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Abstract

Invariance is an effective prior that has been
extensively used to bias supervised learning
with a given representation of data. In or-
der to learn invariant representations, wavelet
and scattering based methods “hard code” in-
variance over the entire sample space, hence
restricted to a limited range of transforma-
tions. Kernels based on Haar integration also
work only on a group of transformations. In
this work, we break this limitation by design-
ing a new representation learning algorithm
that incorporates invariances beyond trans-
formation. Our approach, which is based on
warping the kernel in a data-dependent fash-
ion, is computationally efficient using random
features, and leads to a deep kernel through
multiple layers. We apply it to convolutional
kernel networks and demonstrate its stability.

1 Introduction
A broad range of machine learning problems naturally
exhibit invariances that can be effectively leveraged
as an informative prior. Spam filters are supposed
to be stable under feature deletions, additions, and
replacements [1], while detectors in image processing
and computer vision are expected to deliver invariant
response under transformations such as translation,
rotation, scaling, etc [2, 3]. Manifold priors assume flat
curvature or gradient of discriminant function in the
vicinity of data samples [4–6], or in the direction of
nearest-neighbor instances on a graph [7–9].

To model invariance, a large body of exiting meth-
ods first specify a given space of prediction functions
and the representation of data (e.g., through the se-
lection of kernels), and then use invariances to bias
the search for the optimal predictor through the loss
function and the regularizer. For example, the vir-
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tual sample approach, a.k.a. data augmentation [10],
explicitly adds perturbed examples into the training
set. Distributional robustness [11] tries to retain low
loss when the distribution of training data is perturbed
in the most adverse fashion. Besides extending the
loss function, regularizers can also be augmented using,
e.g., the tangent distance that enforces smoothness on
the parametric trajectory of transformations such as
rotation with a range of angles [3].

The major challenge here lies in the significant compu-
tational cost arising from the complexity of invariances.
The virtual sample approach directly multiplies the
training set size by the number of invariances. Distri-
butional robustness often leads to intractable proba-
bilistic inference tasks, and even in special classes where
perturbations do yield a closed-form optimization objec-
tive, they are usually second order cone programming
and semi-definite programming, which are still hard to
scale in practice [12, 13]. The tangent distance regu-
larizer typically leads to nonconvex problems even if
the original risk minimization problem is convex.

To address these issues, approximate approaches have
been studied. Sparse approximation that greedily finds
the most violated invariance enjoys efficient quadratic
programming [14], and it often outperformed virtual
samples. However, it relies on the tractability of find-
ing the most violated invariance, which significantly
confined its applicability. In [15, 16], a key insight was
taken that a variety of invariances can be compactly
encoded as bounded linear functionals in a rich fam-
ily of functions like reproducing kernel Hilbert spaces
(RKHS). A representer theorem was then established,
facilitating an efficient convex quadratic programming.

However, all these methods assume a given representa-
tion of data or function space, while the recent wisdom
in deep learning reveals considerable benefit of learn-
ing the representations. Many deep architectures such
as convolutional neural networks (CNNs) intrinsically
enforce invariances via techniques like pooling and scat-
tering transform [17, 18]. However these methods are
all parametric, aiming to design models that induce in-
variance across the entire domain of samples. Although
this is desirable, it also poses significant challenge in
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model design and as a result many are restricted to
translational invariance u 7→ u− τ(u) for some diffeo-
morphism τ .

A similar parametric approach, but designed to gain
convexity in learning, is to re-engineer kernel functions
to make them invariant to a group of transformations
[19, 20], and a popular class is the Haar integration
kernel [21–23]. However, they do not allow multi-layer
transformations and do not admit closed-form evalua-
tions. Although finite approximation is possible, it is
expensive, requiring O(d/ε2) samples of transformation
where d is the dimensionality of the underlying space
[21], in addition to O(d/ε2) samples to approximate
the spectrum of translation-invariant kernels.

Finally, the restriction to a group of transformation pre-
cludes important invariances. In certain kinds of images
such as persons, changes in pose and facial expressions
may not form a group [24, §1.6]. Further, invariance
may encompass useful priors beyond transformation.
For example, flatness in differentiations such as direc-
tional derivative and curvature, graph Laplacian, and
spatial smoothness under filtering (convolution with an
origin-centered distribution). It is unclear how existing
Haar kernel based methods can incorporate such priors.

The goal of this paper, therefore, is to develop a repre-
sentation learning algorithm for this broadened range
of invariance priors, while at the same time retaining
the computational and spacial efficiency (§3). By using
random features [25, 26] introduced in §3.1, such a
representation can be transformed through multiple
layers, yielding a deep kernel that offers the favorable
decoupling between invariance modeling and the subse-
quent supervised learning. Our tool is a data-dependent
warping of the RKHS based on the Riesz representer of
invariances [15, 16], which also renders lower empirical
Rademacher complexity for improved generalization.

We applied this technique to the Convolutional Kernel
Network [CKN, 27–29] in §4, overcoming the gap be-
tween patch-level kernel and image-level invariance by
using the direct finite approximation technique with-
out going through the involved image-level kernel, an
important merit of using the representers for bounded
linear operators. We also established the stability of
the multi-layer CKN with warped kernel (§5), and ex-
perimental results in §6 confirm the effectiveness of the
warping technique. Finally, it is noteworthy that our
invariance differs from equivariance or covariance [30],
which concerns the commutativity of signal processing
operations and image transformations.

