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A Proof of Theorem 1

Recall that by assumption, the population function Cinit,γ satisfies the following properties:

Assumption A:

(a) It has (φ0, ρ0)-locally Lipschitz gradients,

(b) It is (λ0, ρ0)-locally Lipschitz, and

(c) It is globally µ-PL.

Recall the values of the step-size η, smoothing radius r, and iteration complexity T posited by Theorem 1.
For ease of exposition, it is helpful to run our stochastic zero-order method on this problem for 2T iterations;
we thus obtain a (random) sequence of iterates {Kt}2Tt=0. For each t = 0, 1, 2, . . ., we define the cost error
Δt = Cinit,γ(Kt)− Cinit,γ(K∗), as well as the stopping time

τ : = min
�
t | Δt > 10Δ0

�
. (15)

In words, the time τ is the index of the first iterate that exits the bounded region G0. The gradient estimate g
at the point K ∈ G0 (cf. equation (12) for defintion of the set G0) is assumed to satisfy the bounds

var(g(K)) ≤ G2 and �g(K)�2 ≤ G∞ almost surely.

We provide the proof of the above bounds in Appendix A.2

With this set up in place, we now state and prove a proposition that is stronger than the assertion of Theorem 1.

Proposition 1. With the parameter settings of Theorem 1, we have

E[ΔT 1τ>T ] ≤ �/20,

and furthermore, the event {τ > T} occurs with probability greater than 4/5.

Let us verify that Proposition 1 implies the claim of Theorem 1. We have

P{ΔT ≥ �} ≤ P{ΔT 1τ>T ≥ �}+ P{1τ≤T }
(i)

≤ 1

�
E[ΔT 1τ>T ] + P{1τ≤T }

(ii)

≤ 1/20 + 1/5

≤ 1/4,

where step (i) follows from Markov’s inequality, and step (ii) from Proposition 1. Thus, Theorem 1 follows as a
direct consequence of Proposition 1, and we dedicate the rest of the proof to establishing Proposition 1.

Let Et to represent the expectation conditioned on the randomness up to time t. The following lemma bounds
the progress of one step of the algorithm:

Lemma 4. Given any function satisfying the previously stated properties, suppose that we run Algorithm 1 with
smoothing radius r ≤ ρ0, and with a step-size η such that �ηgt�2 ≤ ρ0 almost surely. Then for any t = 0, 1, . . .
such that Kt ∈ G0, we have

Et [Δt+1] ≤
�
1− ηµ

4

�
Δt +

φ0η
2

2
G2 + ηµ

�

120
. (16)

The proof of the lemma is postponed to Section B. Taking it as given, let us now establish Proposition 1.

Proposition 1 has two natural parts; let us focus first on proving the bound on the expectation. Let Ft denote
the σ-field containing all the randomness in the first t iterates. Conditioning on this σ-field yields

E[Δt+11τ>t+1 | Ft] ≤ E[Δt+11τ>t | Ft]
(i)
= [E[Δt+1 | Ft]1τ>t] ,
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where step (i) follows since τ is a stopping time, and so the random variable 1τ>t is determined completely by
the sigma-field Ft.

We now split the proof into two cases.

Case 1: Assume that τ > t, so that we have the inclusion Kt ∈ G0. In addition, note that the iterate Kt+1 is
obtained after a stochastic zero-order step whose size is bounded as

�ηgt�2 ≤ ηG∞ ≤ ρ0,

where we have used the fact that η ≤ ρ0

G∞
.

We may thus apply Lemma 4 to obtain

E[Δt+1 | Ft] ≤
�
1− ηµ

4

�
Δt +

φ0η
2

2
G2 + ηµ

�

120
. (17a)

Case 2: In this case, we have τ ≤ t, so that

E[Δt+1 | Ft]1τ>t = 0. (17b)

Now combining the bounds (17a) and (17b) from the the two cases yields the inequality

E[Δt+1 | Ft]1τ>t ≤
��

1− ηµ

4

�
Δt +

φ0η
2

2
G2 + ηµ

�

120

�
1τ>t (18)

≤
�
1− ηµ

4

�
Δt1τ>t +

φ0η
2

2
G2 + ηµ

�

120
.

Taking expectations over the sigma-field Ft and then arguing inductively yields

E[Δt+11τ>t+1] ≤
�
1− ηµ

4

�t+1

Δ0 +

�
φ0η

2

2
G2 + ηµ

�

120

� t�

i=0

�
1− ηµ

4

�i

≤
�
1− ηµ

4

�t+1

Δ0 + 2
η

µ
φ0G2 +

4�

120
.

Setting t+ 1 = T then establishes the first part of the proposition with substitutions of the various parameters.

