and two-way traunca-
tion (TWT) (Ren et al., 2017) on simulated sparse linear
regression tasks. Recollect that EDSL and TWT are DANE-
type distributed computing methods for solving the Lasso-
type estimation problem. A synthetic N × p design matrix
is generated with each data sample xi drawn from Gaussian
distributionN (0,Σ) with Σj,k = 1 if j = k, and 1.1−

|j−k|
γ

otherwise. A k̄-sparse model parameter w̄ ∈ Rp is gener-
ated with the top k̄ entries uniformly randomly valued in
interval (0, 1) and all the other entries set to be zero. The
response variables {yi}Ni=1 are generated by yi = w̄>xi+εi
with εi ∼ N (0, 1).

We fix the training sample size to be N = 5 × 103, p =
104, k̄ = 100, the number of machines to be m = 8 and
vary the value of γ to be 2 and 8. The convergence is
measured by relative estimation error ‖w − w̄‖/‖w̄‖. The
algorithm hyper-parameters are tuned by grid search for
optimal performance.

The convergence curves of the considered algorithms with
respect to round of communication are shown in Figure 1.
From these curves we can observe: 1) DINPS, EDSL and
TWT converge quickly after a few rounds of master-worker
communication, while Dist-IHT method needs substantially
more rounds of communication to reach the comparable ac-
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Figure 1: Simulation study on sparse linear regression: com-
munication efficiency comparison with varying γ values.

(a) rcv1. (b) kdd2010-algebra.

Figure 2: Real-data experiments on sparse logistic regres-
sion: computation time (in second) comparison.

curacy of DINPS; 2) When convergence is attained, DINPS
outputs more accurate sparse solution than EDSL and TWT,
mainly because DINPS directly works on the cardinality-
constrained formulation while the EDSL and TWT are for
a `1-norm relaxed formulation which tends to introduce
bias in sparse learning. In conclusion, DINPS simultane-
ously achieves higher communication efficiency and model
estimation accuracy than the two state-of-the-art methods.

6.2 Sparse `2-regularized logistic regression

Next we evaluate the performance of DINPS in sparse `2-
regularized binary logistic regression tasks. We compare
the training time of DINPS with Dist-IHT on two real-world
datasets: rcv1 (N = 6×105, p ≈ 4.7×105) and kdd2010-
algebra (N ≈ 8×106, p ≈ 2×107). For both datasets, the
training samples are evenly distributed onto m = 4 and 8
machines, and the `2-regularization strength is set as 10−5.

Figure 2 shows the computation time of algorithms un-
der varying sparsity level k ∈ {0.05, 0.1, 0.5, 1, 5} × 103

for rcv1 and k ∈ {0.05, 0.1, 5, 1, 5} × 104 for kdd2010-
algebra, with number of machines m = 4 and 8. For any
sparsity level, we first run Dist-IHT until it reaches a sub-
optimality |F (w(t)) − F (w(t−1))|/|F (w(t))| ≤ 10−4 or
maximum number of iteration, and then record the running
time of DINPS with different machine number m to reach
the same level of sub-optimality. Each model training is
repeated 5 times to calculate the average computation time.
It can be clearly seen that DINPS is consistently more ef-
ficient than Dist-IHT in a wide range of sparsity level and
number of machines.

(a) m = 4.

(b) m = 8.

Figure 3: Simulation study on sparse bilinear regression:
convergence curves of ‖∇wjF‖, j = 1, 2, with respect to
communication round for m = 4, 8 under different initial-
ization schemes.

We further compare the training loss values of DINPS,
EDSL and TWT evaluated on the considered data set-
s with k = {100, 1000} and m = {2, 4, 8}. For al-
l these algorithms, we set the termination condition as
|F (w(t))− F (w(t−1))|/|F (w(t))| ≤ 10−4 and average the
training loss over 5 data splits. Table 1 and Table 2 respec-
tively show the results of the considered algorithms on rcv1
and kdd2010-algebra. It is observable that DINPS slightly
outperforms EDSL and TWT in training accuracy.

6.3 Sparse bilinear regression

This is a simulated experiment to verify our convergence
analysis of DINPS for non-convex functions. Here we con-
sider a non-convex regression problem in which the training
samples {Xi, yi}Ni=1, Xi ∈ Rp1×p2 , yi ∈ R are generated
according to a bilinear model yi = w̄>1 Xiw̄2 + εi, where
w̄1 ∈ Rp1 and w̄2 ∈ Rp2 are two sparse vectors whose non-
zero entries are uniformly randomly drawn from interval
(0,1), Xi ∼ N (0, I) and εi ∼ N (0, 0.5). The objective
is to minimize F (w1, w2) := 1

2N

∑N
i=1 ‖yi − w>1 Xiw2‖2

with constraint ‖w1‖0 ≤ k1, ‖w2‖0 ≤ k2. We test with
p1 = 40, ‖w̄1‖0 = 20, p2 = 20, ‖w̄1‖0 = 10, k1 = ‖w̄1‖0,
k2 = ‖w̄2‖0 and N = 104.