2 Preliminaries

Suppose we have training examples {(xi, yi)}li=1 where
xi’s are the features lying in a domain X , and yi’s

are the labels. A positive semi-definite (PSD) ker-
nel k : X × X → R satisfies that for all l ∈ N

and all x1, . . . , xl ∈ X , the Gram matrix K :=
(k(xi, xj))ij ∈ Rl×l is symmetric PSD. Commonly used
kernels are on inner product spaces, such as polyno-
mial kernel of degree r: k(x1, x2) = (〈x1, x2〉 + 1)r,
and Gaussian kernels: k(x1, x2) = κσ(x1 − x2) where
κσ(x) := exp(−‖x‖2 /(2σ2)).

Given a PSD kernel, a reproducing kernel Hilbert space
(RKHS) H can be constructed with functions from X
to R. A feature mapping ϕ : X → H is defined as
ϕ(x) = k(x, ·). Many learning algorithms seek a func-
tion f ∈ H such that for an example x, the prediction
f(x) = 〈f, ϕ(x)〉 is consistent with the given label.
Comprehensive introductions can be found in [31–33].
Linear operators. A linear operator T from a
normed space V to another normed spaceW has an op-
erator norm defined as ‖T‖ := supx∈V,‖x‖V=1 ‖Tx‖W .
When it is finite, we call it a bounded linear operator.
T is called a functional if W = R. For example, given
an x ∈ X , the evaluation operator from an RKHS
H to R defined as T (f) = f(x) is bounded because
|f(x)| = |〈f, ϕ(x)〉H| ≤ ‖f‖H k(x, x) 1

2 . Indeed, RKHS
is a Hilbert space with a bounded linear evaluation
functional [34].

Bounded linear functionals on a Hilbert space V are
particularly important because the Riesz representation
theorem guarantees that any such a functional L can
be represented by a unique z ∈ H such that L(f)
= 〈f, z〉 for all f ∈ V, and the Hilbert space norm
of z is equal to ‖L‖. This z can be evaluated by
z(x) = 〈z, k(x, ·)〉 = L(k(x, ·)) for all x ∈ X , and
their inner product can also be computed efficiently.
These results play a fundamental role in our framework,
allowing us to compactly represent functionals related
to local invariances as elements of the RKHS.

2.1 Invariances as bounded linear operators

Although the most commonly used functional in non-
parametric learning is the point evaluation for empir-
ical risk minimization (ERM), other bounded linear
functionals have also been used, e.g., to model local in-
variances [15, 35]. This has been particularly useful for
semi-supervised learning where unlabeled data provides
such invariance information in large supply. For exam-
ple, the graph Laplacian [8, 36] has been shown very
effective in leveraging unlabeled data. In general, ERM
can be augmented with regularizers `(Li(f)), where
Li is the transformation operator (e.g., f(x) − f(y)
for nearby x and y), and ` is the loss on it (e.g., to
encourage smoothness by penalizing large deviation):

min
f∈H

‖f‖2H
2 + λ

l∑
j=1

`1(f(xj), yj) + ν

m∑
i=1

`2 (Li(f)). (1)
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[15, 35] showed that (1) enjoys a representer theorem,
with the optimal function lying in the span of evaluation
representers and the new representers zi for Li.

We next review some useful local invariances that can
be modeled as bounded linear functionals. By Theorem
2.7-8 of [34], all linear functionals on finite dimensional
normed space are bounded. This includes all linear and
polynomial kernels. Our main interest, however, lies in
infinite dimensional RKHS, where boundedness calls
for more refined analysis depending on the specific Li.

Graph Laplacian. Given the similarity measure
wij between data points xi and xj , the graph
Laplacian regularizer [7, 8, 36] can be written as∑
ij wij(f(xi) − f(xj))2 =

∑
ij wij(Lij(f))2, where

Lij(f) = 〈f, k(xi, ·)− k(xj , ·)〉 is linear and bounded.

Transformation invariance. Invariance to known
local transformations is a commonly used prior for
image processing [3] and natural language processing
[14]. A signal such as an image can be represented
by a function from the space of spatial coordinates
Ω ⊆ Rd to a Hilbert space H [3]. When its squared
norm

∫
Ω ‖g(u)‖2H du is finite, we write g ∈ L2(Ω,H),

which also forms a Hilbert space. Discrete images can
be extended to continuous by convolution [3, § 2.3].
For example, an image can be considered as a function
g that maps points in the plane Ω = R2 to the inten-
sity of the image at that point. Next, we consider a
parametrized family of diffeomorphisms (differentiable
bijective transformations with differentiable inverse)
tα : Ω→ Ω, which is also differentiable in the param-
eter α. For example, tα may mean translating by an
offset (αx, αy), rotating by an angle α, and scaling by
an amount α. They can be respectively formalized by(
x
y

)
tα7−→
(
x+ αx
y + αy

)
or
(
x cosα− y sinα
x sinα− y cosα

)
or
(
x+ αx
y + αy

)
.

These transformations induce a family of operators
Tα : RΩ → RΩ as Tα(g) = g ◦ t−1

α , meaning the
intensity of Tα(g) at u ∈ Ω is g(t−1

α (u)). In practice
images are finite samples from Ω, but to present our
core ideas concisely, we stick with continuous function
g and extension to discretization is straightforward.
Clearly, f 7→ f(g)− f(Tα(g)) is linear and bounded.