We now turn to establishing that P{τ > T} ≥ 4/5. We do so by setting up a suitable super-martingale on our
iterate sequence and appealing to classical maximal inequalities. Recall that we run the algorithm for 2T steps
for convenience, and thereby obtain a set of 2T random variables {Δ1, . . . ,Δ2T }. With the stopping time τ
defined as before (22), define the stopped process

Yt : = Δτ∧t + (2T − t)

�
φ0η

2

2
G2 + ηµ

�

120

�
for each t ∈ [2T ].

Note that by construction, each random variable Yt is non-negative by definition and invoking the local Lipschitz
property of the function C(·, s0) at time τ−1 we can ensure that the random variable Yt is almost surely bounded.

We claim that {Yt}2Tt=0 is a super-martingale. In order to prove this claim, we first write

E[Yt+1 | Ft] = E[Δτ∧(t+1)1τ≤t | Ft] + E[Δτ∧(t+1)1τ>t | Ft] + (2T − (t+ 1))

�
φ0η

2

2
G2 + ηµ

�

120

�
. (19)

Beginning by bounding the first term on the right-hand side, we have

E[Δτ∧(t+1)1τ≤t | Ft] = E[Δτ∧t1τ≤t | Ft] = Δτ∧t1τ≤t. (20a)

As for the second term, we have

E[Δτ∧(t+1)1τ>t | Ft] = E[Δt+11τ>t | Ft]

= E[Δt+1 | Ft]1τ>t

(iii)

≤
�
1− ηµ

4

�
Δt1τ>t +

�
φ0η

2

2
G2 + ηµ

�

120

�
1τ>t

≤
�
1− ηµ

4

�
Δτ∧t1τ>t +

φ0η
2

2
G2 + ηµ

�

120
, (20b)
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where step (iii) follows from using Inequality (18).

Substituting the bounds (20a) and (20b) into our original inequality (19), we find that

E[Yt+1 | Ft] = E[Δτ∧(t+1)1τ≤t | Ft] + E[Δτ∧(t+1)1τ>t | Ft] + (2T − (t+ 1))

�
φ0η

2

2
G2 + ηµ

�

120

�

≤ Δτ∧t1τ≤t + (1− ηµ/4)Δτ∧t1τ>t +

�
φ0η

2

2
G2 + ηµ

�

120

�
+ (2T − (t+ 1))

�
φ0η

2

2
G2 + ηµ

�

120

�

(iv)

≤ Δτ∧t + (2T − t)

�
φ0η

2

2
G2 + ηµ

�

120

�

= Yt,

where step (iv) follows from the inequality ηµΔτ∧t ≥ 0. We have thus verified the super-martingale property.

Finally, applying Doob’s maximal inequality for super-martingales (see, e.g., Durrett [15]) yields

Pr{max
t∈[2T ]

Yt ≥ ν} ≤ E[Y0]

ν

=
1

ν

�
Δ0 + 2T

�
φ0η

2

2
G2 + ηµ

�

120

��

(v)

≤ 1

ν

�
Δ0 +

�

5
log(120Δ0/�)

�
,

where step (v) follows from the substitutions T = 2
ηµ log(120Δ0/�), and η ≤ �µ

120Dφ0λ2
0
. As long as � is sufficiently

small so as to ensure that � log(120Δ0/�) < 5Δ0, setting ν = 10Δ0 completes the proof.

A.1 Stochastic zeroth-order rate for general non-convex functions:

It is worth pointing out the proof of Theorem 1 is only uses the local smoothness properties and the fact that
the function is globally PL. Consequently, the same proof provides us an analogous result for Theorem 1 for any
non-convex function f satisfying Assumption A, stated at the beginning of the proof of Theorem 1.

A.2 Bounds on G2 and G∞ for LQR:

In this section we provide bounds in equation (13). In particular, let us establish bounds on these quantities
for general optimization of a function with a two-point gradient estimate. The following computations closely
follow those of Shamir [40]. While proving upper bounds for G2 and G∞, we use u ∈ Unif(SD−1), where D is
the dimension of the matrix K.

Second moment control: Using the law of iterated expectations, we have

E
� ����D

C(K + ru; s0)− C(K − ru, s0)

2r
u

����
2

2

�
= E

�
E
� ����D

C(K + ru; s0)− C(K − ru; s0)

2r
u

����
2

2

����s0
��

.

Define the placeholder variable q and now evaluate:

E
� ����D

C(K + ru; s0)− C(K − ru, s0)

2r
u

����
2

2

����s0
�
=

D2

4r2
E
�
(C(K + ru; s0)− C(K − ru; s0))

2 �u�22
����s0

�
.

