Representation Learning on Graphs: A Reinforcement Learning
Application

Sephora Madjiheurem
University College London, UK
sephora.madjiheurem.17@ucl.ac.uk

Abstract

In this work, we study value function approx-
imation in reinforcement learning (RL) prob-
lems with high dimensional state or action
spaces via a generalized version of representa-
tion policy iteration (RPI). We consider the
limitations of proto-value functions (PVFs)
at accurately approximating the value func-
tion in low dimensions and we highlight the
importance of features learning for an im-
proved low-dimensional value function ap-
proximation. Then, we adopt different rep-
resentation learning algorithms on graphs to
learn the basis functions that best represent
the value function. We empirically show
that node2vec, an algorithm for scalable fea-
ture learning in networks, and Variational
Graph Auto-Encoder constantly outperform
the commonly used smooth proto-value func-
tions in low-dimensional feature space.

1 INTRODUCTION

In reinforcement learning (RL), an agent, or decision
maker, takes sequential actions and observes the con-
sequent rewards and states, which are unknown a pri-
ori. These sequent observations improve the agent’s
knowledge of the environment with the final goal of
learning the optimal policy that maximizes the long
term reward. The learning control problem is usu-
ally formulated as Markov decision process (MDP),
where each state has an associated value function,
which estimates the expected long term reward un-
der some policy (usually the optimal one). Classi-
cal MDP solutions represent the value function by

Proceedings of the 22°¢ International Conference on Ar-
tificial Intelligence and Statistics (AISTATS) 2019, Naha,
Okinawa, Japan. PMLR: Volume 89. Copyright 2019 by
the author(s).

Laura Toni
University College London, UK
l.toni@ucl.ac.uk

a lookup table, with one entry for each state. How-
ever, this does not scale with the state (and implicity
also action) space dimension, leading to slow learning
processes in high-dimensional reinforcement learning
problems. Approximated reinforcement learning ad-
dresses this problem by learning a function to prop-
erly approximate the true value function. In the lit-
erature, many types of functions have been studied
[Kaelbling et al., 1996, Sutton and Barto, 1998].

In this work, we study linear value function approxi-
mation, where the value function is represented as a
weighted linear sum of a set of features (called ba-
sis function). Under this framework, one of the main
challenges is to identify the right set of basis func-
tions. Typical linear approximation architectures such
as polynomial basis functions (where each basis func-
tion is a polynomial term) and radial basis functions
(where each basis function is a Gaussian with fixed
mean and variance) have been studied in the case of
reinforcement learning [Lagoudakis, 2003]. These ar-
chitectures make the assumption that the underlying
state space has FEuclidiean geometry. However, in re-
alistic scenarios, the MDP’s state space is likely to ex-
hibit irregularities, as in the example of Figure 1. In
Figure 1(b), neighboring states can have values that
are far apart (such as states on opposite sides of a
wall). In such cases, these traditional parametric func-
tions may not be able to accurately approximate value
functions.

Consequently, other basis functions have been studied
to address this issue. Example of such methods in-
clude Fourier basis [Konidaris et al., 2011], diffusion
wavelets, [Mahadevan and Maggioni, 2006], Krylov
basis [Petrik et al., 2010] and Bellman Error Basis
Function [Parr et al., 2007, Parr et al., 2008]. In par-
ticular, work by [Mahadevan and Maggioni, 2007] in-
troduces the representation policy iteration (RPI), a
spectral graph framework for solving Markov decision
processes by jointly learning representations and opti-
mal policies in irregular state spaces. In their work,
the authors first note that an MDP can be intuitively

Representation Learning on Graphs: A Reinforcement Learning Application

. 9o 9o o o

[S S T T Do T S S S 1

[o T S T T S T 2

0

(@

5

Figure 1: (a) Maze environment. The dark grey
squares are strict walls, while the light grey square are
difficult access rooms. The red square is the goal room.
(b) Optimal value function computed using value iter-
ation [Montague, 1999].

represented using a state-graph, in which the states are
the nodes and the transition probability is the similar-
ity matrix. Then, under the assumption that the value
function is usually modelled as a diffusion process over
the state-graph (and therefore it is a smooth func-
tion), they approximate the value function (smooth
signal on the graph) as a linear combination of the
first Laplacian eigenmaps on the state-graph. A small
set of these features, known as proto-value functions
(PVFs), reliably approximate the value function under
the smoothness prior. However, in this paper, we ar-
gue that the value function is not necessarily a smooth
function on the state-graph representing the MDP.
Hence, defining the basis functions under a smoothness
prior might be suboptimal. Therefore, there is a need
to automatically learn compact basis functions that
capture the geometry of the underlying state space.
Given the success of recent node embedding models
[Grover and Leskovec, 2016, Kipf and Welling, 2016b,
Ribeiro et al., 2017, Donnat et al., 2018], we propose
to investigate representation learning on graphs algo-
rithms to learn basis functions in the linear value func-
tion approximation.