Differentiation functional. Another common
prior postulates that the discriminant function f
changes mildly around sampled points, i.e., the norm
of the gradient is small at these locations. Assuming
differentiability as appropriate, we are interested in
linear functionals Lxi,d(f) := ∂f(x)

∂xd
|x=xi , where xd is

the d-th component of the vector x. By [33, Corollary
4.36], this Lxi,d must be bounded, and so are the
higher order partial derivatives. In fact, ‖Lxi,d‖ = σ−1

for Gaussian kernel κσ. Similarly directional derivative

f 7→ 〈v,∇f(xi)〉 is also linear and bounded, where v
could be a k-nearest neighbor direction. Furthermore,
the following result from [15] empowers bounded linear
operators to model transformations via directional
derivatives in the parameters α,
Theorem 1. Let F be a normed vector space of func-
tions that map from the range of Tα(g) to R. Suppose
the linear functional that maps f ∈ F to ∂f(u)

∂uj

∣∣
u=u0

is
bounded for any u0 and coordinate j. Then the deriva-
tive functional Lg,d: f 7→ ∂

∂αd

∣∣
α=0f(Tα(g)) is linear

and must be bounded on F .

By chain rule, Tα=0(g) = g implies ∂
∂αd

∣∣
α=0f(Tα(g))

=
〈
∇f(g),∇αd

∣∣
α=0Tα(g)

〉
. The second argument rep-

resents the perturbation of the image under small
changes of αd. In practice, we can approximate it
by the finite difference of the image under, say, ro-
tation by one degree or shifting by one pixel. More
generally we can consider the directional derivative
operator f 7→〈∇f(g),v〉 for v∈ L2(Ω,H), and we will
use this operator in the sequel as a running example.

Local averaging. Another linear operator that ef-
fectively characterizes the smoothness of the image
around a point y is by convolution with a distribu-
tion ρ on the space of X , centered and peaked at zero:
f 7→

∫
X f(τ)ρ(y − τ) dτ − f(y). [15] also showed that

it is bounded provided supx∈H k(x, x) <∞.

3 Data-Dependent Kernel Warping
for Modeling Invariance

Although the ERM framework in (1) is convenient to
optimize, it does not provide novel representations of
data that account for the invariances. To address this
problem, our key observation is that when the `2 in
(1) is the squared loss, we can construct a new RKHS
whose norm deforms ‖f‖H in a way that favors the
invariances Li(f). Indeed, we “define” a new RKHSH◦,
such that ‖f‖2H◦ = ‖f‖2H+

∑m
i=1 〈zi, f〉

2
H (letting ν = 1,

and in practice, ν can be tuned as a hyperparameter).
To show this induces a well-defined RKHS, we have
the following theorem whose proof is in Appendix ??.
Theorem 2. Let H◦ consist of the same set of func-
tions in H. Define the new inner product as

〈f, g〉H◦ = 〈f, g〉H +
∑

i
〈f, zi〉H 〈g, zi〉H . (2)

Let Kz = (〈zi, zj〉H)mi,j=1 ∈ Rm×m. Then H◦ is an
RKHS with the kernel function

k◦(x1, x2) = k(x1, x2)− z(x1)>(I +Kz)−1z(x2),
where z(x) = (z1(x), . . . , zm(x))>. (3)

In essence, the new kernel k◦ “warps” the original ker-
nel k by accounting for the invariances zi. The new
RKHS makes no change to the space of functions, but
instead warps the norm to adjust the preference over
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these functions. In contrast to data-independent priors
that enforce invariance over the entire sample space,
our approach here is data dependent, enforcing invari-
ances only around the observed training examples. The
resulting kernel is similar to the cloud point kernel [37],
but the latter is restricted to graph Laplacian only,
while our framework flexibly models a much broader
range of linear operators (and a completely new proof).
Due to the fundamentality of our kernel warping and its
essential role in the subsequent enhancement of convo-
lutional kernel networks, we highlight several remarks.

Firstly, given a dataset {xi}ni=1 with feature represen-
tation ϕ(xi) := k(xi, ·), Theorem 2 guarantees that the
Gram matrix K◦ := (k◦(xi, xj))i,j can be written as
follows by using (3), and consequentially K◦ is PSD:

K◦ = Φ>Φ− Φ>Z(I + Z>Z)−1Z>Φ
= Φ>(I + ZZ>)−1Φ, (4)

where Φ = (ϕ(x1), . . . , ϕ(xn)), Z = (z1, . . . , zm)∈ Hm.
The second equality in (4) imitates the Woodbury ma-
trix identity [38] and immediately establishes that K◦
is PSD. But it is only meant to illustrate intuitions and
is not rigorous, because the columns of Z are functions
in H instead of vectors.

Secondly, the new norm ‖f‖2H◦ = ‖f‖2H +
∑
i 〈zi, f〉

2
H

can be justified by the fact that the empirical
Rademacher complexity of H◦ is O(

√
trK◦), and the

generalization error depends on this complexity lin-
early [39]. By warping the kernel, the trace of K◦
is lower than that of K by

∑
i z(xi)(I + Kz)−1z(xi),

hence reducing the generalization error. Although the
unit ball of ‖·‖H◦ is smaller than that of ‖·‖H (higher
bias), the prior that the classifier f should render small
values of |〈zi, f〉H| means using the former ball does
not effectively miss those hypotheses of interest.

Thirdly, the objective (1) can be rewritten as the stan-
dard ERM in H◦ without explicit invariance regular-
izers: minf∈H◦

‖f‖2
H◦

2 +λ
∑l
j=1 `1(〈f, k◦(xj , ·)〉H◦ , yj).