(i)
=

D2

4r2
E
�
(C(K + ru; s0)− C(K − ru; s0))

2

����s0
�

=
D2

4r2
E
�
(C(K + ru; s0)− q − C(K − ru; s0) + q)2

����s0
�

(ii)

≤ D2

2r2
E
�
(C(K + ru; s0)− q)2 + (C(x − ru; s0)− q)2

����s0
�
,
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where equality (i) follows from the fact that u is a unit vector and inequality (ii) follows from the inequality
(a− b)2 ≤ 2(a2 + b2). We further simplify this to obtain:

E
� ����D

C(K + ru; s0)− C(K − ru, s0)

2r
u

����
2

2

����s0
�

(i)

≤ D2

r2
E
�
(C(K + ru; s0)− q)2

����s0
�

(ii)

≤ D2

r2

�
E
�
(C(K + ru; s0)− q)4

����s0
�
,

where inequality (i) follows from the symmetry of the uniform distribution on the sphere, and inequality (ii)
follows from Jensen’s Inequality. For a fixed s0, we now define q = E[C(K + ru; s0)|s0]. Substituting this
expression yields

E
� ����D

C(K + ru; s0)− C(K − ru, s0)

2r
u

����
2

2

����s0
�
≤ D2

r2

�
E
�
(C(K + ru; s0)− E[C(K + ru; s0)|s0])4

����s0
�

(i)

≤ D2

r2
(λ0r)

2

D

= Dλ2
0,

where inequality (i) follows directly from Lemma 9 in Shamir [40]. The lemma can be applied since we are
conditioning on s0, and all the randomness lies in the selection of u.

Gradient estimates are bounded: Note that smoothing radius r satisfies r ≤ ρ0, where ρ0 is the radius
within which the function is Lipschitz. Consequently, the local Lipschitz property of the function C(·) implies
that

�gt�2 : =

����D
C(Kt + rut, s0)− C(Kt − rut, s0)

2r
ut

����

≤
����D

C(Kt + rut; s0)− C(Kt; s0)

2r
ut

����+

����D
C(Kt; s0)− C(Kt − rut; s0)

2r
ut

����

≤ Dλ0
2�rut�2

2r
≤ Dλ0.

B Auxiliary results for Theorem 1

In order to emphasize the generality of Theorem 1, we prove the auxiliary results used in the proof of Theorem 1
for general non-convex function.

In what follows, we use f to denote a general non-convex function, and use F to denote the noisy version of the
function f . We assume that the function f that satisfies the following properties:

(a) The function f has (φ0, ρ0)-locally Lipschitz gradients,

(b) The function F (·, ξ) is (λ0, ρ0)-locally Lipschitz for all ξ.

(c) The function f is globally µ-PL.

We use the step-size η, smoothing radius r, and iteration complexity T posited by Theorem 1. In particular, we
assume

η ≤ min

�
�µ

240φ0G2
,

1

2φ0
,

ρ0
G∞

�
, and (21a)

r ≤ min

�
θ0µ

8φ0

�
�

15
,

1

2φ0

�
�µ

30
, ρ0

�
. (21b)

For each t = 0, 1, 2, . . ., we define the cost error Δt = f(xt)− f(x∗), as well as the stopping time

τ : = min
�
t | Δt > 10Δ0

�
. (22)
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The quantities G0 and Δ0 are defined in equation 12 with the function C replaced by f . The gradient estimate
g at the point x ∈ G0 is assumed to satisfy the bounds

var(g(x)) ≤ G2 and �g(x)�2 ≤ G∞ almost surely.

With this set up in place, we are now ready to prove the auxiliary results used in the proof of Theorem 1.

B.1 Proof of Lemma 4

For a scalar r > 0, the smoothed version fr(x) is given by fr(x) : = E [f(x + rv)], where the expectation above
is taken with respect to the randomness in v, and v has uniform distribution on a d-dimensional ball Bd of unit
radius. The estimate g of the gradient ∇fr at x is given by

g(x) =
�
F (x + ru, ξ)− F (x − ru, ξ)

� d

2r
u

where u has a uniform distribution on the shell of the sphere Sd−1 of unit radius, and ξ is sampled at random
from D. The following result summarizes some useful properties of the smoothed version of f , and relates it to
the gradient estimate g.

Lemma 5. The smoothed version fr of f with smoothing radius r has the following properties:

(a) ∇fr(x) = E [g(x)].

(b) �∇fr(x)−∇f(x)�2 ≤ φ0r.

Versions of these properties have appeared in past work [19, 4, 40], but we provide proofs in Appendix B.2 for
completeness.

Taking Lemma 5 as given, we now prove Lemma 4. Let Ft denote the sigma field generated by the randomness
up to iteration t, and E denote the total expectation operator. We define Et : = E [· | Ft] as the expectation
operator conditioned on the sigma field Ft. Recall that the function f is smooth with smoothness parameter φ0,
and we have

Et [f(xt+1)− f(xt)] ≤ Et

�
�∇f(xt), xt+1 − xt�+

φ0

2
�xt+1 − xt�22

�

(i)
= −�η∇f(xt), ∇fr(xt)�+

φ0η
2

2
Et

�
�g(xt)�22

�

(ii)
= −η�∇f(xt)�22 + ηφ0r�∇f(xt)�2 +

φ0η
2

2
Et

�
�g(xt)�22

�
.

