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Abstract

GP Inference on large datasets is computa-
tionally expensive, especially when the obser-
vation likelihood is non-Gaussian. To reduce
the computation, many recent variational in-
ference methods define the variational distri-
bution based on a small number of inducing
points. These methods have a hard tradeoff
between distribution flexibility and computa-
tional efficiency. In this paper, we focus on
the approximation of GP posterior at a lo-
cal level: we define a reusable template to
approximate the posterior at neighborhoods
while maintaining a global approximation.
We first construct a variational distribution
such that the inference for a data point con-
siders only its neighborhood, thereby sepa-
rating the calculation for each data point. We
then train Graph Convolutional Networks as
a reusable model to run inference for each
data point. Comparing to previous methods,
our method greatly reduces the number of
parameters and also the number of optimiza-
tion iterations. In empirical evaluations, the
proposed method significantly speeds up the
inference and often gets more accurate results
than competing methods.

1 Introduction

As a Bayesian non-parametric method, Gaussian Pro-
cesses (GPs) (Rasmussen & Williams, 2006) offer flexi-
ble and expressive models for various machine learning
tasks. The success of a GP model hinges on its effi-
cient inference, which is especially true when the data
is large in scale.

A GP defines a distribution over a function space. The
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central problem of GP inference is to calculate the pos-
terior distribution of function values at training data
points. One family of methods for GP inference is
variational inference (Jordan et al., 1999; Wainwright
& Jordan, 2008), which solves the inference problem
by maximizing the Evidence Lower BOund (ELBO).
These methods approximate the GP posterior with a
multivariate Gaussian distribution. Standard varia-
tional inference for GP on large datasets is still ex-
pensive, as it needs to optimize the large covariance
matrix of the variational distribution and also to in-
vert the prior covariance in gradient calculation. We
need to simplify the variational distribution further to
speed up the inference procedure.

Variational inference based on inducing points
(Quinonero-Candela & Rasmussen, 2005; Titsias,
2009) uses a low-rank matrix as the covariance of the
variational distribution. It first defines a multivariate
Gaussian distribution over function values at a small
set of M inducing points and then derives distributions
of all other data points from the covariance defined by
the prior. This method needs space O(NM) and time
O(NM?) in one gradient calculation, with N being the
number of data points. Even with stochastic optimiza-
tion (Hoffman et al., 2013), each random estimation
of the ELBO still needs to consider all inducing points
(Hensman et al., 2015; Sheth et al., 2015; Dezfouli &
Bonilla, 2015; Krauth et al., 2016).

Inducing-point methods devote their computation to
approximate many weak correlations between data
points and inducing points. At the same time, their
approximation of strong correlations between non-
inducing points is indirectly through inducing points,
and thus likely to be inaccurate. It would be very
expensive to directly approximate correlations of this
type with a large number of inducing points. This
issue is addressed by more recent work, e.g., de-
coupling estimations of the posterior mean and the
posterior variance (Cheng & Boots, 2017; Salimbeni
et al., 2018), using inter-domain and subspace induc-
ing points (Hensman et al., 2017; Panos et al., 2018).
However, these methods still cannot focus their com-
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putation on important correlations only. Furthermore,
inducing-point methods lose the non-parametric flavor
of GP, as the flexibility of the variational distribution
is solely decided by inducing points.

In this work, we focus the approximation on strong
correlations, which are mostly at the local level. We
propose to 1) localize the inference for a single data
point within a relatively small neighborhood, and 2)
reuse a local inference procedure for all data points.
With popular kernel settings (Chapter 4 of (Ras-
mussen & Williams, 2006)) in the prior, the func-
tion value at a data point has strong correlations with
only function values in a surrounding region. Very
likely strong correlations in the posterior also exist
only among data points within local regions. Focusing
on local correlations brings dramatic computational
advantages, while neglecting weak long-distance cor-
relations has little negative effect on the inference ac-
curacy. Our method shares a similar principle with
the local GP model (Nguyen-Tuong et al., 2009), but
our method has two advantages: a unified inference
objective and model reuse.

In this work, we construct a variational distribution
with which the inference at a data point takes the in-
formation only from its K surrounding neighbors. The
variational distribution supports fast sampling from
its marginals, hence allowing efficient Monte Carlo
approximation with the reparameterization technique
(Kingma & Welling, 2013) when dealing with non-
Gaussian data likelihoods (Sheth et al., 2015; Dez-
fouli & Bonilla, 2015; Krauth et al., 2016). Com-
bined with an approximation of the prior, the varia-
tional distribution gives a highly decomposable ELBO,
hence enabling the stochastic optimization with small
batches of terms in the decomposed ELBO. An opti-
mization update with a batch of size N, takes time
only O(N,K3).