This means xj finds a new representation ϕ◦(xj) :=
k◦(xj , ·) in H◦. The mapping of x 7→ ϕ◦(x) can be
decomposed into two steps: 1) x 7→ ϕ(x) as induced
by the kernel k; and 2) a mapping W : H → H◦ as∑
i αiϕ(xi) 7→

∑
i αiϕ

◦(xi). Importantly, W is well
defined, i.e., independent of the decomposition.
Theorem 3. Define W : H → H◦ by

∑
i αiϕ(xi) 7→∑

i αiϕ
◦(xi), with standard completion in respective

spaces. Then for any {αi, xi} and {βj , yj},
∑
i αiϕ(xi)

=
∑
j βjϕ(yj) implies

∑
i αiϕ

◦(xi) =
∑
j βjϕ

◦(yj).

The proof is relegated to Appendix ??. In general,
W is not an identity mapping, but it is clearly linear.
We call W a “warping operator” and denote it as WZ

whenever the set Z needs to be emphasized. We will

keep W abstract and in computation only its finite
approximation will be used (§3.1). But clearly W is
not expansive, because by (3), ‖ϕ◦(x)‖2H◦ = k◦(x, x) =
k(x, x)− z(x)>(I +Kz)−1z(x) ≤ ‖ϕ(x)‖2H. See a more
detailed proof in Appendix ?? (Property ??). W is not
contractive either as ‖ϕ◦(x)‖H◦=‖ϕ(x)‖H if zi(x)=0.

3.1 Finite-dimensional approximation of
invariance and reproducing representers

Approximating nonlinear kernels by finite dimensional
features (a.k.a. kernel linearization) has been popularly
used to scale up kernel machines [25, 26]. It also under-
pins multi-layer kernel feature transformation [27]. We
next show that our new invariance representers admit
natural finite approximations (FAs) based on Fourier
decomposition and RKHS subspace projection.

FA with Fourier approximation. Consider a shift-
invariant kernel k(x, y) := κ(x−y) where x, y ∈ Rd [26].
k is a positive definite kernel iff the Fourier transform of
κ has all its coefficients being nonnegative. Bochner’s
theorem [40] guarantees that the Fourier transform q(ω)
of κ is a proper probability distribution, and moreover

k(x, y)=
∫
q(ω)ejω

>(x−y) dω = E
ω∼q

[ξω(x)>ξω(y)], (5)

where ξω(x) := (cos(ω>x), sin(ω>x))>.
Given samples {ωi}pi=1 drawn i.i.d. from q, we can
approximate k(x, y) by 〈ϕ̃(x), ϕ̃(y)〉, where

ϕ̃(x) = {p−1/2ξωi(x)}pi=1

= {p−1/2[cos(ω>i x), sin(ω>i x)]}pi=1 ∈ R
2p. (6)

We will call ξωi(x) a channel corresponding to ωi.

Differentiation invariance. The FA of invariance
representers zi introduced in §2.1 can be similarly de-
rived. Ideally, its inner product with the FA of k(x, ·)
should approximate zi(x). For example, consider the
zy,v for f 7→ 〈v,∇f(y)〉 with given v and y. Then
zy,v(x) = v> ∂

∂yk(x, y) = −v>∇κ(x−y). As the Fourier
transform of ∇κ is jωq(ω), we get

zy,v(x) = −
∫
q(ω)j · ω>v · ejω

>(x−y) dω

= E
ω∼q

[−ω>v · ξω(x)>ξω(y)] ≈ 〈z̃y,v, ϕ̃(x)〉

where z̃y,v := {p−1/2ω>i v · [− sin(ω>i y), cos(ω>i y)]}pi=1

∈ R2p, and ϕ̃(x) is as in (6). (7)

So we have derived an FA of zy,v by using the same set
of channels {ωi} as employed by ϕ̃(x).
Remark 1 (General recipe for FA of invariance). In
hindsight, the result for gradient invariance is no sur-
prising because given the FA of k in (5), it follows
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zy,v(x) =
〈
v,

∂

∂y
k(x, y)

〉
=
〈
v,

∂

∂y
E
w∼q

[ξω(x)>ξω(y)]
〉

= E
w∼q

[
ξω(x)> (∇ξω(y) · v)

]
, (8)

where ∇ξω(y) is the Jacobian matrix. Clearly
∂
∂y 〈v, ξω(y)〉 is exactly the z̃y,v we obtained above for
gradient invariance. This convenient derivation shows
that there is little difficulty in finding the FA of invari-
ance, given that we know how to approximate k(x, y).

FA with subspace projection. Another way to lin-
earize kernels, as adopted by [25, 28, 41], is to compute
feature representations by projecting to a finite sub-
space of the RKHS. We will refer to it as projection
FA. Assuming the projection bases are {ωi}pi=1 and let-
ting G := (ω1, ..., ωp), the projection FA of evaluation
representer for Gaussian kernel κσ can be written as

ϕ̃(x) = {ϕ̃ωi(x)} = κσ(G>G)−1/2κσ(G>x) ∈ Rp, (9)

where κσ is applied elementwise and X−1/2 is the in-
verse square-root matrix of X. By Remark 1, the
projection FA of gradient invariance is:

z̃y,v={v>∇ϕ̃ωi(y)}pi=1 = 1
σ2κ(G>G)

−1
2 {κ(ω>i y)ω>i v}

p
i=1.