Steps (i) and (ii) above follow from parts (a) and (b), respectively, of Lemma 5. Now make the observation that

Et
�
�g(xt)�22

�
= var(g(xt)) + �∇fr(xt)�22
≤ var(g(xt)) + 2�∇f(xt)�22 + 2�∇fr(xt)−∇f(xt)�22
≤ G2 + 2�∇f(xt)�22 + 2(φ0r)

2.

In addition, since the function is locally smooth at the point xt, we have

(θ − θ2φ0/2)�∇f(xt)�22 ≤ f(xt)− f(xt − θ∇f(xt))

≤ f(xt)− f(x∗),

for some parameter θ chosen small enough such that the relation θ�∇f(xt)�2 ≤ ρ0 holds. We may thus set

θ = θ0 = min
�

1
2φ0

, ρ0

λ0

�
and recall the notation Δt = f(xt)− f(x∗) to obtain

Et [Δt+1] ≤ −η�∇f(xt)�22 + ηφ0r
2

θ0
Δ

1/2
t +

φ0η
2

2
G2 + φ0η

2
�
�∇f(xt)�22 + (φ0r)

2
�

(iii)

≤ −ηµ

2
Δt + 2

ηφ0r

θ0
Δ

1/2
t +

φ0η
2

2
G2 + φ0η

2(φ0r)
2,

(iv)

≤ −ηµ

2
Δt +

ηµ

4
Δt + 4

η(φ0r)
2

µθ20
+

φ0η
2

2
G2 + φ0η

2(φ0r)
2,
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where step (iii) follows from applying the PL inequality and using the fact that η ≤ 1
2φ0

, and step (iv) from the

inequality 2ab ≤ a2 + b2 which holds for any pair of scalars (a, b).

Recall the assumed bounds on our parameters, namely

η ≤ min

�
�µ

240φ0
,

1

2φ0

�
, and r ≤ 1

2φ0
min

�
θ0µ

�
�

240
,
1

φ0

�
�µ

30

�
.

Using these bounds, we have

Et [Δt+1] ≤ −ηµ

4
Δt +

φ0η
2

2
G2 + ηµ

�

120
.

Finally, rearranging yields

Et [Δt+1] ≤
�
1− ηµ

4

�
Δt +

φ0η
2

2
G2 + ηµ

�

120
, (23)

which completes the proof of Lemma 4.

B.2 Proof of Lemma 5

We now provide the proof of Lemma 5, splitting our analysis into the two separate claims.

Proof of part (a): Unwrapping the definition of ∇fr(x) yields

∇fr(x)
(i)
=

d

r
E[f(x + ru)u]

=
d

2r
(E[f(x + ru)u] + E[f(x + ru)u])

(ii)
=

d

2r
(E[f(x + ru)u]− E[f(x − ru)u])

=
d

2r
E[f(x + ru)u− f(x − ru)u],

where equality (i) follows from Lemma 1 in Flaxman et al. [19], and equality (ii) follows from the symmetry of
the uniform distribution on the shell Sd−1. Now observe that

E[F (x + ru, ξ)u− F (x − ru, ξ)u] = E
�
E[F (x + ru, ξ)− F (x − ru, ξ)u|u]

�

(i)
= E

�
f(x + ru)u− f(x − ru)u

�
,

where equality (i) follows from the assumption that f(x) = Eξ∼D[F (x, ξ)]. Putting the equations together
establishes the claim in part (a).

Proof of part (b): Observe that

�∇fr(x)−∇f(x)�2 = �∇E[f(x + rv)]−∇f(x)�2
= �E[∇[f(x + rv)−∇f(x)]�2
(i)

≤ E[�∇[f(x + rv)−∇f(x)�2]
(ii)

≤ φ0r,

where inequality (i) above follows from Jensen’s inequality, whereas step (ii) follows since r ≤ ρ and ∇f is locally
Lipschitz continuous with parameter φ0.
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C LQR

In this section, we establish some fundamental properties of the cost function C, and provide proofs of Lemmas 1
and 2. As part of these proofs, we provide explicit bounds for the local curvature parameters (λ0, ρ0,φ0). We
make frequent use of results established by Fazel et al. [17], and as mentioned before, Lemmas 1 and 2 are
refinements of their results.

Notation: In this section, we introduce some shorthand to reduce notational overhead. Much (but not all) of
the notation we use overlaps with the notation used in Fazel et al. [17].

We define the matrix PK as the solution to the following fixed point equation:

PK = Q+K�RK + (A−BK)�PK(A−BK),

and we define the state correlation matrix ΣK as:

ΣK = E

� ∞�

t=0

sts
�
t

�
such that st = (A−BK)st−1. (24)

It is straightforward to see that we have

C(K) = E[s�0 PKs0], (25)

and we make frequent use of this representation in the sequel.

Recall that we have E[s0s�0 ] = I, so that

C(K) = tr(PK). (26)

Moreover, under this assumption, the cost function C satisfies the PL Inequality with PL constant
|||ΣK∗ |||2
σmin(R) (see

Lemma 3 in the paper [17]).