The idea behind recent successful representation learn-
ing approaches is to learn a mapping that embeds the
nodes of a graph as low-dimensional vectors. They
aim to optimize the representations so that geomet-
ric relationships in the embedding space preserve the
structure of the original graph. [Hamilton et al., 2017]
surveys recent representation learning on graph meth-
ods. Therefore, in this work, we generalize the RPI al-
gorithm [Mahadevan and Maggioni, 2007] to allow dif-
ferent basis functions, and analyze the performance of
several representation learning methods for value func-
tion approximation.

The rest of this paper is structured as follows: in Sec-
tion 2 we introduce background material, providing

details on Markov decision processes, value function
approximation, and the representation learning algo-
rithm used in this work. The General Representation
Policy Iteration algorithm is described in Section 3. In
Section 4, we discuss experimental results and proceed
to summarize the main findings and give direction for
future work. We finally conclude in Section 5.

2 BACKGROUND

2.1 Markov decision process (MDP)

Markov decision processes are discrete time stochas-
tic control processes that provide a widely-used math-
ematical framework for modeling decision making
strategies under uncertainty. Specifically, at each time
step, the process is in some state s, and the agent can
choose any action a that is available in state s. As
a consequence of the action taken, the agent finds it-
self in a new state s’ and observes an instantaneous
reward 7. We define a discrete MDP by the tuple
M = (S,A,P,R), where S is a finite set of discrete
states, A a finite set of actions, P describes the tran-
sition model — with P(s,a,s’) giving the probability
of moving from state s to s’ given action a — and R
describes the reward function — with R(s,a) giving
the immediate reward from taking action a in sate s.
Given a policy @ : S — A, a value function V7™ is
a mapping S +— R that describes the expected long-
term discounted sum of rewards observed by the agent
in any given state s when following policy 7. Solving
an MDP requires to find a policy that defines the op-
timal value function V*, which satisfies the following
constraints:

V*(s) = max (R(s,a) + Z P(s,a, sl)V*(s’)).
“ s’esS
This recursive equation is known as the standard form
of Bellman’s equation. The optimal policy is a unique
solution to the Bellman’s equation and can be found
by dynamic programming, iteratively evaluating the
value functions for all states.

2.2 Value Function Approximation

In large state spaces, computing exact value func-
tions can be computationally intractable. A possi-
ble solution is to estimate the value function with
function approximation (value function approximation
method) [Bertsekas and Tsitsiklis, 1996]. Commonly,
the value function is approximated as a weighted sum
of basis functions [Montague, 1999, Mahadevan, 2007,
Konidaris et al., 2011, Lagoudakis, 2003]:

d
$1,02,.. 0a: V(sl0) = DY 0idi(s) ~ V(s),
i=1

Sephora Madjiheurem, Laura Toni

where d is the dimension of the features space.

The basis functions ¢; can be hand-crafted
[Sutton and Barto, 1998] or automatically con-
structed [Mahadevan and Maggioni, 2007], and the
model parameters @ = [01,0q,...,04] are typically
learned via standard parameter estimation meth-
ods such as least-square policy iteration (LSPI)
[Lagoudakis, 2003]. However, how to properly design
the set of basis for a data-efficient function approx-
imation framework is still an open question. The
main question is how to find the set of basis ¢ that is
low-dimensional (to ensure a data-efficient learning)
and yet a meaningful representation of the MPD (to
reduce the suboptimality due to the approximation of
the value function).