Inspired by recognition networks used in amortized
inference (Kingma & Welling, 2013; Mnih & Gregor,
2014; Miao et al., 2016), we further train two Graph
Convolutional Networks (GCN) (Kipf & Welling,
2017) as a global inference model to identify varia-
tional parameters for each data point. Particularly,
the two networks take observations around a data
point as the input and spit out local variational pa-
rameters. By reusing the two networks, this technique
greatly reduces the number of optimization parameters
and also the number of optimization iterations.

The proposed inference method is non-parametric in
the sense that the flexibility of the variational distribu-
tion grows with the data size. Particularly, it does non-
parametric inference with a parametric model.

2 Gaussian Process and Variational
Inference

2.1 Gaussian Process

A Gaussian process defines a distribution over the
function space and assumes any finite collection of
marginals follows a multivariate Gaussian distribu-
tion. If a function f : R? — R is from a Gaus-
sian process GP(m(-),k(-,-)), then it implies that
E[f(x)] = m(x) and Cov(f(x),f(x)) = K(x,x),
Vx,x' € RY Suppose we have N data points,
(X,y) = ((xi,9:) :i=1,...,N), and want to model
the probability p(y|X) with GP, then we specify the
distribution as follows.

f~GP(0(), k() 0 = A(f (%4)), yi ~ DIST(0). (1)

Here 0(+) is the zero function. The link function A(-)
and the distribution DIST can be arbitrary as long
as we can calculate log p(y;|f(x;)) and take its gradi-
ent with respect to f(x;). This formulation is general
enough for a wide range of regression and classification
problems.

Denote f = (f; = f(x;) : i = 1,...,N), then f fol-
lows a multivariate Gaussian distribution with mean
0 and covariance ¥ = x(X,X), the latter of which
is referred as kernel matrix. As the main step of GP
inference, the calculation of the posterior distribution
p(f|X,y) is the basis for making predictions. The pos-
terior is often intractable when the noise distribution
is non-Gaussian, so approximate inference becomes in-
evitable. This work focuses on variational inference
and approximates p(f|X,y) with a variational distri-
bution ¢(f).

2.2 Variational Inference for GP

Variational inference searches for a good approxima-
tion ¢(f) by maximizing the ELBO, L(q(f)) in (2),
with respect to ¢(f).

log p(y[X) > L(gq(f)) := Ey(¢) [log p(f)]
+ Eqry logp(y[£)] + H[g]. (2)

Here, H [q] is the entropy of ¢(f). The bound is tight
when ¢(f) = p(f|X,y). For computational conve-
nience, ¢(f) is often chosen to be a multivariate Gaus-
sian distribution. Denote its mean as p and variance
as V, then the optimization objective L(q(f)) becomes
L(w, V).

Direct calculation of (2) with a general GP model has
the following issues. The first term on the right side
of (2) needs the inverse of prior covariance X. The
second term often uses Monte Carlo samples to ap-
proximate the expectation Eyy,) [p(y:]fi)], so it needs



Linfeng Liu, Li-Ping Liu

Construction of variational distribution L matrix

Figure 1: The variational distribution with 5 data
points and K = 2. Left: the dependence of random
variables; p is omitted here. Right: the sparsity pat-
tern of the corresponding L matrix; each arrow on the
left corresponds to a non-zero entry in L.

cheap samples from the marginal ¢(f;). The entropy
term H [g] needs the log determinant of V.

Besides difficulties in calculating the ELBO, the large
number of variables in p and V in large-scale problems
poses a further challenge to optimize the ELBO.

3 Amortized Variational Inference for
General GP Models

3.1 The Variational Distribution

We construct the variational distribution ¢(f) as a mul-
tivariate Gaussian distribution with mean g and co-
variance V. The covariance V is further parameter-
ized as V = LLT, with L being a sparse lower tri-
angular matrix. The off-diagonal non-zero elements
in each row L;;1 < ¢ < N are indicated by a set
a(t) € {1,...,i — 1}. The set «(i) has at most K
non-zero elements, |a(i)] = min(K,7 — 1). The spar-
sity pattern of L is,

Ly =0 if j¢a(i)u{i} (3)
The number of free variables in L is N(K+1)— K (K +
1)/2. The second term K (K +1)/2 corresponds to the
extra number of zeros for the first K rows. The size
requirement of a(i)-s allows storing L into a N x (K +
1) matrix, which is convenient for matrix computation
in implementation.

