
Yingyi Ma, Vignesh Ganapathiraman, Xinhua Zhang

A Proof

Proof of Theorem 2. To see H◦ is still an RKHS under the new norm, note that a Hilbert space is an RKHS if
point evaluation functionals are bounded, i.e., there exists a C > 0 such that for any x ∈ X and f in the space, it
holds that |f(x)| ≤ C ‖f‖. Since H is an RKHS, so |f(x)| ≤ C ‖f‖H. Since ‖f‖H◦ ≥ ‖f‖H, it follows trivially
that |f(x)| ≤ C ‖f‖H◦ . So H◦ is an RKHS.

Clearly k◦(x, ·) = k(x, ·)− z(x)>(I + Kz)−1z(·) is in H◦ as it linearly combines k(x, ·) and {zi} which are in
H, and H◦ consists of the same set of functions as H. So it suffices to show k◦(x, ·) is a representer of point
evaluation at x in H◦.

For any f ∈ H◦ (or equivalently f ∈ H), denote zf := (〈z1, f〉H , . . . , 〈zm, f〉H)>. It follows that for all x ∈ X ,

〈k◦(x, ·), f〉H◦ = 〈k◦(x, ·), f〉H +
∑

i
〈zi, f〉H 〈zi, k

◦(x, ·)〉H (by the definition of 〈·, ·〉H◦)

=
〈
k(x, ·)− z(x)>(I +Kz)−1z(·), f

〉
H +

∑
i
〈zi, f〉H

〈
zi, k(x, ·)− z(x)>(I +Kz)−1z(·)

〉
H

= f(x)− z(x)>(I +Kz)>zf + z(x)>zf − z(x)>(I +Kz)>Kzzf = f(x),

where the last equality follows from the simple fact that −(I +Kz)−1 + I − (I +Kz)−1Kz = 0 (to see it, left
multiply both sides by the invertible matrix I +Kz). So k◦ is the reproducing kernel of H◦.

Proof of Theorem 3. Let v :=
∑
i αiz(xi)−

∑
j βjz(yj). Then

0 ≤

∥∥∥∥∥∥
∑
i

αiϕ
◦(xi)−

∑
j

βjϕ
◦(yj)

∥∥∥∥∥∥
2

H◦

(19)

=
∑
i,i′

αiαi′k
◦(xi, xi′) +

∑
j,j′

βjβj′k
◦(yj , yj′)− 2

∑
i,j

αiβjk
◦(xi, yj) (20)

by (3) =
∑
i,i′

αiαi′(k(xi, xi′)− z(xi)>Mz(xi′)) where M := (I +Kz)−1 (21)

+
∑
j,j′

βjβj′(k(yj , yj′)− z(yj)>Mz(yj′))− 2
∑
i,j

αiβj(k(xi, yj)− z(xi)>Mz(yj)) (22)

=

∥∥∥∥∥∥
∑
i

αiϕ(xi)−
∑
j

βjϕ(yj)

∥∥∥∥∥∥
2

H

− v>Mv = −v>Mv ≤ 0, (23)

So we conclude
∥∥∥∑i αiϕ

◦(xi)−
∑
j βjϕ

◦(yj)
∥∥∥
H◦

= 0, i.e.,
∑
i αiϕ

◦(xi) =
∑
j βjϕ

◦(yj).

Property 1. The warping operator is non-expansive.

Proof. For any f =
∑
i αiϕ(xi), denote z(xi) = (z1(xi), . . . , zm(xi))>. Then

‖f◦‖2H◦ =

∥∥∥∥∥∑
i

αiϕ
◦(xi)

∥∥∥∥∥
2

H◦
=
∑
ij

αiαjk
◦(xi, xj) (24)

=
∑
ij

αiαj
(
k(xi, xj)− z(xi)>(I +Kz)−1z(xj)

)
(25)

= ‖f‖2H −
(∑

i

αiz(xi)
)>

(I +Kz)−1

∑
j

αjz(xj)

 ≤ ‖f‖2H . (26)

So ‖f◦‖H◦ ≤ ‖f‖H as Kz is PSD.