The representation policy iteration algorithm (RPI)
was introduced in [Mahadevan and Maggioni, 2007] to
address this problem. It is a three steps algorithm con-
sisting of (1) a sample collection phase, (2) a represen-
tation learning phase and (3) a parameter estimation
phase. RPI is described in further details in Section 3.
In this work, we propose to generalize RPI to allow dif-
ferent representation learning methods. In particular,
we first observe that state space topologies of MDPs
can be intuitively modeled as (un)directed weighted
graphs, with the nodes being the states and the tran-
sition probability matrix being the similarity matrix.
When the transition probabilities are unknown, we
can construct a graph from collected samples by con-
necting temporally consecutive states with a unit cost
edge. Therefore, similarly to [Mahadevan, 2007], we
propose to construct the graph from collected samples
of an agent acting in the environment given by the
MDP. We then learn representations on the graph in-
duced by the MDP using node embedding methods.
Finally, we use the learned representations to linearly
approximate the value function. In the next section,
we describe the node embedding models that we ex-
ploit within this framework.

2.3 Representation Learning on Graph

We propose to use the following learned node embed-
ding models as basis functions for the value function
approximation.

Node2Vec Node2vec [Grover and Leskovec, 2016]
is an algorithmic framework for learning continuous
feature representations for nodes in networks. It is
inspired by the powerful language model Skip-gram
[Mikolov et al., 2013] which is based on the hypothesis
that words that appear in the same context share
semantic meaning. In networks, the same hypothesis
can be made for nodes, where the context of a node
is derived by considering the nodes that appear in the

same random walk on the graph. Therefore, node2vec
learns the node embeddings based on random walk
statistics. The key is to optimize the node embeddings
so that nodes have similar embeddings if they tend
to co-occur on short (biased) random walks over the
graph. Moreover, it allows for a flexible definition of
random walks by introducing parameters that allow to
interpolate between walks that are more breadth-first
search or depth-first search.

Specifically, for a graph G = (V,E, W) (where V is a
set of nodes, £ a set of edges and W the weight matrix)
and a set W of T biased random walks collected under
a specific sampling strategy on the graph G, node2vec
seeks to maximize the log-probability of observing the
network neighborhood of each node u € V conditioned
on its features representations, given by f (a matrix
of size |V'| x d parameters, where d is the dimension of
the feature space):

T
max D log Pr(No(ui)| f(us),

weW t=1

where N, (u;) describes the neighborhood of the ith
node in the walk w.

Struc2Vec By introducing a bias in the sampling
strategy, node2vec allows to learn representations that
do not only focus on optimizing node embeddings
so that nearby nodes in the graph have similar em-
beddings, but also consider representations that cap-
ture the structural roles of the nodes, independently
of their global location on the graph. The recent
node embedding approach, struc2vec, proposed by
[Ribeiro et al., 2017] addresses the problem of specif-
ically embedding nodes such that their structural
roles are preserved. The model generates a series of
weighted auxiliary graphs G (with & = 1,2,...) from
the original graph G, where the auxiliary graph Gy
captures structural similarities between nodes k-hop
neighborhoods. Formally, let Rj(u;) denote the or-
dered sequence of degrees of the nodes that are exactly
k-hops away from u;, the edge-weights, wy(u;,v;), in
the auxiliary graph G}, are recursively represented by
the structural distance between nodes u; and v; de-
fined as

wi (Ui, v;) = wr—1 (Ui, v;) + d(Ri(u;), Ri(uy)),

where wo(u;,v;) = 0 and d(Ry(u;), Ri(u;)) is the dis-
tance between the ordered degree sequences Ry(u;)
and Rp(u;) computed via dynamic time warping
[Ribeiro et al., 2017].

Once the weighted auxillary graphs Gy are computed,
struc2vec runs biased random walks over them and
proceeds as node2vec, optimising the log-probability

Representation Learning on Graphs: A Reinforcement Learning Application

of observing a network neighborhood based on these
random walks.

GraphWave The GraphWave algorithm as pro-
posed by [Donnat et al., 2018] takes a different ap-
proach to learning structural node embeddings. It
learns node representations based on the diffusion of
a spectral graph wavelet centered at each node. For
a graph G, L = D — A denotes the graph Lapla-
cian, where A is the adjacency matrix and D is a
diagonal matrix, whose entries are row sums of the
adjacency matrix. Let U denote the eigenvector de-
composition of the graph Laplacian £ = UAUT and
A = diag(A1, A2, ..., Ajy|) denote the eigenvalues of L.
Given a heat kernel g,(\) = e~** for a given scale s,
GraphWave uses U and gs to compute a vector 1,
representing diffusion patterns for node u as follows:

d’u = Udiag(gs()‘l)a gs()‘Q)v cee ags()‘)\Vl)UT(su

where §,, is the one-hot indicator vector for node wu.
Then, the characteristic function for each node’s coef-
ficients 1, is computed as