Also define the natural gradient of the cost function as

EK : = 2(R+B�PKB)K −B�PKA,

so that we have ∇C(K) = EKΣK . For any symmetric matrix X, the perturbation operators TK(·) and FK(·)
are defined as

TK(X) =

∞�

t=0

(A−BK)tX[(A−BK)�]t, and FK(X) = (A−BK)X(A−BK)�.

Finally, the operator norms of the operators TK(·) and FK(·) are defined as

|||TK |||2 = sup
X

|||TK(X)|||2
|||X|||2

and

|||FK |||2 = sup
X

|||FK(X)|||2
|||X|||2

.

Useful constants:

We now define several polynomials of C(K), which are useful in various proofs in this section.

• cK1
= C(K)

σmin(Q)

�
(|||R|||2 + |||B|||22C(K))(C(K)− C(K∗))

• cK2 = 4

�
C(K)

σmin(Q)

�2

|||Q|||2|||B|||2(|||A|||2 + |||B|||2cK1 + 1)

• cK3 = 8

�
C(K)

σmin(Q)

�2

(cK1)
2|||R|||2|||B|||2(|||A|||2 + |||B|||2cK1 + 1)
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• cK4
= 2

�
C(K)

σmin(Q)

�2

(cK1
+ 1)|||R|||2

• cK5
=

�
(|||R|||2 + |||B|||22C(K))(C(K)− C(K∗))

• cK6
= |||R|||F + |||B|||2F(cK1

+ 1)(cK2
+ cK3

+ cK4
) + |||B|||2FC(K) + |||B|||F|||A|||2(cK2

+ cK3
+ cK4

)

• cK7 = 5cK6

C(K)
σmin(Q) + 4cK5

�
C(K)

σmin(Q)

�2

|||B|||2(|||A|||2 + |||B|||2cK1).

• cK8 = Cm(cK2 + cK3 + cK4).

• cK9
= min

�
σmin(Q)

4C(K)|||B|||2(|||A|||2+|||B|||2cK1
+1) , 1

�
.

With these definitions at hand, we are now in a position to establish Lemmas 1 and 2.

C.1 Proof of Lemma 1

Let us restate a precise version of the lemma for convenience.

Lemma 6. For any pair (K �,K) such that |||K � −K|||F ≤ cK9
, we have

|C(K �, s0)− C(K, s0)| ≤ cK8
|||K � −K|||F.

Comparing Lemma 6 with the statement of Lemma 1, we have therefore established the relations

ζK ≥ cK9
and λK ≤ cK8

.

Proof. The sample cost satisfies the relation

|C(K �, s0)− C(K, s0)| = |s�0 PK�s0 − s�0 PKs0|
= | tr(s�0 (PK� − PK)s0)|
≤ |||PK� − PK |||2 �s0�22
≤ |||PK� − PK |||2Cm. (27)

Hence, it remains to bound |||PK� − PK |||2. To this end, substituting the definition of the linear operator TK , we
have

|||PK� − PK |||2 = |||TK�(Q+ (K �)�RK �)− TK(Q+K�RK)|||2
= |||(TK� − TK)(Q+ (K �)�RK �)− TK(K�RK − (K �)�RK �)|||2
≤ |||(TK� − TK)Q|||2 + |||(TK� − TK)(K �)�RK �)|||2

+ |||TK |||2|||K�RK − (K �)�RK �|||2. (28)

We provide upper bounds for the three terms above as follows:

|||(TK� − TK)(K �)�RK �)|||2 ≤ cK3
|||K −K �|||2 (29a)

|||(TK� − TK)Q|||2 ≤ cK2 |||K −K �|||2 (29b)

|||TK |||2|||K�RK − (K �)�RK �|||2 ≤ cK4
|||K −K �|||2. (29c)

Taking the above bounds as given at the moment, we have from Equation (28) that

|||PK� − PK |||2 ≤ (cK2
+ cK3

+ cK4
)|||K � −K|||2, (30)

Putting together the pieces completes the proof of Lemma 1.

It remains to prove the upper bounds (29a)- (29c).
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Auxiliary bounds: Proofs of the bounds (29a) through (29c) are based on the following intermediate bounds:

|||(K �)�RK � −K�RK|||2 ≤ (cK1
+ 1)|||R|||2|||K � −K|||2. (31a)

|||FK� − FK |||2 ≤ 2|||B|||2(|||A|||2 + |||B|||2cK1 + 1)|||K � −K|||2 (31b)

|||TK |||2 ≤ C(K)

σmin(Q)
(31c)

|||K�RK|||2 ≤ c2K1
|||R|||2 (31d)

We prove these bounds at the end, but let us complete the rest of the proofs assuming these auxiliary bounds.