We study the global convergence of DINPS under three dif-
ferent schemes for initializing the entries of w(0)

1 and w(0)
2 :

(1) Gaussian random initializationN (0, 1), (2) uniform ran-
dom initialization (0, 1), and (3) constant initialization 1.
For solving the local `0-minimization problem (5), we al-
ternately optimize w1 and w2 using IHT. The convergence
curves of ‖∇w1F‖ and ‖∇w2F‖ with respect to round of
communication are plot in Figure 3 for machine number
m = 4, 8 under different initialization schemes. From this
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k = 100 k = 1K
EDSL TWT DINPS EDSL TWT DINPS

m = 2 0.3237 0.2820 0.2709 0.2201 0.1823 0.1551
m = 4 0.3255 0.2828 0.2717 0.2225 0.1842 0.1554
m = 8 0.3298 0.2830 0.2723 0.2236 0.1861 0.1555

Table 1: Sparse `2-regularized logistic regression: model training loss comparison on rcv1.

k = 100 k = 1K
EDSL TWT DINPS EDSL TWT DINPS

m = 2 0.3959 0.3832 0.3709 0.3503 0.3422 0.3314
m = 4 0.4049 0.3874 0.3712 0.3521 0.3460 0.3347
m = 8 0.4060 0.3902 0.3723 0.3526 0.3463 0.3356

Table 2: Sparse `2-regularized logistic regression: model training loss comparison on kdd2010-algebra.

group of curves we can see that the `2-norm of parameter
gradient converges quickly to a stable state after sufficient
communication among machines, which is consistent with
the theoretical results established in Theorem 3.

6.4 Sparse deep neural networks

Finally, we apply DINPS to distributed training of convolu-
tional neural networks under layer-wise sparsity constraint
over neuron connections1. Such sparse neural networks have
recently been shown to be able to efficiently compress model
size without sacrificing accuracy such as in image classifica-
tion problems (Han et al., 2015; Jin et al., 2016; Wen et al.,
2016). In our experiment, we test with LeNet3 (LeCun
et al., 1998) on mnist digit dataset and VGG16 (Simonyan
& Zisserman, 2014) on cifar10 dataset2. For both networks,
we prune 50% of the parameters in convolutional layers
and 80% of the parameters in fully connected layers. To
initialize DINPS, we train a dense network by applying the
Federated-Averaging (FedAvg) method (McMahan et al.,
2017) designed for distributed neural work training on the
given data partition. For local processing, the IHT-style al-
gorithm from (Jin et al., 2016) is adopted to prune the deep
nets based on local data. We compare the sparse network
output by DINPS against the dense network by FedAvg in
prediction accuracy and model size. The experiment is repli-
cated 5 times with average results reported. The considered
algorithms are implemented on Apache MXNet platform
and tested on a cluster of Nvidia K80 GPUs.

Table 3 lists the experimental results on m = 2, 4, 8 ma-
chines. It can be observed from these results that the sparse
networks trained by the DINPS have quite competitive or
even superior prediction accuracy to the dense nets obtained
by FedAvg, while the former has much fewer model parame-
ters than the latter. This set of empirical results confirm that

1Code is available at https://github.com/
wanglezi/DINPS.

2We follow the network structure definition in https://
github.com/chengyangfu/pytorch-vgg-cifar10

mnist: LeNet3 cifar10: VGG16
FedAvg DINPS FedAvg DINPS

m = 2 1.49 1.43 7.03 6.96
m = 4 1.51 1.44 7.52 7.48
m = 8 1.55 1.46 7.83 7.67

model size 266K 53K 15.24M 7.46M

Table 3: Distributed sparse neural nets training: validation
set classification error (in %) and model size comparison.

DINPS is an accurate and communication-efficient distribut-
ed optimization method for pruning deep neural networks.

7 Conclusion

We proposed DINPS as a Newton-type communication-
efficient distributed computing method for non-convex s-
parse minimization under cardinality constraint. At each
iteration, each worker machine inexactly solves an `0-
constrained minimization problem constructed based on the
local data and global gradient, followed by sparse param-
eter aggregation and map-reduce gradient computation on
the master machine. For generic convex loss functions, the
communication complexity of DINPS has been shown to s-
cale logarithmically with respect to the number of machines
and its required per-machine sample complexity is lower
than the prior DANE-type sparse learning methods. For
non-convex loss functions, we have established sub-linear
rate of convergence for DINPS. Extensive empirical results
confirmed our theoretical predictions and demonstrated the
advantages of DINPS over the state-of-the-art methods.
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