Finally, the structural node embedding f(u) for node u
is obtained by sampling the paramatric function ¢, (t)
at d evenly spaced points t1,...,t4:

f(u) = [Re(¢u(t2)7 Im(¢u(ti))]t1a e 7td-

Variational Graph Auto-Encoder An al-
ternative is to adopt Variational Graph Auto-
Encoder (VGAE) to learn graph features. The
Variational Graph Auto-Encoder proposed by
[Kipf and Welling, 2016b] is a latent variable model
for graph-structure data capable of learning inter-
pretable latent representations for undirected graphs.
Lets consider an undirected and unweighted graph
G=(V,&, A) with N = |V| nodes and feature matrix
X € RV*F with the ith row representing the feature
of node i. The VGAE inference model is given by

N
9(2|X,4) = [T (=X, 4),

i=1

with q(z;]X,A) = N(z|wi,diag(c?)), wheare pu is
the matrix of mean vectors and o is the variance
vector given respectively by u = GCN,(X,A) and
logc = GCN, (X, A). The parameters to the Graph
Convolutional Neural Networks (GCNs) are denoted
by 0;. The matrix Z € RV*P is the matrix of latent

variables whose rows are the vectors z;. The generative
model is given by

N N
p(A12) = [T T1 »(4ij1z:.2)
i=1j=1
with p(Aij = 1‘Zi72’j) = O'(ZZT
the sigmoid function.

z;), where o(-) denotes

The learning phase optimises the following loss func-
tion w.r.t to the variational parameters 6;:

L =Eqz1x,0)logp(A|2)] - KL[g(Z]X, A)||p(2)],

where KL[g(-)||p(-)] denotes the Kullback-Leibler di-
vergence between ¢(-) and p(-). An additional Gaus-
sian prior p(Z) = [, p(z:) = [[; N (20, I) is taken.

3 GENERAL REPRESENTATION
POLICY ITERATION

Within the context of approximated value function,
the representation policy iteration algorithm (RPI)
was introduced in [Mahadevan and Maggioni, 2007] to
learn the approximating function. RPI is a three
step algorithm consisting of (1) a sample collection
phase, to build a training dataset with quadruples
{(8i,ai, 8i41,7:)}; (2) a representation learning phase
that defines a set of basis functions; and (3) a pa-
rameter estimation phase, in which the coefficients of
the linear approximation are learned. A generalized
version of the RPI algorithm [Mahadevan, 2007] is de-
scribed in Algorithm 1.

In the original RPI, the representation learning phase
is predefined. Namely, an undirected graph G is built
from the available data set D, and the normalized
Laplacian is computed on graph G. The d-dimensional
basis functions ¢ = [¢1,...,¢4] are the d smoothest
eigenvectors of the graph Laplacian and are known as
proto-value functions (PVFs). The key is that given
a state-graph that perfectly represents the MDP, the
value function is modelled as a diffusion process over
the graph (and therefore it is a smooth function). Un-
der smoothness prior, the proto-value functions are a
good choice of basis functions as they reliably repre-
sent smooth value functions.

In this paper, we argue that PVFs are optimal basis
in ideal value function approximation problems, which
provide an a priori knowledge of the graph. In practice,
the graph is estimated from previous observations. Us-
ing the estimated graph as support to the value func-
tion does not necessarily preserve the smoothness as-
sumption. To support this argument, we consider the
environment depicted in Figure 1. To construct the es-
timated graph G, we first collect samples by running

Sephora Madjiheurem, Laura Toni

Algorithm 1 General Representation Policy Iteration

Input:

mo: sampling strategy,

N: number of random walks to sample,

T length of each walk,

d: dimension of the basis functions,

embed(): representation learning model,

e: convergence condition for LSPI.

Output: e-optimal policy 7

1. Sample Collection Phase

Collect a data set D of T successive samples
{(si, a4, 8i11,74), (8i41, Giv1, Siv2,Tig1), .-} by fol-
lowing sampling strategy my for maximum 7' steps
(terminating earlier if it results in an absorbing goal
state).

2. Representation Learning Phase

Build basis function matrix ¢ = embed(D, d).