Proof of the bound (29a): The proof of this upper bound is based on Lemma 20 from the paper [17].
Accordingly, we start by verifying the following condition for Lemma 20:

|||FK − FK� |||2|||(K �)�RK �|||2 ≤ 1

2
. (32)

Observe that our assumption |||K � −K|||F ≤ cK9
, satisfies the assumption of Lemma 10 in the paper [17], whence

we have

|||B|||2|||K � −K|||2
(i)

≤ |||B|||2
σmin(Q)

4C(K)|||B|||2(|||A|||2 + |||B|||2cK1
+ 1)

(ii)

≤ σmin(Q)

4C(K)(|||A−BK|||2 + 1)

(iii)

≤ 1

4
. (33)

where step (i) follows by substituting the value of cK9 , and step (ii) follows since |||A−BK|||2 ≤ |||A|||2+|||B|||2cK1+1.
Step (iii) above follows since C(K) ≥ σmin(Q). Combining the last inequality with Lemma 16 in the paper [17]
yields

|||FK� − FK |||2 ≤ 2|||A−BK|||2|||B|||2|||K � −K|||2 + |||B|||22|||K � −K|||22
≤ 2|||B|||2(|||A−BK|||2 + 1)|||K � −K|||2

Finally, invoking Lemma 14 from the paper [17] guarantees that |||TK |||2 ≤ C(K)
σmin(Q) , and we deduce that

|||TK |||2|||FK� − FK |||2 ≤ C(K)

σmin(Q)
2|||B|||2(|||A−BK|||2 + 1)|||K � −K|||2

≤ 1

2
,

where the last inequality follows from the assumption |||K � −K|||F ≤ cK9
.

Now that we have verified that condition 32, invoking Lemma 20 in the paper [17] yields

|||(TK� − TK)(K �)�RK �|||2 ≤ 2|||TK |||22|||FK − FK� |||2|||(K �)�RK �|||2
≤ 2|||TK |||22|||FK − FK� |||2|||K�RK|||2

+ 2|||TK |||22|||FK − FK� |||2|||(K �)�RK � −K�RK|||2
≤ cK3

|||K −K �|||2,

where the last step above follows by substituting the bounds (31a)- (31d).

Proof of the bounds (29b) and (29c): The proof of the bound (29b) is similar to the part (29a) and is based
on Lemma 20 from the paper [17]. More concretely, we have

|||(TK� − TK)Q|||2 ≤ 2|||TK |||22|||FK − FK� |||2|||Q|||2 ≤ cK2
|||K −K �|||2

where the last step above follows from the bounds (31b) and (31c). The proof of the bound (29c) is a direct
consequence of the bounds (31a) and (31c).
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C.1.1 Proofs of the auxiliary bounds

In this section we prove the auxiliary bounds (31a) through to (31d)

Bound (31a): Observe that

|||K�RK − (K �)�RK �|||2 = |||(K � −K)�R(K � −K) + (K �)�RK +K�R(K �)− 2K�RK|||2
≤ (2|||R|||2|||K|||2|||K � −K|||2 + |||R|||2|||K � −K|||22)
(i)

≤ (2|||K|||2 + 1)|||R|||2|||K � −K|||2
(ii)

≤ (2cK1
+ 1)|||R|||2|||K � −K|||2.

where step (i) follows since |||K−K �|||2 ≤ 1 by assumption, and step (ii) follows since |||K|||2 ≤ cK1
(see Lemma 22

in the paper [17]). This completes the proof of bound (31a).

Bound (31b): In order to prove bound (31b), we invoke Lemma 19 in the paper [17] to obtain

|||FK� − FK |||2 ≤ 2|||A−BK|||2|||B|||2|||K � −K|||2 + |||B|||22|||K � −K|||22
(iii)

≤ 2|||A−BK|||2|||B|||2|||K � −K|||2 +
1

4
|||B|||2|||K � −K|||2

≤ 2|||B|||2(|||A|||2 + |||B|||2cK1
+ 1)|||K � −K|||2

where step (iii) above follows from the upper bound (33). This completes the proof of the bound (31b).

Bound (31c) and (31d): The bound (31c) above follows from Lemma 17 in the paper [17], whereas the

bound (31c) follows from the fact that |||K|||2 ≤ cK1
(see Lemma 22 in the paper [17]).

Having established all of our auxiliary bounds, let us now proceed to a proof of Lemma 2.

C.2 Proof of Lemma 2

Lemma 2 is a consequence of the following result.

Lemma 7. If |||K � −K|||F ≤ cK9 , then

|||∇C(K �)− C(K)|||F ≤ cK7
|||K � −K|||F.

Indeed, comparing Lemmas 7 and 2, we have the bounds

βK ≥ cK9 and φK ≤ cK7 .

Let us now prove Lemma 7.