With this construction, it is easy to sample from ¢(f).
Let € ~ N(0,I) be an N-dimensional Gaussian ran-
dom white noise, then a sample f from ¢(f) can be
generated by

f=p+Le (4)

It is fast to draw samples from the marginal ¢(f;): we
only need to sample a (K + 1)-dimensional white noise
(€a(i), €i) and then calculate f; = p; + L o(i)€a(i) +

L, ;e; as a sample. Figure 1 illustrates the construction
of the variational distribution.

The sparsity pattern of L, or «f(i) sets, is specified
by a directed graph over data points, with «(¢) being
the parent set of i. We define «(-) sets from the prior
kernel matrix. The principle is that, if two data points
iand j, j < i, are strongly correlated in the prior, then
j is very likely to be in «(%).

Formally, we construct «(i) for each i in the following
three steps. First, we form an undirected graph over
data points by their neighboring relations: if ¢ or j is
one of the K most correlated neighbors of the other in
prior covariance, then we add an undirected edge (i, )
to the graph. Second, we assign each edge a direction
from the smaller index to the larger one, e.g. the edge
(i,4) points from j to i if j < i. Finally, we adjust
every «(i) to make sure that each ¢ has min(K,7 — 1)
parents: if (i) has inadequate parents, we add to «(%)
more nearest neighbors from data points with indices
smaller than 4; if a(i) has more than K parents, we
remove these parents with larger indices.

The constructed covariance matrix V is good at ap-
proximating local correlations. Here being local means
being strongly correlated in the prior kernel, but not
about distances. Below we show that ¢(f) is able to
match any covariance values corresponding to edges in
the graph mentioned above. This result indicates that
the order of data points is not important as long as
the graph has edges (in either direction) between data
points with strong correlations.

Theorem: Suppose V* is the covariance of the true
posterior. By setting appropriate L, the matrix V =
LLT is able to match V* at entries corresponding to

graph edges, that is, Vi; = V¥, Vi, j € a(i).

proof sketch: Define (i) = «(i) U {i}. The covari-
ance of fg(;y and f; in the variational distribution ¢(f)
is

T T
Vi, = LawyLy =Lga),s6)Lia0) - (5)

Here, Lg;), g(;) is a sub-matrix of L taking 3(i) rows
and columns. Note that the row L; has non-zero el-
ements only at (§(i). Because L is a lower triangular
matrix, its principal sub-matrix Lg;),s(;) is a full-rank
matrix. Then we just set L; gy = (La_(li),ﬁ(i)V;;(i),i)T
so that Vg, = Vi

ORE The argument above works
fromallt=1,...N.

O

One possible concern is that the ordering of data
points in the formation of the graph and also «/(i) sets
would significantly impact the performance. However,
there are only neglectable performance differences with
permutations of data points in our empirical experi-
ence.
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3.2 Optimization of the ELBO

In this section, we optimize the ELBO with stochastic
optimization, which needs a cheap estimation of the
objective and its gradient. The strategy is to first de-
compose the ELBO in (2) into small factors and then
estimate its value based on a random selection of fac-
tors. Based on this estimation, we calculate stochastic
gradients with respect to u and L. For convenience
of discussion below, we call the three terms in (2) as
the expected likelihood term L.y = Eg ) [p(y|f)], the
cross entropy term Leross = Eqp) [p(f)], and the en-
tropy term L.,; = H [g]. Now we decompose the three
terms as follows.

Decompose the likelihood term Observations y
are independent given f, so the likelihood term natu-
rally decomposes as in (6). We only need a random
batch S of data points to estimate the entire term
L. We further approximate the expectation term
Eqs,) [log p(yil fi)] for data point i € S with a Monte
Carlo sample f; from q(f;). We use reparameteriza-
tion technique (Kingma & Welling, 2013): the random
sample fi is a function of u; and L;, and the gradient
of Ly with respect to u; and L; is propagated through
fi. The exact calculation and its estimation is shown
in (6).