3. Control Learning Phase

Using a parameter estimation algorithm such as
LSPI or Q-learning, find an e-optimal policy 7 that
maximizes the action value function QT = @™
within the linear span of the basis ¢.

100 independent episodes starting at a random initial
state and taking successive random actions until the
goal state is reached (or after a timeout of Ny = 100
steps). We then connect temporally consecutive states
with a unit cost edge. The ideal graph G is the graph
with edges representing actual transition probabilities
(i.e. edges between accessible states have weight 1,
edges between an accessible state and a wall state have
weight 0, and edges between an accessible or difficult
access state and a difficult access state have weight
0.2). To measure the global smoothness of the value
function on a graph, we use the following function:

Z wij(v; —vj)* = vT Lo,

i,jEE

Where L is the graph Laplacian. In other words, if
values v; and v; from a smooth function reside on two
well connected nodes (i.e. w;; is large), they are ex-
pected to have a small distance (v; —v;)?, hence vT Lv
is small overall.

The actual smoothness for G and G is provided in Ta-
ble 1. These results show a reduction of the smooth-
ness when going from the ideal weighted graph to the
estimated and unweighted graph (usually considered
in realistic settings, when the transition probability is
not known a priori).

As a consequence, the d smoothest proto-value func-
tions of the estimated graph G do not allow a reli-
able reconstruction of the true value function. This

vT Lo
Estimated graph | 14831.72
Weighted graph 5705.65

Table 1: Analysis of the smoothness of the value func-
tion on different graphs.

Mean Squared Error
@
8
S

0 1 ‘0 2‘0 3‘0 4‘0 5‘0 Gb 7‘0 8‘0 9‘0 100
Basis function dimension

Figure 2: MSE between the approximated value func-
tion and the true value function when using proto-
value functions generated from two different graphs as
basis functions. On the x axis we make the dimen-
sion of the basis function (the number of proto-value
functions) vary. (Best seen in color.)

is due to the limited smoothness of the value function
on G. This phenomenon is verified in Figure 2. It
shows the mean squared error (MSE) of the approxi-
mate value function for the environment of Figure 1.
The MSE is computed in a least-square way using
the true value function computed via value iteration
[Montague, 1999].

To overcome this limitation, we propose to use the
node embedding methods described in Section 2.3 to
automatically learn the basis functions from the geom-
etry of the underlying state space to further improve
the performance. In the following, we describe how
to apply these features learning methodologies within

reinforcement learning strategies !.

4 EXPERIMENTS

4.1 Set up

We consider the two-room environment (Figure 3(a))
used in [Mahadevan and Maggioni, 2007]. It consists
of 100 states in total, divided into 57 accessible states
and 43 inaccessible states representing walls. There is
one goal state, marked in red and the agent is rewarded
by +100 for reaching the goal state.

We also consider the obstacles-room environment de-

picted in Figure 3(b). In this environment, there are

1Code for reproducing the results is made available at
https://github.com/LASP-UCL/Graph-RL

https://github.com/LASP-UCL/Graph-RL

Representation Learning on Graphs: A Reinforcement Learning Application

Figure 3: Two different maze environments. The pur-
ple nodes represent strict walls, while the blue nodes
are difficult access rooms. All other nodes represent
accessible rooms The node shown in red is the goal
room. (Best seen in color.)

100 states in total, some of which are inaccessible (ex-
terior walls) and 14 of which are accessible from neigh-
bouring states with a fixed probability of 0.2 (moving
obstacle or difficult access space). All the other states
are reachable with probability 1.0. The agent is re-
warded by +100 for reaching the state located at the
upper-right corner.

We run and evaluate the General Representation Pol-
icy Iteration (GRPI) algorithm using embedding mod-
els from Section 2.3 to compute the basis functions in
the second phase of the algorithm:

1. We first collect a set D of 100 sampled random
walks, terminating when the goal state is reached,
or after timeout Ny = 100. The sampling dy-
namic is as follows: starting from a random acces-
sible sate, the agent takes one of the four possible
actions (move up, down, left or right). If a move-
ment is possible, it succeeds with probability 1.0.
Otherwise, the agent remains in the same state.
If the agent reaches the gold state, it receives a re-
ward of +100, and is randomly reset to an accessi-
ble interior state for the next episode. We use off-
policy sampling (7 = random policy) to collect
the samples, except in the case of node2vec, where
the samples are generated under a biased random
walk. We use grid search to find the optimal hy-
perparameters p = 1 and ¢ = 4 that guide the
walk according to [Grover and Leskovec, 2016].