Proof. We start by noting that from Lemma 1 we have that the cost function C(K) is locally Lipschitz in a ball
of ζK around the point K. Before moving into the main argument, we mention a few auxiliary results that are
helpful in the sequel. We start by invoking Lemma 13 from the paper [17], whence we have

|||PK |||2 ≤ C(K) and |||ΣK |||2 ≤ C(K)

σmin(Q)
.

We also have

|||A−BK|||2 ≤ |||A|||2 + |||B|||2|||K|||2
(i)

≤ |||A|||2 + |||B|||2cK1
and (34a)

|||ΣK� |||2 ≤ |||ΣK |||2 + |||ΣK� − ΣK |||2
(ii)

≤ 5
C(K)

σmin(Q)
. (34b)
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Step (i) above follows since |||K|||2 ≤ cK1 (see Lemma 22 in the paper [17]), whereas step (ii) follows since

|||ΣK� − ΣK |||2 ≤ 4 C(K)
σmin(Q) (see Lemma 16 in the paper [17]).

Recalling the gradient expression ∇C(K) = EKΣK . Let K � be a policy such that |||K � −K|||F ≤ cK9
. We have

|||∇C(K �)−∇C(K)|||F = |||(EK� − EK)ΣK� + EK(ΣK� − ΣK)|||F
≤ |||(EK� − EK)|||F|||ΣK� |||2 + |||EK |||F|||(ΣK� − ΣK)|||2
(iii)

≤ 5cK6

C(K)

σmin(Q)
|||K � −K|||F

+ 4cK5

� C(K)

σmin(Q)

�2 |||B|||2(|||A|||2 + |||B|||2cK1
)

σmin(Σ0)
|||K � −K|||F.

The upper bound in step (iii) on the term |||(EK� − EK)|||F|||ΣK� |||2 follows from Equation (34b) and from the
following upper bound which we prove later:

|||EK� − EK |||F ≤ cK6 |||K � −K|||F provided |||K � −K|||F ≤ cK9 . (35)

The upper bound on the term |||EK |||F|||(ΣK� − ΣK)|||2 in step (iii) follows from the fact that |||EK |||F ≤ cK5 (see
Lemma 11 in the paper [17]) and from the fact that

|||(ΣK� − ΣK)|||2
(iv)

≤ 4

� C(K)

σmin(Q)

�2 |||B|||2(|||A−BK|||2 + 1)

σmin(Σ0)
|||K � −K|||F

(v)

≤ 4

� C(K)

σmin(Q)

�2 |||B|||2(|||A|||2 + |||B|||2cK1
+ 1)

σmin(Σ0)
|||K � −K|||F,

where step (iv) follows from Lemma 16 in the paper [17], and step (v) follows from Inequality (34a).

Putting together the pieces, we conclude that the function ∇C(K) is Lipschitz with constant φK , where φK is
given by

φK = 5cK6

C(K)

σmin(Q)
+ 4cK5

� C(K)

σmin(Q)

�2

|||B|||2(|||A|||2 + |||B|||2cK1 + 1) = cK7 .

It remains to prove Inequality (35).

Proof of Inequality (35): From the definition of EK , we have

|||EK� − EK |||F = 2|||(R+B�PK�B)K � −B�PK�A− (R+B�PKB)K +B�PKA|||F
= 2|||R(K � −K) +B�(PK� − PK)BK � +B�PKB(K � −K)−B�(PK� − PK)A|||F
≤ 2|||R|||F|||K � −K|||F + 2|||B�(PK� − PK)BK �|||F

+ 2|||B�PKB(K � −K)|||F + 2|||B�(PK� − PK)A|||F (36)

We provide upper bounds for the three terms above as follows. First, we have

|||B�(PK� − PK)BK �|||F ≤ |||B|||2F(cK1
+ 1)(cK2

+ cK3
+ cK4

)|||K � −K|||F,

which follows from the bound (30), since |||K �−K|||F ≤ cK9
, and the relation |||K �|||2 ≤ |||K|||2+|||K �−K|||2 ≤ cK1

+1.
The same reasoning also yields the bound

|||B�(PK� − PK)A|||F ≤ |||B|||F|||A|||2(cK2
+ cK3

+ cK4
)|||K � −K|||F,

Finally, since |||PK |||2 ≤ C(K), we have

|||B�PKB(K � −K)|||F ≤ |||B|||2FC(K)|||K � −K|||F.
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Combining the above upper bounds with the upper bound (36) we conclude that

|||EK� − EK |||F ≤ cK6
|||K � −K|||F,

where cK6
is given by

cK6
= 2

�
|||R|||F + |||B|||F|||A|||2(cK2

+ cK3
+ cK4

) + |||B|||2F ((cK1
+ 1)(cK2

+ cK3
+ cK4

) + C(K))
�
.

C.3 Explicit bounds on the parameters (ρ0, λ0, φ0)

In order to ease notation, we define constants �cK7
, �cK8

and �cK9
by replacing the scalar C(K) by 10C(K0)−9C(K∗)

in the definitions of cK7
, cK8

and cK9
respectively (see Section C).