Local averaging. The local averaging operator zy
is zy(x) =

∫
Rd
κ(x−u)ρ(y−u) du−κ(x−y). To derive

its projection FA, recall that the Fourier transform
of the convolution of two functions is the product of
their Fourier transforms. Letting q(ω) and ρ̂(ω) be the
Fourier transforms of κσ and ρ resp, we derive:

zy(x) =
∫
Rd
q(ω)(ρ̂(ω)− 1)ejω

>(x−y) dω

= E
ω∼q

[(ρ̂(ω)− 1)ξω(x)>ξω(y)] ≈ 〈z̃y, ϕ̃(x)〉 ,

where z̃y := {(ρ̂(ω)−1)[cos(ω>i y), sin(ω>i y)]}pi=1.(10)

Again the Fourier FA uses the same ωi as in ϕ̃(x). We
can also derive it by substituting with (5):

zy(x) =
∫
Rd
k(x, u)ρ(y − u) du− k(x, y) (11)

= E
w∼q

[
ξω(x)>

(∫
Rd
ξω(u)ρ(y − u) du− ξω(y)

)]
.

Specializing k(x, y) into κσ(x − y), we easily extract
the approximation z̃y as in (10).

3.2 FA of the warping operator

Given the invariance representers zi ∈ H and Fourier
samples {ωi} for approximating the kernel k, we ul-
timately need to find an FA for a given function
f◦ = Wf ∈ H◦. The most straightforward way is
to take two steps. First, follow the approach in §3.1
to compute the FA of f and zi from H , denoted as
f̃ and z̃i respectively. Then, by (4), the FA of f◦

can be computed by f̃◦ = (I + Z̃Z̃>)−1/2f̃ , where
Z̃ = (z̃1, . . . , z̃n). To gain a more in-depth insight,
let the nonzero eigenvalues of Z̃Z̃> be σ1, σ2, . . ., with
eigenvectors u1, u2, . . .. Let {vj} be an orthonormal
basis of the null space of Z̃Z̃>. Then it follows that

f̃◦ =
(∑

i
(1 + σ2

i )uiu>i +
∑

j
vjv
>
j

)−1/2
f̃

=
(∑

i
(1 + σ2

i )−1/2uiu
>
i +

∑
j
vjv
>
j

)
f̃

= f̃ −
∑

i
(1− (1 + σ2

i )−1/2)(u>i f̃)ui, (12)

which can be easily approximated by using the top t
singular values. Given these ui after SVD on Z̃, we
can compute ϕ̃◦(xi) for all i efficiently. Furthermore,
{ωi} can be learned in a supervised fashion jointly with
the prediction model, and this end-to-end approach is
detailed in Appendix ??.

4 Warping Kernels for Convolutional
Kernel Networks

In [27, 28], the convolutional kernel network (CKN)
was proposed. Here we recap the description given by
[29], and demonstrate how kernel warping can be seam-
lessly incorporated in CKN to achieve data-dependent
transformation invariances.

Let the domain of the signal be Ω ⊆ Rd, which can
be a two-dimensional grid [0, 1]2 with d = 2. The
signal x0 lies in L2(Ω,H0), where typically H0 = R3

and x0(u) is the RGB value at location u ∈ Ω. Then
we transform x0 through multiple layers of feature
maps into RKHSs; H1, H2, etc, resulting in image
representations x1 ∈ L2(Ω,H1), x2 ∈ L2(Ω,H2), etc.
Patch extraction operator Given a layer xk−1, a
patch Pk for layer k is defined as a mapping from a
compact patch shape Sk ⊆ Ω to the feature representa-
tion Hk−1, i.e., Pk := L2(Sk,Hk−1). Naturally, given
an image and a location u ∈ Ω, we define a patch
around u as

Pkxk−1(u) = (v 7→ xk−1(u+ v))v∈Sk ∈ Pk. (13)
Note Pk is an operator from L2(Ω,Hk−1) to L2(Ω,Pk),
acting on xk−1 rather than xk−1(u).
Kernel mapping operator Given a patch in Pk, we
next transform its feature representation to an RKHS
Hk induced by a kernelKk with feature map ϕk : Pk →
Hk. Formally, we introduce a point-wise operator Mk

such that for all u ∈ Ω:
MkPkxk−1(u) = ϕk(Pkxk−1(u)) ∈ Hk. (14)

Pooling operator Finally, the next layer xk is con-
structed by applying a pooling operation to enforce
local shift-invariance. A linear convolution operator Ak
is defined based on a Gaussian filter of scale σk with
hσk(u) :=σ−dk h( uσk ) where h(u)=(2π)− d2 exp(−‖u‖2).
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For all u ∈ Ω, we define

xk(u) = AkMkPkxk−1(u) (then use Bochner integral)

=
∫
Rd
hσk(u− v)MkPkxk−1(v) dv ∈ Hk. (15)

Chaining the operators together over n layers, we get
xn=Φn(x0)=AnMnPnAn−1Mn−1Pn−1 . . . A1M1P1x0.