2. We then use sample transitions in D to build
an undirected graph where each state location is
a node, and the transitions are represented by
unit cost edges. We then run embed(D, d) with
embed € {node2vec (n2v), struc2vec (s2v), vari-
ational graph auto-encoder (VGAE), GraphWave
(GW)} for different choices of d. In the case of
node2vec, we reuse the samples set to derive the

=)
=)
T

80

60 -

a0r

Average number of steps to reach goal

0 I I I I I I
0 10 20 30 40 50 60 70

Basis function dimension

(a)

n
oS

o
=)
T

®
o
T

=}
=)
T

IS
S
T

n
=)
T

=)
T

Average number of steps to reach goal

. . .
10 20 30 40 50 60 70
Basis function dimension

)
S

(b)

Figure 4: Average number of steps required to reach
the goal steps using the various basis functions. On
the = axis we make the dimension of the basis func-
tions vary. Best seen in color. 4(a) corresponds to the
two-room environment, while 4(b) corresponds to the
obstacle-room environment.

node neighbourhoods used in the objective func-
tion.

3. We learned the parameters of the linear value
approximation using the parameter estimation
method LSPI [Lagoudakis, 2003] with the set of
samples D.

4. We used the policies learned by GRPI for each
model to run simulations starting from each ac-
cessible states. We compare the performance of
each models in terms of the average number of
steps required to reach the goal. We also com-
pare to the traditional PVF basis functions. The
results for the two environments, averaged over 20
independent runs, are shown in Figures 4(a) and
4(b). Each run consists of episodes of a maximum
of 100 steps, where each episode is terminated ear-
lier if the agent reaches the goal state.

Sephora Madjiheurem, Laura Toni

B8

Figure 5: Approximate value function via GRPI using
GraphWave basis function of dimension 70 on the two-
room environment.

4.2 Discussion

Figure 4(a) and Figure 4(b) show the average number
of steps to reach the goal as a function of the dimen-
sion of the basis function. We first observe that the
policy learned via the GraphWave basis function lead
to very poor performances regardless of the dimen-
sion size. We investigate this phenomenon by looking
at the approximate value function learned under these
basis. The approximate state values are depicted in Fi-
grue 5. Because GraphWave aims at learning embed-
dings that are exclusively structural, we hypothesise
that they fail at capturing global network properties.
In fact, the embeddings learned by GraphWave for the
corner states in the two-room environment are equals,
making it obviously impossible to learn different state
values with linear approximation. This suggests that
although the GraphWave is a powerful model for cap-
turing structural information in networks, it is not a
good choice of basis function for approximating value
function on a graph.

On the other hand, we notice that although struc2vec
was also designed to capture structural similarities be-
tween nodes, it also preserves the local properties of
the graph by considering neighborhoods of different
sizes [Ribeiro et al., 2017]. Hence, struc2vec is able
to accurately approximate the value function even in
graphs that have symmetrical structure such as the
two-room environment.

Finally, the result show that VGAE and node2vec are
good choices of basis functions for approximating the
value function with low dimensional features. Namely,
they both lead to good performances in terms of num-
ber of steps to reach the goal states with basis func-
tions of dimension as low as 20 for VGAE and 30 for
node2vec. On the contrary, we observe that the PVFs
require dimension of at least 70 to reach comparable

0 1 B

80

70F

60 -

50 -

40 [4-p=1,g=1
p=d, g=1
30T | 4-p-1,q-05
a0 [FPete=t

Average number of steps to reach goal

100 | ‘ Basis%‘gnction di#\‘gnsion 56 66 7
Figure 6: Average number of steps required to reach
the goal steps using node2vec with varying parameters
p and ¢. On the z axis we make the dimension of the
basis functions vary.

performances on the two-room domain and dimension
of 50 on the obstacle-room domain.

We observe that the sampling strategy used in
node2vec has a significant impact on the performance
of the learned policy. Using grid search, we find that
the optimal value of the parameters p and ¢ that guide
the random are 1 and 4 respectively. We show the
performances of node2vec with selected values of p
and ¢ in Figure 6. When p < ¢ and ¢ > 1, the
strategy is biased to encourage walks to backtrack a
step and to visit nodes that are close to the current
node in the walk. Therefore, it leads to walks that
approximate a breadth-first search behavior, gather-
ing a local view of the underlying graph with re-
spect to the starting node. On the other hand, when
p > q and g < 1, the walk approximate a depth-
first search behavior and lead to more outward explo-
ration. [Grover and Leskovec, 2016] show that the for-
mer type of sampling strategy allows to reflect struc-
tural equivalences of nodes whereas the second type
allows to capture homophily within the network. Fig-
ure 6 suggests that for approximating value functions,
structural equivalence plays a more important role
than homophily.