Lemma 8. The parameters ρ0, λ0, φ0 satisfy the following bounds

ρ0 ≥ �cK9
, φ0 ≤ �cK7

and λ0 ≤ �cK8
.

Proof. Observe that from the definition of the set G0 we have that for allK ∈ G0, the function value C(K) is upper
bounded as C(K) ≤ 10C(K0)−9C(K∗). Consequently, for any K ∈ G0 and any K � such that |||K �−K|||F ≤ �cK9 , we
can use Lemma 2 and Lemma 1 respectively to show that the cost function C(K) has locally Lipschitz gradients
with parameter �cK8 and the function C(K) has locally Lipschitz function values parameter �cK7 . Combining the
last observation with the definitions of ρ0, λ0 and φ0 we have that ρ0 ≥ �cK9

, φ0 ≤ �cK7
and λ0 ≤ �cK8

. This
completes the proof.

D Experimental Details & Additional Experiments

For all experiments in this paper, the initial K0 was generated by randomly perturbing the entries of K∗ by a
Gaussian random matrix with independent entries. Since we operate in the setting where we get noisy evaluations
of the true infinite horizon cost, the length of the rollout used was manually tuned until the truncated cost
converged arbitrarily close to the true infinite horizon cost. The step size was also tuned manually, and the
smoothing radius was always chosen to be the minimum of

√
� and the largest value required to ensure stability.

We now present the LQR problem we used to generate the plots in Figure 1 and experimental results in Section 4:

A =




1 0 −10
−1 1 0
0 0 1


 , B =




1 −10 0
0 1 0
−1 0 1


 , Q =




2 −1 0
−1 2 −1
0 −1 2


 , R =




5 −3 0
−3 5 −2
0 −2 5


 ,

The initial state was sampled uniformly at random from the canonical basis vectors.

We also performed experiments on several additional LQR instances to test the robustness of the behavior
observed in Figures 1(b) and 1(c). Note that for all figures shown in this section, each dotted line represents the
line of best fit for its corresponding data points, as in Figure 1. Using the same LQR problem shown above, we
tested the performance of our two-point algorithm with different values of � and C(K0).
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Figure 2. Scaling of complexity vs. C(K0) while using mini-batches of size 1, 50 and 500, to achieve an error
tolerance of (a) � = 0.1, (b) � = 0.05 and (c) � = 0.01. Due to the prohibitive complexity when using batches of
size 50 and 500, we omit data points for large values of C(K0).
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In Figure 2 (a) (b) and (c), we plot the scaling of the zero-order complexity with C(K0) for different values of
the tolerance �, and each figure additionally contains plots for different values of the batch-size. We observe
that the scaling of our algorithm with respect to C(K0) is approximately on the order of O(C(K0)

2), suggesting
that our bounds for the Lipschitz and smoothness constants are not sharp in this respect. The same plots also
demonstrate that using larger batch sizes, such as the algorithm from Fazel et al. [17], is often suboptimal: while
the step size can be increased with increasing batch-size, it eventually plateaus due to stability considerations,
leading to higher overall zero-order complexity.

We also ran our algorithm on the following problem introduced by Dean et al. [11], who used this example in
their study of model based control methods for the LQR problem. Consider the LQR problem defined by:

A =



1.01 0.01 0
0.01 1.01 0.01
0 0.01 1.01


 , B = I, Q = 10−3 × I, R = I.

For three different values of C(K0), we picked 8 evenly spaced (logarithmic scale) values of � in the interval
(0.005, 1). The initial state was sampled uniformly at random from {[5, 0, 0], [5, 5, 5], [0, 0, 5]}. The cost of the
optimal policy in our example was C(K∗) = 2.36. We then measured the total zero order complexity required to
attain � convergence. These results are plotted in Figure 3, and confirm the prediction of Theorem 1.
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Figure 3. Scaling of complexity vs. �−1 in LQR
instance from Dean et al. [11]
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Figure 4. Scaling of complexity vs. �−1 in randomly
generated 8× 8 example.

Finally, we also obtained data for the scaling with respect to � on an example in slightly higher dimensions, to
empirically verify the fact that our algorithm can be used for LQR problems larger than 3 × 3. We randomly
generated A, B, Q and R as 8 × 8 matrices. Each entry of A was independently sampled from the Gaussian
distribution N (2, 1), and each entry of B was independently sampled from the Gaussian distribution N (0, 1).
To generate each of Q and R, we generated a matrix where each entry was independently sampled from the
Gaussian distribution N (5, 1), then symmetrized the matrix by adding it to its transpose, finally adding 10I
to ensure positive definiteness. The initial states were sampled uniformly at random from the canonical basis
vectors. For three different values of C(K0), we picked 8 evenly spaced (logarithmic scale) values of � in the
interval (0.005, 1). We then measured the total zero order complexity required to attain � convergence. These
results are plotted in Figure 4, and confirm the prediction of Theorem 1.