N

Ley = ZEq(fi) [log p(yilfi)] ,

i 1

Ley = S Zlogp vil fi). (6)

€S

Decompose the entropy term The entropy term
is the log determlnant of V plus a constant. We have
logdet(V) = ZZ 1 log(L?,) by the decomposition of
V. Then the exact entropy calculation and its estima-
tion with a random batch S is

N
Lent = 0.5 (N log(2me) + > log L?ﬂ) :

) - (7
i€S

\S| ZlogL

Eem =0.5 (N log(2me)

Decompose the cross entropy term The cross
entropy term is

—0.5logdet(X) — 0.5N log(2m)
— 0.5t (ZHLLT +pp’)). (8)

If we do not learn kernel parameters, then log det(X)
can be treated as constant with respect to ¢(f). The
inverse of X is hard to compute, so people often appeal
to approximations.

Lc7'oss =

We use the approximation in (Datta et al., 2016): the
prior distribution approximately decomposes as p(f) ~

Hﬁilp(fﬂfa(i)). The conditional p(fi|fae)) is from
the GP prior and has mean and variance
Sia@bi

with b; =3 a()Ea() ali) - (9)
This approximation facilitates decomposable calcula-

tions, as it shares a similar structure with ¢(f). Then
the cross entropy term is approximated by

Ni|a(i) = zfaz z|a )—Eii_

Lcross :|S| ZEq(f7 fa)) [logp(fz|fo¢(z )]
€S

ISIZ

+ const. (10)

ZIC” (rr + (u; — by ,ua()))

Herer =L; — bZ-TLa(i) is a row vector.

We get an estimation of the ELBO by putting together
estimations of the three terms. The first two terms are
unbiased while the third term is biased because of the
approximation of the prior.

L~ Eell + Zcross + Eent~ (11)

This estimation of the ELBO is highly decomposable
and supports stochastic optimization. Direct opti-
mization of pu and L is already an inference method.
However, the number of parameters in g and L has
a scale of O(NK). Even with SGD, the optimization
needs at least a few epochs to converge.

3.3 Inference Network to Reduce
Optimization Parameters

In this subsection, we reduce the number of param-
eters by training a reusable inference network, which
directly recognizes variational parameters p; and L;
from observations and the prior.

We define an inference network M such that,
(,uza Lz) M(Y(z (i) E(z (1)), (z a(z))) Ideally, all ob-
servations y and the entire covariance matrix 3 should
be in the input, as they all affect p; and L; for ¢. For
the sake of feasibility, here we only use a small part of
related data as the input and hope that the network
still identifies good values for the two parameters with-
out complete information. Note that the network only
needs to output non-zero elements of L.

The inference network M consists of two sepa-
rate Graph Convolutional Networks (GCN) (Kipf &
Welling, 2017) for u; and L; respectively. A GCN
computes hidden layers with the adjacency matrix of a
graph. The inputs to the GCN are graph node values.
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Here we treat data points {i} U (i) as a small graph
and then use the kernel sub-matrix 3(; o)), (,a())
as its adjacency matrix. We treat the observations
¥ (i,a(s)) @ graph node values. In this graph, 4 is unique
because we are computing parameters for i. To break
the symmetry relation between ¢ and any other data
point in (i), we set A = [3;;,0; X035, Za(i),a(i)] a8
the adjacency matrix for the GCN. The input to the
GCN is H(O) = Y(@i,a))-

The hidden layer HY of a GCN is computed from its
previous layer H=1) as follows,

HO =D 7AD :HDWO) 1=1,... L. (12)
Here D is a diagonal matrix, whose diagonal is the
row sum of A. W is the trainable weight matrix
for the I*" layer. The activation function o(-) is set

to be identity for the last layer and ReLU for other
layers.

By setting W) as a column vector, the output H()
of GCN is a vector with length K + 1. The varia-
tional mean p; is obtained by taking the mean of the
output H®) from the first GCN, while non-zero ele-
ments of L; are set to be HX) from the second GCN.
GCNs are suitable for this inference task: they use the
adjacency matrix to consider relations among nearby
observations, which is in a similar manner as the in-
ference procedure.

We apply the two GCNs to the ELBO estimation in
(11), so they are learned by the stochastic optimization
of the ELBO. The number of optimization parameters
is reduced to a constant, i.e. the size of the inference
network. The optimization procedure needs much less
iterations in training the two GCNs than direct opti-
mizing the variational parameters.