Learning Invariant Representations with Kernel Warping

Proof of Lemma 1. The proof follows that of Proposition 4 in [29], but inserts ‖[Wk−1, Lτ]‖ as needed. Define
(MPAW)k:j := MkPkAk−1Wk−1Mk−1Pk−1Ak−2Wk−2 . . .MjPjAj−1Wj−1. Noting that ‖Ak‖ ≤ 1, ‖Pk‖ = 1, Wk

and Mk are non-expansive, we obtain

‖Ψn(Lτx)−Ψn(x)‖ (27)
= ‖An(MPAW)n:2M1P1A0Lτx−An(MPAW)n:2M1P1A0x‖ (28)
≤‖An(MPAW)n:2M1P1A0Lτx−An(MPAW)n:2M1LτP1A0x‖ (29)

+ ‖An(MPAW)n:2M1LτP1A0x−An(MPAW)n:2M1P1A0x‖ (30)
(a)
≤ ‖[P1A0, Lτ]‖ ‖x‖+ ‖An(MPAW)n:2LτM1P1A0x−An(MPAW)n:2M1P1A0x‖ (31)
(b)
≤ ‖[P1A0, Lτ]‖ ‖x‖+ ‖An(MPAW)n:3M2P2A1W1Lτy1 −An(MPAW)n:3M2P2A1LτW1y1‖ (32)

+ ‖An(MPAW)n:3M2P2A1LτW1y1 −An(MPAW)n:3M2P2A1W1y1‖ (33)
(c)
≤ ‖[P1A0, Lτ]‖ ‖x‖+ ‖[W1, Lτ]‖ ‖x‖+ ‖An(MPAW)n:3M2P2A1Lτz1 −An(MPAW)n:3M2P2A1z1‖ . (34)

Here (a) is by M1Lτ = LτM1, (b) is by defining y1 = M1P1A0x, (c) is by defining z1 = W1y1. Noting that the
last line is isomorphic to the first line and ‖z1‖ ≤ ‖x‖, we can unfold this recursion and prove Lemma 1.

Proof of Theorem 4. We use Schur’s test by reformulating [W,Lτ] as an integral operator and bounding its kernel
[Lemma A.1, 29]. Letting ξ = (I − τ)−1 and noting the Jacobian in change of variable for integral, we have

[W,Lτ]f(z) = WLτf(z)− LτWf(z) (35)

=
∫
W (z, u)f(u− τ(u)) du−

∫
W (z − τ(z), u)f(u) du (36)

=
∫
W (z, ξ(s))f(s)

∣∣∣∣duds
∣∣∣∣ ds− ∫ W (z − τ(z), s)f(s) ds (37)

Noting that α :=
∣∣du

ds
∣∣ = det(I −∇τ(u))−1, we derive the kernel

k(z, s) = αW (z, ξ(s))−W (z − τ(z), s) (38)
= (α− 1)W (z, ξ(s))︸ ︷︷ ︸

=:A

+W (z, ξ(s))−W (z, s)︸ ︷︷ ︸
=:B

+W (z, s)−W (z − τ(z), s)︸ ︷︷ ︸
=:C

. (39)

Since det(I −∇τ(u)) ≥ (1−‖∇τ‖∞)d ≥ 1− d ‖∇τ‖∞, it follows that α ∈ [1, 1 + 2d ‖∇τ‖∞]. We can then bound
each term as

|A| ≤ 2d ‖∇τ‖∞ |W (z, ξ(s))|
(a)
≤ 2d ‖∇τ‖∞ , (40)

|B| ≤ Lw ‖ξ(s)− s‖ = Lw ‖τ(ξ(s))‖ ≤ Lw ‖τ‖∞ , (41)
|C| ≤ Lw ‖τ‖∞ , (42)

where (a) is because W is non-expansive. As Ω is bounded, we can bound both
∫
|k(z, s)| dz and

∫
|k(z, s)| ds by

C1 ‖∇τ‖∞ + C2Lw ‖τ‖∞, where C1 and C2 depend on Ω only. Then Schur’s test directly implies (18).