Output layer The final prediction layer is based
on xn and it can in turn employ a linear kernel or a
Gaussian kernel κσ(xn − x′n), amongst others. With
this kernel, any loss function can be utilized that is
suitable for the application problem, e.g. hinge loss.
Note here the norm of xn is based on the image-level
inner product over L2(Ω,Hn), defined as (similarly for
xk of other layers):
〈xn, x′n〉 := 〈xn, x′n〉Ω :=

∫
u∈Ω
〈xn(u), x′n(u)〉Hndu.(16)

4.1 Incorporating Invariance to CKNs

Although CKN enjoys intrinsic invariance to trans-
lations [29], it would be desirable to instill other in-
variances. Achieving this with parametric forms of
feed-forward layers (i.e. infinitely strong prior) is diffi-
cult in general, and so we naturally resort to the data-
dependent approach based on kernel warping. However,
kernels in CKN are defined over patches, while invari-
ances apply to the entire image. It does not make sense
to, say, rotate each patch individually. Despite this
obstacle, our key contribution in this paper is to show
that patch-wise kernels can be used to efficiently model
invariance at image level.

Our key insight is that images xk lie in the domain
L2(Ω,Hk), which, under the inner product in (16), triv-
ially forms an RKHS on L2(Ω,Hk−1) (the domain of
xk−1). Its kernel function just tiles the kernel of Hk
over all u ∈ Ω, and we denote it as kΩ. Therefore we can
apply the warping operator on (L2(Ω,Hk), kΩ) to incor-
porate invariances at the level of images. Specifically,
suppose at layer k we would like to introduce invari-
ances represented by zki ∈ (L2(Ω,Hk), kΩ) (the same
domain as MkPkxk−1). Letting Zk := {zk1 , . . . , zkm},
we can warp MkPkxk−1 by WZk : (L2(Ω,Hk), kΩ) →
(L2(Ω,Hk), k◦Ω), where k◦Ω is the kernel of the warped
RKHS. Recall warping does not change the set of func-
tions in the RKHS (Theorem 2); it only changes the
inner product and kernel function. We will keep k◦Ω
implicit in this paper, and write Wk as a shorthand for
WZk . This leads to

xk := AkWkyk ∈ L2(Ω,Hk),
where yk := MkPkxk−1 ∈ L2(Ω,Hk). (17)

Here we suppressed kΩ and k◦Ω in the notation as the
context is clear. Different layers can naturally employ
different numbers of invariances, but to lighten the

notation we tie them to m. It would be interesting if
AkWkMk could be equivalently written as AkM̄k with
some new kernel mapping operator M̄k that acts on
patches. Unfortunately, this is infeasible because the
warping operator Wk is global, coupling all the patches.
Choice of invariances Zk. The most straightfor-
ward way of choosing Zk is to propagate all the raw
training examples up to layer k, and then consider
the union of transformation invariances based on these
xk−1 (e.g., directional derivative, rotation, etc). This
leads to a large number of invariances, posing signifi-
cant challenges in computation. A simplified approach
is that for each training example, Zk only encompasses
the transformation invariances based on the value of
xk−1 for that particular example. This leads to a much
smaller set of Zk for each example, while, overall, we
still exhaustively cover all the invariances on all training
examples. We will refer to it as sequential invariance.

4.2 FA of kernel invariances and warping
Finally, both Wk (on images) and Mk (on patches)
require finite approximations to keep computations
tractable, and as we discussed in §3, this can be
achieved for Mk by using the Fourier bases Bk :=
{ωk1 , ωk2 , . . .} at layer k. A similar technique for Wk

will be discussed shortly. The output layer also has
a “finite” weight O, leading to a loss `(〈O, x̃n〉) using
Euclidean inner product.

Suppose the FA of Zk is available as Z̃k := (z̃k1 , . . . , z̃km),
then the FA of xk as the result of warping the FA of yk
is x̃k = (I + Z̃kZ̃

>
k )−1/2ỹk by (12). This multiplication

can be performed efficiently if Z̃k has a small number
of columns, e.g., when sequential invariance is used.

The key challenge, however, is to construct Z̃k, con-
sidering that we have kept k◦Ω implicit. What comes
to our rescue is the technique of direct transformation
of the finite approximation of reproducing elements,
as discussed in Remark 1 and exemplified in (8) and
(11). Recall that Bk is the set of Fourier samples (chan-
nels) ω used to construct the finite feature mappings
ξω for the patch-level kernel mapping ϕk; see (5), (8),
and (11). For each ω, denote as χω(x̃k−1) the channel
of ỹk corresponding to ω, which assembles this chan-
nel at all patches, rendering its value at u ∈ Ω as
χω(x̃k−1)(u) := ξω(Pkx̃k−1(u)). So the FA ỹk simply
collects all channels by ỹk = χBk(x̃k−1) := {χω(x̃k−1) :
ω ∈ Bk} ∈ L2(Ω,R|Bk|), paving the way for deriving
the FA of invariances.

For example, when the invariance models the gradient
at x̃′k−1 in the direction of v, the corresponding FA
z̃k is simply {∇χω(x̃k−1) · v : ω ∈ Bk} ∈ L2(Ω,R|Bk|).
For rotation, v represents the change of x̃′k−1 when it is
rotated by one degree at layer k− 1. Other invariances
can be derived similarly.
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5 Stability and Connection with CNN
An important property enjoyed by CKN is its stability
under diffeomorphisms of the layer-wise kernel repre-
sentation [18, 29]. It is natural to ask whether such
stability is retained when kernel warping is incorporated
to introduce data-dependent transformation invariance.
It turns out that the answer is affirmative under a new
notion of spatial smoothness for the warping operators.