We call this inference method as Amortized Infer-
ence for Gaussian Processes, and AIGP for short. In
the calculation of objective values and gradients, the
most expensive calculation of a single data point is
(10), which takes time O(K3). For a batch S of N,
data points, the calculation in (11) only takes time
O(NyK3). The gradient calculation takes a similar
amount of time. Prior the run of our algorithm, we
need to check nearest neighbors in prior covariance and
construct the graph — the time complexity is O(n logn)
with advanced data structures such as k-d trees.

3.4 Prediction

Now we have the approximation ¢(f) of the posterior
p(f|X,y) and are ready to make predictions for new
data points. Let x, be a new data point, then the

predictive distribution is.

mm%xm:/pmmmmmemﬂ

*

zﬂpwmmm%xmwwum

Here q(fi|x.,X)y) = ffa* p(filfa,)a(fs, )df,,, and
p(f+|fa,) is from the prior. The mean and variance

of q(fi|x4, X, y) are

Hx = bufia,,

o} = iiw — E*’a*bl— + b*(La*LZ*)bI' (14)
Here a, denotes K neighbors that have the
largest prior covariance with x,, and b, =
DIIND S

The integral in (13) may not have a closed-form so-
lution, but we can easily approximate it with Monte
Carlo samples: %25:1 p(Ys|fE), with f7 being sam-
ples from ¢(f«|x4,X,y). The approximation is accu-
rate as the integral variable is in one dimension.

3.5 Discussion of the Approximation of the
Prior

One possible criticism is that our method loses infor-
mation of the prior when it uses a directed graph-
ical model as the approximation (see the equation
above (9)). However, the empirical evaluation does
not indicate the approximation hurting the predic-
tive performance. Actually, the lost of prior infor-
mation is inevitable when an inference method sim-
plifies the posterior covariance. Inducing-point meth-
ods ignore the prior covariance between any pair of
non-inducing points: the corresponding entries of the
prior kernel matrix do not enter the calculation (see
Eq. (9) in Titsias (2009) and Eq. (19) in Hensman
et al. (2015)). Comparing to inducing-point meth-
ods, which may neglect some strong covariance among
non-inducing points, our method truncates weak con-
ditional dependency among data points that have low
precision values in the prior.

4 Experiment

We evaluate our method on three tasks, bird abun-
dency estimation, raster data modeling, and flight de-
lay regression. The details of the three tasks are in
their respective subsections.

We compared our method with three state-of-the-
art methods, Scalable Variational Gaussian Process
(SVGP) (Hensman et al., 2015), Scalable Automated
Variational Inference for Gaussian Process (SAV-
IGP) (Dezfouli & Bonilla, 2015), and Decoupled
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Table 1: Negative log-likelihood of comparison methods on eBird data. Smaller values are better.

()

Figure 2:

M SVGP SAVIGP DGP K pre-AIGP AIGP
200 | 2.294.10 \691s | 2.26£.07 \220s | 2.05+.06 \201s || 10 | 1.57+.04 \23ks | 1.78%+.05 \5.1s
1000 | 2.284.10 \50ks | 2.20£.07 \939s | 1.99+.06 \212s || 20 | 1.61+.04 \15ks | 1.79£.05 \10s
2000 | 2.38+.10 \50ks | 2.20+.07 \2.7ks | 1.984+.06 \256s || 40 | 1.60+.04 \50ks | 1.79+.05 \36s
2.6
M SVGP SAVIGP | DGP 3
200 0.5 1.0 L5 224
1000 | 05 0.5 1.0 Z,,
2000 0.5 0.5 1.0 &
- 22,0
K | pre-AIGP | AIGP g pre-AIGP (K=10)
10 0.1 0.1 218 —— pre-AIGP (K=20)
20 0.1 0.1 1 —— pre-AIGP (K=40)
40 0.1 0.1 6w 01 05 1.0 15 20 25

Length scales

(b)

(a) Different length scale chosen through cross-validation by SVGP, SAVIGP, DGP, pre-AIGP, and

AIGP with different configurations. (b) Negative log-likelihood with different length scales on validation set.

Gaussian Processes (DGP) (Cheng & Boots, 2017).
All three methods follow the scheme of inducing
points. We use the implementation of SVGP by
GPFlow (Matthews et al., 2017), the implementations
of SAVIGP by its authors, and the implementation of
DGP by Faust (2018). We implement likelihood dis-
tribution for three methods when necessary. We also
compare the method that directly optimizes the ELBO
in (11) without inference network. Denote this method
as pre-AIGP.