B Derivative for End-to-end Training of Single Hidden Layer Network

Suppose we have invariance representers with finite approximation Z = {z1, . . . , zm} (we dropped the tilde to
simplify notation as here we only deal with finite approximations). Let there be nc classes, and the output layer
weight be a matrix O with each column corresponding to a class. Let ξ(x) be the FA of x using the Fourier
samples B := (ω1, . . . , ωp). Then the end-to-end empirical risk minimization can be written as

min
B,O

E
(x,l)∼p̃

[
L(O>(I + ZZ>)−1/2ξ(x), l)

]
, (43)

where p̃ is the empirical distribution over feature/label pair (x, l). Both ξ(x) and Z depend on B.

Yingyi Ma, Vignesh Ganapathiraman, Xinhua Zhang

Denote f(B,O) = L(O>(I + ZZ>)−1/2ξ(x), l). Then trivially

∇Of(B,O) = (I + ZZ>)−1/2ξ(x) · r>, (44)

where r := ∇L(O>(I + ZZ>)−1/2ξ(x), l) ∈ Rnc and ∇L denotes the partial derivative of L with respect to its
first argument.

To compute the derivative in B, we analyze the change of f when B is perturbed by ∆B with ‖∆B‖ :=∑
i ‖ωi‖ ≤ ε. Suppose ∆Z is the corresponding change of Z up to o(ε). Then letting M2 := I + ZZ> and

G := (∆Z)Z> + Z(∆Z)>, we have

(I + (Z + ∆Z)(Z + ∆Z)>)−1/2 = (I + ZZ> +G+ o(ε))−1/2 (45)
= [M(I +M−1GM−1 + o(ε))M]−1/2 (46)
= M−1/2(I +M−1GM−1 + o(ε))−1/2M−1/2 (47)
= M−1/2(I − 1

2M
−1GM−1 + o(ε))M−1/2 (48)

= M−1 − 1
2M

− 3
2GM−

3
2 + o(ε). (49)

The change of ξ(x) with respect to ∆B depends on the kernel. Let us use Gaussian kernel and

ξB(x) = 1
√
p


cos(ω>1 x)
sin(ω>1 x)

...
cos(ω>p x)
sin(ω>p x)

 ⇒ ∆ξB(x) = 1
√
p


− sin(ω>1 x) · x>∆ω1
cos(ω>1 x) · x>∆ω1

...
− sin(ω>p x) · x>∆ωp
cos(ω>p x) · x>∆ωp

 = H · (∆B)> · x (50)

where H = 1
√
p


− sin(ω>1 x) 0 0 . . . 0
cos(ω1>x) 0 0 . . . 0

0 − sin(ω>2 x) 0 . . . 0
0 cos(ω>2 x) 0 . . . 0
.

 ∈ R2p×p. (51)

Therefore

f(B + ∆B, g)−f(B, g) = r>O>
[(
M−1 − 1

2M
− 3

2GM−
3
2

)
· (ξB(x) +H · (∆B)> · x)−M−1ξB(x) + o(ε)

]
(52)

= r>O>
(
M−1H · (∆B)> · x− 1

2M
− 3

2GM−
3
2 ξB(x) + o(ε)

)
. (53)

The contribution of the first part to the gradient in B is easy to derive because

r>O>M−1H · (∆B)> · x =
〈
∆B, xr>O>M−1H

〉
. (54)

So the contribution to the gradient aggregated over the entire dataset is
∑
x xr

>
x O
>M−1Hx (note r and H

depend on x). M (independent of x) can be computed by first finding the left singular vectors of Z (or a few
leading ones), and then adjusting their corresponding singular values to give the eigen-decomposition of M .

The second term in (53) can be expanded as

−1
2r
>O>M−

3
2GM−

3
2 ξB(x) = −1

2r
>O>M−

3
2 ((∆Z)Z> + Z(∆Z)>)M− 3

2 ξB(x) (55)

= −1
2
(
a>(∆Z)b+ c>(∆Z)d

)
, (56)

where a = M−
3
2Or, b = Z>M−

3
2 ξB(x), c = M−

3
2 ξB(x), d = Z>M−

3
2Or. (57)

Here all a, b, c, d depend on x. So if we can compute the contribution of gradient from a>(∆Z)b, then that from
c>(∆Z)d can be computed in exactly the same way. To proceed, we now need to instantiate the invariances zi.