Consider a C1-diffeomorphism τ : Ω → Ω,
and define the operator Lτ as Lτx(u) = x(u −
τ(u)). A representation Ψ is called stable under
τ if supx 6=0 ‖Ψ(Lrx)−Ψ(x)‖ / ‖x‖ ≤ C1 ‖∇τ‖∞ +
C2 ‖τ‖∞ for some constants C1 and C2 [18]. Here
∇τ is the Jacobian, ‖∇τ‖∞ = supu∈Ω ‖∇τ(u)‖ (oper-
ator norm), and ‖τ‖∞ := supu∈Ω ‖τ(u)‖ (Euclidean
norm). Our first lemma breaks down the overall defor-
mation of n layers into individual layers, and it extends
Proposition 4 of [29] by adopting Wk.
Lemma 1. Let xn = Ψn(x) :=
AnWnMnPnAn−1Wn−1Mn−1Pn−1 . . . A1W1M1P1A0x,
where Wn is identity and A0 is arbitrarily close to
identity (as in [29]). Denote as [A,B] := AB − BA
the commutator of linear operators A and B. Then for
any x ∈ L2(Ω,H0) and x 6= 0,
‖x‖−1‖Ψn(Lτx)−Ψn(x)‖ ≤ ‖[An, Lτ ]‖+ ‖LτAn−An‖

+
n∑
k=1

(‖[PkAk−1, Lτ ]‖+ ‖[Wk−1, Lτ ]‖) .

The proof is given in Appendix ??. Compared with
Proposition 4 of [29] where no warping is applied, we
now have a new term ‖[Wk, Lτ ]‖ to bound, while the
first three terms on the right-hand side have already
been bounded by [29]. For general Wk, it is not nec-
essarily small even when τ and ∆τ are small, so we
next introduce a new notion of smoothness in order to
retain stability.
Spatial smoothness of warping. Since Wk is a
linear mapping, we can think of it as a kernel for
the operator such that (Wky)(v) =

∫
ΩWk(v, u)y(u) du

for all u, v ∈ Ω. Then our new spatial smoothness
requirement for Wk is that Wk(v, u) is block-wise Lw-
Lipschitz continuous. That is, for all v, v′, u, u′ ∈ Ω:

‖Wk(v, u′)−Wk(v, u)‖ ≤ Lw ‖u′ − u‖ ,
‖Wk(v, u)−Wk(v′, u)‖ ≤ Lw ‖v′ − v‖ ,

where the norms are appropriately chosen in respective
spaces. Essentially this means nearby locations have
similar weights of contribution to nearby pixels in the
warped image. As W = (I+ZZ>)−1/2 by (4), it is not
hard to see that such smoothness holds for directional
gradient and local average invariances, provided that
their defining images are spatially Lipschitz continuous.

Our key novelty lies in the following bound on
‖[Wk, Lτ ]‖, and its proof is available in Appendix ??.

Theorem 4. Suppose the warping operator W is spa-
tially Lipschitz continuous with constant Lw, and the
domain Ω is bounded. Then there exist constants C1
and C2 depending only on Ω, such that

‖[W,Lτ ]‖ ≤ C1 ‖∇τ‖∞ + C2Lw ‖τ‖∞ . (18)
Combining Lemma 1, Theorem 4, and Lemma 5 and 6
of [29], we immediately get the final stability:
Theorem 5. Suppose ‖∇τ‖ ≤ 1/2, Ω is bounded,
and the warping operators Wk are all spatially Lip-
schitz continuous with constant Lw. Then there exist
constants C1, C2, and C3 depending only on Ω, and
C4 = 2d ‖∇h‖1, such that
‖Ψn(Lτx)−Ψn(x)‖ ≤ ((nC1 + (n+ 1)C3) ‖∇τ‖∞

+(nC2Lw + C4/σn) ‖τ‖∞) ‖x‖ .
This stability bound grows in both the depth n and
the spatial steepness of the warping operator, which
is consistent with our intuition. Compared with [29],
we here additionally make a mild requirement that Ω
is bounded. We also remark that some invariances
might make ‖[W,Lτ ]‖ = 0, e.g., when the representers
undergo the same transformation as the input. The
special cases are left for future work.

5.1 Connection with CNNs
As demonstrated by [29], CKNs contain a set of con-
volutional neural networks (CNNs) with smooth and
homogeneous activations. We can show that such a
relationship is retained when kernel warping is intro-
duced, and the new RKHS norm of the overall function
allows CNNs to favor invariance-respecting configura-
tions. We defer the details to Appendix ?? for space.

6 Experimental Results

We now present experiments to confirm that the warp-
ing operator WZ enables one-hidden-layer networks
and CKNs to learn invariant features.

One-hidden-layer network. Here we test our
method on one-hidden-layer networks as described in
§3, using both Fourier FA and projection FA with
Gaussian kernel. In Fourier FA, we optimized {ωi}pi=1
in an unsupervised fashion. Given randomly sampled
pairs {xi, yi}ni=1 and the features defined in (5), we
optimized the Fourier bases ωi and the weights ηl
by minimizing

∑n
i=1R

2
i where Ri = e−

1
σ2 ‖xi−yi‖

2
−∑p

l=1 ηl(cos(ω>l xi) cos(ω>l yi)) + sin(ω>l xi) sin(ω>l xi)).

In projection FA, the prototypes were learned by K-
means as in [28]. To construct the warping operator,
we followed [15] and used four directional derivatives
as invariances that correspond to rotation, scaling, and
translation on x or y. FourierW and Fourier stand
for Fourier FA with and without warping, respectively.
Same for Projection and ProjectionW. 3000 feature
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Table 1: Test error for one-hidden-layer network and baselines.