4.3 Additional Results

In order to investigate whether we can expect a similar
behaviour in larger environments, we consider a 100 by
50 three-room environment (similar to the two-room
environment but with two interior walls, with the up-
per wall having the opening more on the right and
the lower wall having the opening more on the left).
We construct the graph from 500 collected samples
of length at most 100 and derive the PVFs and the
node2vec embeddings. For each of these basis func-
tion, we solve the linear approximation problem in

Representation Learning on Graphs: A Reinforcement Learning Application

Mean Squared Error
>
T

7H Fnav
—+pvt
;

I I I I I I I I
0 50 100 150 200 250 300 350 400 450 500
Basis function dimension

6

Figure 7: Mean squared error of value function ap-
proximation. On the z axis we make the dimension of
the basis functions vary.

the least-square sense by minimizing the following loss
function with respect to the parameter 8. The op-
timal value function is computed via value iteration
[Montague, 1999]:

1

d 2
(Vi) = Yo i0i(s)

ses

Figure 7 shows the gain of adopting node2vec feature
learning in reinforcement learning in high dimensional
state space.

4.4 Main Findings and Future Work

We summarize below the main findings of our work.

e The smoothness assumption of the value function
on an estimated unweighted graph does not nec-
essarily hold.

e Using basis functions that automatically learn to
embed the geometry of the graph induced by the
MPD can lead to improved performance over the
proto-value functions.

e Such embedding models need to capture the struc-
tural equivalence of the nodes while preserving the
local properties of the graph.

e Under sampling strategies that satisfy the re-
quirements of the previous point, Node2vec
[Grover and Leskovec, 2016] outperforms the
commonly used proto-value functions.

e The Variational Graph Auto-Encoder, which is
more complex than node2vec in terms of the num-
ber of trainable parameters, leads to minor per-
formance improvement compared to node2vec.

These findings encourage the further study of repre-
sentation learning on graphs for achieving efficient and
accurate policy learning for reinforcement learning. In
particular, the question of scalability in large or con-
tinuous state space arises. Future work includes an-
alyzing to what extend one can efficiently learn good
embeddings with limited samples in very large state
spaces. Another interesting open question in this di-
rection, is to investigate whether good representations
can be inferred for states that have never been visited.

Naturally, future work should also aim at further im-
proving the quality of the embeddings for solving re-
inforcement learning problems. A possibility would be
to make use of the reward observed during the sam-
ple collection phase to build features that are not only
based on state transitions, but capture reward infor-
mation as well.

5 CONCLUSION

In this work, we have studied the representation pol-
icy iteration algorithm with a modified representation
learning phase that allows to use any method for com-
puting the basis functions in the linear value approx-
imation. We investigated several models for learn-
ing high quality node embeddings that preserve the
geometry of the graph induced by the Markov deci-
sion process. We compared the performance of sev-
eral representation learning method in the context of
value function approximation. Finally, we observe that
embedding methods that are designed to capture the
global structural geometry of the graph while preserv-
ing local properties do well at approximating the value
function in low feature space dimensions, significantly
outperforming the commonly considered proto-value
functions for this task.

References

[Bertsekas and Tsitsiklis, 1996] Bertsckas, D. P. and
Tsitsiklis, J. N. (1996). Neuro-Dynamic Program-
ming. Athena Scientific, 1st edition.

[Donnat et al., 2018] Donnat, C., Zitnik, M., Hallac,
D., and Leskovec, J. (2018). Learning structural
node embeddings via diffusion wavelets. In Pro-
ceedings of the 24th ACM SIGKDD International
Conference on Knowledge Discovery E#38; Data
Mining, KDD ’18, pages 13201329, New York, NY,
USA. ACM.

[Grover and Leskovec, 2016] Grover, A. and Leskovec,
J. (2016). node2vec. In Proceedings of the 22nd
ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining - KDD ’16, pages
855-864.