Learning Invariant Representations with Kernel Warping

Suppose zi models the gradient at yi in the direction of vi. Then by (7),

Z = 1
√
p


−(ω>1 v1) sin(ω>1 y1) . . . −(ω>1 vm) sin(ω>1 ym)
(ω>1 v1) cos(ω>1 y1) . . . (ω>1 vm) cos(ω>1 ym)

...
...

...
−(ω>p v1) sin(ω>p y1) . . . −(ω>p vm) sin(ω>p ym)
(ω>p v1) cos(ω>p y1) . . . (ω>p vm) cos(ω>p ym)

 (58)

⇒ ∆Z = 1
√
p


α>11∆ω1 . . . α>1m∆ω1
β>11∆ω1 . . . β>1m∆ω1

...
...

...
α>p1∆ωp . . . α>pm∆ωp
β>p1∆ωp . . . β>pm∆ωp

 , where
{
αij = −vj sin(ω>i yj)− yj(ω>i vj) cos(ω>i yj)
βij = vj cos(ω>i yj)− yj(ω>i vj) sin(ω>i yj)

. (59)

Denote a = (a+
1 , a

−
1 , . . . , a

+
p , a

−
p)>. Then we can collect the terms in a>(∆Z)b that involve ∆ωi:

1
√
p

〈
∆ωi, a+

i

m∑
j=1

αijbj + a−i

m∑
j=1

βijbj

〉
= 1
√
p

〈
∆ωi,

m∑
j=1

pijvj +
m∑
j=1

qijyj

〉
, (60)

where pij = bj(−a+
i sin(ω>i yj) + a−i cos(ω>i yj)) (61)

qij = −bj [a+
i (ω>i vj) cos(ω>i yj) + a−i (ω>i vj) sin(ω>i yj)]. (62)

So the gradient in B can be compactly written as − 1
2√p (V P> + Y Q>), where V = (v1, . . . , vm) and Y =

(y1, . . . , ym). Furthermore, incorporating the contribution from c>(∆Z)d, we can augment P and Q into:

pij = − sin(ω>i yj)(a+
i bj + c+i dj) + cos(ω>i yj)(a−i bj + c−i dj) (63)

qij = −(ω>i vj) cos(ω>i yj)(a+
i bj + c+i dj)− (ω>i vj) sin(ω>i yj)(a−i bj + c−i dj). (64)

So finally, the gradient in B can be computed by − 1
2√p (V P> + Y Q>). The procedure is

1. Compute all ω>i yj , followed by their sin and cos. Denote the results by matrices T (for products), S (for
sine), and C (for cosine), respectively, all sized p-by-m. Also compute ω>i vj as a matrix R ∈ Rp×m. These
cost O(pmd) where d is the dimensionality of the input x.

2. Compute P and Q by

P = −S ◦ (a+b> + c+d>) + C ◦ (a−b> + c−d>) (65)
Q = −R ◦ [C ◦ (a+b> + c+d>) + S ◦ (a−b> + c−d>)], (66)

where ◦ is the Hadamard product. The total cost is O(pm).

3. Compute − 1
2√p (V P> + Y Q>), which costs O(pmd).

If we naively perform this repeatedly for each of the l training examples, the total cost will be O(pmdl). Fortunately
this can be reduced to O(pm(d+ l)) because different training examples only differ in a, b, c, d vectors, while T ,
S, or C are shared. So overall we can replace step 2 by

P = −S ◦ F+ + C ◦ F− and Q = −R ◦
[
C ◦ F+ + S ◦ F−

]
, (67)

where F+ =
∑
x

a+
x b
>
x +

∑
x

c+x d
>
x , F− =

∑
x

a−x b
>
x +

∑
x

c−x d
>
x . (68)

This costs O(pml). Of course it still costs to compute a, b, c, d for all x too. Once we assemble a+
x , a

−
x , bx, c

+
x , c
−
x , dx

into matrices A+, A−, E (unfortunately the symbol B has been taken), C+, C−, D by columns, we get

F+ = A+E> + C+D>, F− = A−E> + C−D>, (69)

again as efficient matrix-matrix multiplications.