We use the RBF kernel for all experiments. The length
scale is a hyperparameter, which is selected from the
candidate set {0.05,0.1,0.5,1.0,1.5,2.0,2.5} by check-
ing performance on a validation set. We randomly
split each dataset into three subsets for training (70%),
validation (10%), and testing (20%). We report neg-
ative log-likelihood on the test dataset as the perfor-
mance measure for the five algorithms in comparison.
The maximum training time for each algorithm on the
training dataset is 13.89 hours (50ks).

SVGP, DGP, pre-AIGP, and AIGP are all optimized
by stochastic optimization with mini-batches. The
optimizer for these methods is Tensorflow AdaGrad
(Abadi et al., 2016). SAVIGP uses L-BFGS-B opti-
mizer with default settings from the package. We test
SVGP and SAVIGP with M = 200, 1000, 2000 random
inducing points. We allow SVGP to choose inducing
points through K-means clustering to seek better per-
formance. With any number of inducing points over
2000, SVGP and SAVIGP will take very long time to
converge. DGP uses separate inducing points to esti-
mate the variational mean and covariance. The paper

suggests to use a smaller number of inducing points for
covariance estimation. We use 200 inducing points for
covariance estimation and vary the number of inducing
points (M = 200, 1000, 2000) for mean estimation. We
also have tried M = 4000 for DGP and found only in-
significant performance improvement. We collect the
result when the algorithm converges on the validation
set or reaches the time limit. For pre-AIGP and AIGP,
we vary K as K = 10,20,40. We have tested different
GCN structures for AIGP and found typical configu-
rations of the network can give reasonably good per-
formances. We finally use a network structure with
three layers with dimensions 20, 10, and 1.

4.1 eBird Dataset

The eBird project (Sullivan et al., 2009) hosts a repos-
itory for the bird-watching community to report bird
observations at different locations around the world.
In this experiment, we consider the population of the
bird species Savannah Sparrow in February from 2012
to 2016 across the contiguous United States. In our
data preprocessing step, we retain all positive obser-
vations and a random selection from exceedingly many
zero observations — the dataset after preprocessing has
15,085 observations with 6,477 positive data points.
We also rescale the input location values such that an
Euclidean distance of 0.1 corresponds to a geographic
distance of 20 miles. The link function in (1) is defined
as the softplus function, A(x) = log(1 + exp(z)). The
likelihood distribution of an observation y; at location
i is Poisson with mean A(f;).

Table 1 shows the negative predictive log-likelihood
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Figure 3: eBird dataset for the distribution of savannah sparrow in February between 2012 and 2016 across
US. (a) the observed distribution, (b)-(d) the regression surfaces of the AIGP, SAVIGP, and SVGP.

on the test set. Smaller values mean better predictive
performances. We observe that pre-AIGP and AIGP
significantly outperform the other three approaches.
The standard deviations obtained from pre-AIGP and
AIGP are also smaller than the SVGP, SAVIGP, and
DGP. This result also indicates that pre-AIGP and
AIGP is able to achieve good inference performance
with a small number K.

To check how data ordering affects the results, we fur-
ther run AIGP 10 times and each time randomly per-
mute the training examples. The standard deviation
of negative log-likelihood for K=10, 20, 40 are all 0.02.
This results suggest that impacts of data ordering are
imperceptible, at least for eBird dataset.

We also investigate how the inference method impacts
the choice of hyperparameters. Figure 2(a) shows the
length scale chosen by different methods through cross
validation. The results indicate that SVGP, SAVIGP,
and DGP prefer a smoother prior than pre-AIGP and
AIGP. As we have analyzed before, a small length scale
weakens the correlation between data points and in-
ducing points, then the three methods with a too small
number of inducing points will get poor inference re-
sults. With this limitation, SVGP, SAVIGP, and DGP
have to choose large length scale values. The trend in
2(a) also indicates a smaller length scale should be
used if there are more inducing points.

Figure 2(b) shows validation performance of pre-AIGP
with different length scale and K values. Pre-AIGP

consistently prefers length scale value 0.1. Combining
Figure 2 (a) and (b), we hypothesize that the length
scale 0.1 chosen by pre-AIGP is ideal for the applica-
tion. This choice limits the influence of a data point
within the distance of 50 miles, which is also reason-
able in ecology.