Dataset 1-NN SVMrbf VirSVM Fourier FourierW Projection ProjectionW
USPS 6.24±1.40 4.92±1.13 4.48±1.26 5.18±1.38 4.52±1.52 5.12±0.98 4.56±1.22
MNIST 5.02±1.21 3.26±0.06 2.78±0.07 3.22±0.06 2.76±0.18 3.16±0.09 2.45±0.10
EmnisLetter 22.02±5.05 14.76±1.33 13.88±1.04 15.00±2.16 14.02±1.98 14.56±2.52 11.88±2.10
Handwritten 9.82±1.06 6.19±0.74 5.46±0.76 6.30±0.69 5.82±0.66 6.13±0.82 5.38±0.79
FashionMnist 17.56±1.65 12.33±0.42 12.06±0.46 13.42±0.57 12.55±0.32 13.02±0.59 12.23±0.48
SVHN 37.18±3.73 32.41±1.42 29.54±1.78 31.58±1.06 30.96±1.21 31.03±2.00 29.69±1.33

Table 2: Test error rate for CKN and CNN

Method USPS MNIST EmnistLetter
100 500 1k 1k 5k 10k 1k 5k 10k

CNN 18.97±1.90 6.38±0.48 4.64±0.32 4.65±0.43 2.31±0.21 1.72±0.15 24.03±0.97 13.01±0.43 10.98±0.36

CKN 13.88±1.55 3.37±0.17 2.32±0.13 3.68±0.27 1.96±0.10 1.42±0.09 20.08±0.68 11.98±0.31 9.62±0.17

CKNW 13.04±1.47 3.05±0.17 1.90±0.14 3.09±0.19 1.67±0.08 1.34±0.05 17.95±0.61 11.01±0.36 9.21±0.13

Handwritten FashionMnist SVHN
1k 5k 10k 1k 5k 10k 1k 5k 10k

CNN 11.23±0.52 4.55±0.14 3.34±0.23 19.34±0.67 14.13±0.36 12.24±0.45 37.18±1.56 23.66±0.48 19.02±0.55

CKN 8.87±0.54 3.76±0.13 2.96±0.20 15.72±0.43 11.42±0.19 10.16±0.23 36.98±0.99 23.04±0.64 19.27±0.45

CKNW 7.55±0.51 3.31±0.17 2.32±0.21 14.63±0.41 11.15±0.17 10.01±0.15 35.26±0.69 22.43±0.49 18.84±0.43

bases were used in Fourier FA and 5000 protoptypes
were used in projection FA.

For baseline methods, 1-NN is a one-hidden-layer neu-
ral network with 500 hidden neurons. SVMrbf is a
Gaussian kernel SVM without any finite approxima-
tion. Virtual sample SVM (VirSVM) was trained with
additional instances generated by applying four differ-
ent transformations to all training examples: 2-pixel
shifts to left and up, rotation by 10 degree, and scaling
by 0.1 unit. All settings were evaluated 10 times for
randomly sampled training data, and the final output
classifier was trained using LIBSVM [42].

We experimented on six datasets: USPS [43], MNIST
[44], Handwritten, EmnistLetter [45], FashionMnist
[46] and SVHN (greyscaled) [47], which contain 10, 10,
26, 26, 10, and 10 classes respectively. Since USPS is a
smaller dataset, we used 1k examples for training and
10k for testing. For all the other datasets, we randomly
drew 10k samples for training, and 5k additional unla-
beled samples for constructing the invariance matrix Z̃
in FourierW and ProjectionW. Finally, the test error
was evaluated on the remaining images in each dataset.

As shown in Table 1, applying the warping operator
generally leads to lower error than without warping.
ProjectionW and VirSVM outperform other methods
on most datasets. However, by involving additional
instances, VirSVM requires larger storage and longer
training time.
Convolution Kernel Network. We next present
experiments that illustrate the impact of warping in
CKN (§4). Here the kernel mapping operator Mk

maps all patches centered at u ∈ Ω to a feature in
the corresponding RKHS Hk, and these features were
approximated by projection FA.

In Table 2, The baseline CNN model has 2 convolu-
tional layers, each one is constructed on 5× 5 patches,
followed by a 2 × 2 average pooling. The first and
second convolutional layers contains 16 and 32 filters,
respectively. CKN stands for a one-layer CKN with
patch size 5× 5 and 300 filters, followed by a pooling
layer with stride 2. CKNW has the same setting as
CKN, but with warping applied. The warping opera-
tor here used the same four transformations as in the
above one-hidden-layer network. The SVD in (12) was
approximated with the top 100 singular vectors. We
compared CKNW with CKN on the same six datasets
as in Table 1. To show the effect of applying warping
on different sizes of training data, we randomly selected
100, 500, 1k training examples from the USPS dataset,
and 1k, 5k, 10k training examples for other datasets.
The performance was evaluated on all the rest images in
each dataset, and all settings were evaluated 10 times.
It is clear that CKN with warping always delivers lower
error than vanilla CKN, and the improvement is more
significant when the training set is smaller, i.e., when
invariance is more informative.

Conclusion. In this paper we proposed kernel warp-
ing to induce feature representations that respect invari-
ances that reach beyond transformation. The frame-
work is efficient and flexible when applied to CKN. For
future work, we will further study the end-to-end su-
pervised training for the latter setting, and use sparse
greedy approximation to extend to global invariance.
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