Yingyi Ma, Vignesh Ganapathiraman, Xinhua Zhang

C Connection with Convolutional Neural Networks

As demonstrated by [29], CKNs contain a set of convolutional neural networks (CNNs) with smooth and
homogeneous activations. We now show that such a relationship is retained when kernel warping is introduced,
and the new RKHS norm of the overall function allows CNNs to favor invariance-respecting configurations.

Consider a CNN function fσ that is defined recursively through the layers. The input image z0 = x0 is in L2(Ω,Rp0)
(i.e., p0 channels). The image zk at layer k lies in L2(Ω,Rpk), constructed from the previous zk−1 using convolution
and pooling. In particular, it employs pk filters {wik}

pk
i=1 where each wik = {wijk }

pk−1
j=1 ∈ L2(Sk,Rpk−1). Then the

convolution and activation yield z̃ik(u) = nk(u)σ(
〈
wik, Pkzk−1(u)

〉
/nk(u)) for channel i ∈ [pk] := {1, 2, . . . , pk}

and u ∈ Ω, where σ is a smooth function, and nk(u) = ‖Pkzk−1(u)‖. Finally the k-th layer image is obtained
by pooling, with zk = Akz̃k. A linear fully connected output/prediction layer is applied to the last layer n by
fσ(x0) = 〈wn+1, zn〉.

[29] showed that under smoothness conditions of σ, fσ with any value of filters {wik} can be reconstructed by a
CKN with carefully engineered functions lying in the intermediate RKHS Hk. Specifically, the first layer adopts
f i1 ∈ H1 and gi1 ∈ P1 for i ∈ [p1] such that

gi1 = wi1 ∈ L2(S1,R
p0) = L2(S1,H0) = P1, f i1(z) = ‖z‖σ(

〈
gi1, z

〉
/ ‖z‖) for z ∈ P1.

Based on layer k − 1, the forward function f ik ∈ Hk and gik ∈ Pk for channel i ∈ [pk] at layer k are

gik(v) =
pk−1∑
j=1

wijk (v)f jk−1 for v ∈ Sk, f ik(z) = ‖z‖σ(
〈
gik, z

〉
/ ‖z‖) for z ∈ Pk.

And the linear output layer sets gσ(u) =
∑pn
j=1 w

j
n+1(u)f jn for all u ∈ Ω, so that f : x0 7→ 〈gσ, xn〉 exactly recovers

fσ as shown by [29].

Effect of warping in CKN. Since warping does not change the set of functions in the RKHS at each layer,
the CKN constructed above is obviously retained in our new space of CKNs. However, interesting changes occur
to the RKHS norm. As shown by [29], ‖f i1‖2 ≤ C2

σ(‖wi1‖22) where ‖wi1‖22 =
∫
S1
‖wi1(v)‖2 dν1(v), and Cσ : R→ R

is an increasing function depending only on σ and the kernels. Recursively, without kernel warping, we have

‖f ik‖2Hk ≤ C
2
σ(‖gik‖2Hk−1

), ‖gik‖2Hk−1
≤ pk−1

pk−1∑
j=1
‖wijk ‖

2
2 · ‖f

j
k−1‖

2
Hk−1

. (70)

So the overall the recursion on ‖f ik‖2Hk writes

‖f ik‖2Hk ≤ C
2
σ

pk−1

pk−1∑
j=1
‖wijk ‖

2
2 · ‖f

j
k−1‖

2
Hk−1

 . (71)

And the final prediction f ∈ L2(Ω,Hn) can be bounded by

‖f‖2Hn ≤ pn
pn∑
j=1

(∫
Ω

∣∣∣wjn+1(u)
∣∣∣2 du

)∥∥f jn∥∥2
Hn

. (72)

With the same functions f ik and gik, we note that the RKHS norm of f can only increase because ‖f‖2H◦ =
‖f‖2H +

∑m
i=1 〈zi, f〉

2
H, if we warp the kernel and RKHS of the last CKN layer (layer n, before the output layer).

We note in passing that this argument can be applied only to the last layer because warping is applied to images
rather than patches, while the recursion in (70) and (71) works only on patches. We leave it as future work to
show that warping an image at intermediate layers will also keep or increase the RKHS norm on all patches.

	Proof
	Derivative for End-to-end Training of Single Hidden Layer Network
	Connection with Convolutional Neural Networks