In Figure 3, we plot the data (a) and the surfaces pre-
dicted by the AIGP (b), SAVIGP (c), and SVGP (d).
For visualization purpose in (a), we use large pixels to
indicate data points. The surfaces inferred by AIGP
keeps more detailed information, which is good for pre-
diction considering its performance in Table 1.

4.2 NightLight Raster Dataset

In this task, we fit spatial raster data, the NightLight
image, with GP models. The dataset is a satellite im-
age of the nighttime light over US contiguous states by
Earth at Night project (Figure 4). We use GP models
to fit pixel values given their coordinates. In this ex-
periment, we preprocess the image by first converting
the RGB image to greyscale and then downscaling the
image. Finally, we get 56,722 pixels with their values
rescaled to the range [0, 1]. We use a log-normal dis-
tribution with variance parameter o2 = 0.01 as the
likelihood distribution DIST (the actual standard de-
viation of the distribution is between 0.1 and 0.27).
The mean parameter of this likelihood distribution is
the Gaussian output f;.
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Figure 4: The raster data of nighttime light.
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Figure 5: Training time on validation set.

Table 2: Negative predictive log-likelihood on NightLight data. Smaller values are better.

M SVGP SAVIGP

DGP K

pre-AIGP AIGP

200 | 0.71+.04 \674s | 0.72+.01 \867s

0.454+.01 \1.1ks || 10

-0.36+.01 \22ks | -0.47+.01 \17s

1000 | 0.344.03 \50ks | 0.64+.02 \11ks

-0.12+.01 \1.3ks || 20

-0.20+.03 \50ks | -0.42+.01 \27s

2000 | 0.414.03 \50ks | 0.64+.03 \16ks

-0.244+.01 \1.5ks || 40

-0.07+.02 \50ks | -0.46+.01 \93s

Table 3: Negative predictive log-likelihood on Flight data. Smaller values are better.

M SVGP SAVIGP DGP K AIGP

200 | -1.07+.04 \43s -0.90+.06 \13ks | -1.10£.002 \770s || 10 | -1.27+.002 \34s
1000 | -1.01+.03 \1.1ks | -0.844.04 \50ks | -1.04£.002 \900s || 20 | -1.28+.002 \86s
2000 | -1.02+.05 \3.8ks | -0.86+.07 \50ks | -1.11+.002 \3.3ks || 40 | -1.27+.002 \533s

Table 2 shows the negative predictive log-likelihood
of all methods. Pre-AIGP and AIGP both outper-
form the other three methods. On this dataset, AIGP
performs even better than pre-AIGP. It is because pre-
AIGP does not fully converge within time limit. AIGP
often converges in the first training epoch.

We compare the running speed of all methods. Fig-
ure 5 shows the negative log-likelihood values in valida-
tion against training time for all five methods. There
is not an equivalent setting for our methods and a
setting for inducing-point methods, so we choose typ-
ical settings for both type of methods. Pre-AIGP
outperforms SVGP and SAVIGP within reasonable
time. AIGP converges much faster than all other
methods.

4.3 Flight Delay Dataset

This data set contains 5.9 million records of flight ar-
rivals and departures within the US in 2008!. Follow-
ing Hensman et al. (2013), we select 8 dimensions as
the attributes and randomly choose 800,000 instances
from the original dataset as the dataset for this ex-
periment. The task is to use the 8 attributes to fit
the delay time. In the data preprocessing step, we
standardize input features, remove extreme delay time

'From http://stat-computing.org/dataexpo/2009/

values, and then translate and scale of all delay time
to [0, 1]. We set the likelihood distribution DIST to
be the log-normal distribution with ¢? = 0.01 and
being the GP output.

The predictive performances and training time of the
four methods are shown in Table 3. AIGP has the
best predictive performance and also runs much faster
than the other three methods. We observe that AIGP
converges after training with about 100k data points
(about one sixth epoch). Pre-AIGP cannot run on this
dataset due to too many parameters.

5 Conclusion

In this work, we propose a new variational infer-
ence method, AIGP, for GP models with general
noises. The proposed method has a highly decom-
posible ELBO | so it can run stochastic optimization
efficiently to learn the variational distribution. AIGP
retains the flavor of non-parametric learning by infer-
ring function values directly at data points instead
of through inducing points. AIGP also reduces the
number of variational parameters by training an infer-
ence network to recognize variational parameters from
nearby data points. It only uses a relatively small
number of iterations to converge and greatly speeds
up the inference procedure.
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