Sephora Madjiheurem, Laura Toni

[Hamilton et al., 2017] Hamilton, W. L., Ying, R.,
and Leskovec, J. (2017). Representation learn-
ing on graphs: Methods and applications. CoRR,
abs/1709.05584.

[Kaelbling et al., 1996] Kaelbling, L. P., Littman,
M. L., and Moore, A. P. (1996). Reinforcement

learning: A survey. Journal of Artificial Intelligence
Research, 4:237-285.

[Kipf and Welling, 2016a] Kipf, T. N. and Welling, M.
(2016a). Semi-supervised classification with graph
convolutional networks. CoRR, abs/1609.02907.

[Kipf and Welling, 2016b] Kipf, T. N. and Welling, M.
(2016b). Variational graph auto-encoders. CoRR,
abs/1611.07308.

[Konidaris et al., 2011] Konidaris, G., Osentoski, S.,
and Thomas, P. (2011). Value Function Approxi-
mation in Reinforcement Learning using the Fourier
Basis. Proceedings of the Twenty-Fifth Conference
on Artificial Intelligence, pages 380-385.

[Lagoudakis, 2003] Lagoudakis, M. (2003). Least-
squares policy iteration. The Journal of Machine
Learning Research, 4:1107-1149.

[Mahadevan, 2007] Mahadevan, S. (2007). Learn-
ing Representation and Control in Markov Deci-
sion Processes: New Frontiers. Foundations and
Trends® in Machine Learning, 1(4):403-565.

[Mahadevan and Maggioni, 2006] Mahadevan, S. and
Maggioni, M. (2006). Value function approximation
with diffusion wavelets and laplacian eigenfunctions.
In Weiss, Y., Scholkopf, B., and Platt, J. C., editors,
Advances in Neural Information Processing Systems
18, pages 843-850. MIT Press.

[Mahadevan and Maggioni, 2007] Mahadevan, S. and
Maggioni, M. (2007). Proto-value functions: A
laplacian framework for learning representation and

control in markov decision processes. J. Mach.
Learn. Res., 8:2169-2231.

[Mikolov et al., 2013] Mikolov, T., Chen, K., Cor-
rado, G., and Dean, J. (2013). Efficient estima-
tion of word representations in vector space. CoRR,
abs/1301.3781.

[Montague, 1999] Montague, P. (1999). Reinforce-
ment Learning: An Introduction, by Sutton, R.S.
and Barto, A.G. Trends in Cognitive Sciences,
3(9):360.

[Parr et al., 2008] Parr, R., Li, L., Taylor, G., Painter-
Wakefield, C., and Littman, M. L. (2008). An
analysis of linear models, linear value-function ap-
proximation, and feature selection for reinforcement

learning. In Proceedings of the 25th International
Conference on Machine Learning, ICML ’08, pages
752-759, New York, NY, USA. ACM.

[Parr et al., 2007] Parr, R., Painter-Wakefield, C., Li,
L., and Littman, M. (2007). Analyzing feature gen-
eration for value-function approximation. In Pro-
ceedings of the 24th International Conference on
Machine Learning, ICML ’07, pages 737744, New
York, NY, USA. ACM.

[Petrik et al., 2010] Petrik, M., Taylor, G., Parr, R.,
and Zilberstein, S. (2010). Feature selection using
regularization in approximate linear programs for
markov decision processes. In Proceedings of the
27th International Conference on Machine Learning
(ICML-10), June 21-24, 2010, Haifa, Israel, pages
871-878.

[Ribeiro et al., 2017] Ribeiro, L. F., Saverese, P. H.,
and Figueiredo, D. R. (2017). Struc2vec: Learn-
ing node representations from structural identity.
In Proceedings of the 23rd ACM SIGKDD Inter-
national Conference on Knowledge Discovery and
Data Mining, KDD ’17, pages 385-394, New York,
NY, USA. ACM.

[Sutton and Barto, 1998] Sutton, R. S. and Barto,
A. G. (1998). Reinforcement learning: An intro-
duction. IEEFE Trans. Neural Networks, 9(5):1054—
1054.

	INTRODUCTION
	BACKGROUND
	Markov decision process (MDP)
	Value Function Approximation
	Representation Learning on Graph

	GENERAL REPRESENTATION POLICY ITERATION
	EXPERIMENTS
	Set up
	Discussion
	Additional Results
	Main Findings and Future Work

	CONCLUSION

