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Abstract

We study derivative-free methods for policy
optimization over the class of linear policies.
We focus on characterizing the convergence
rate of a canonical stochastic, two-point,
derivative-free method for linear-quadratic
systems in which the initial state of the sys-
tem is drawn at random. In particular, we
show that for problems with effective di-
mension D, such a method converges to an
e-approximate solution within O(D/e) steps,
with multiplicative pre-factors that are ex-
plicit lower-order polynomial terms in the
curvature parameters of the problem. Along
the way, we also derive stochastic zero-order
rates for a class of non-convex optimization
problems.

1 Introduction

Recent years have witnessed a number of successes in
applying modern reinforcement learning (RL) meth-
ods to many fields, including robotics [44, 26] and
competitive gaming [41, 32]. Impressively, most of
these successes have been achieved by using general-
purpose RL methods that are applicable to a host of
problems. Prevalent general-purpose RL approaches
can be broadly categorized into: (a) model-based ap-
proaches [13, 21, 27], in which an agent attempts to
learn a model for the dynamics by observing the evo-
lution of its state sequence; and (b) model-free ap-
proaches, including DQN [32], and TRPO [38], in
which the agent attempts to learn an optimal policy
directly, by observing rewards from the environment.
While model-free approaches typically require more
samples to learn a policy of equivalent accuracy, they
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are naturally more robust to model mis-specification.

A literature that is closely related to model-free RL
is that of zero-order or derivative-free methods for
stochastic optimization; see the book by Spall [42] for
an overview. Here the goal is to optimize an unknown
function from noisy observations of its values at judi-
ciously chosen points. While most analytical results in
this space apply to convex optimization, many of the
procedures themselves rely on moving along random-
ized approximations to the directional derivatives of
the function being optimized, and thus are applicable
even to non-convex problems. In the particular con-
text of RL, variants of derivative-free methods, includ-
ing TRPO [38], PSNG [35] and evolutionary strate-
gies [37], have been used to solve highly non-convex
optimization problems and have been shown to achieve
state-of-the-art performance on various RL tasks.

While many RL algorithms are easy to describe and
run in practice, certain theoretical aspects of their be-
havior remain mysterious, even when they are applied
in relatively simple settings. One such setting is the
most canonical problem in continuous control, that of
controlling a linear dynamical system with quadratic
costs via the linear quadratic regulator (LQR). A re-
cent line of work [1, 2, 3, 9, 11, 12, 16, 17, 45] has
sought to delineate the properties and limitations of
various RL algorithms in application to LQR prob-
lems. An appealing property of LQR systems from an
analytical point of view is that the optimal policy is
guaranteed to be linear in the states [24, 48]. Thus,
when the system dynamics are known, as in classical
control, the optimal policy can be obtained by solving
the discrete-time algebraic Ricatti equation.

In contrast, methods in reinforcement learning target
the case of unknown dynamics, and seek to learn an op-
timal policy on the basis of observations. A basic form
of model-free RL for linear quadratic systems involves
applying derivative-free methods in the space of linear
policies. It can be used even when the only observa-
tions possible are the costs from a set of rollouts, each
referred to as a sample and when our goal is to obtain a
policy whose cost is at most e-suboptimal. The sample
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complexity of a given method refers to the number of
samples, as a function of the problem parameters and
tolerance, required to meet a given tolerance e. With
this context, we are led to the following concrete ques-
tion: What is the sample complexity of derivative-free
methods for the linear quadratic regulator? This ques-
tion underlies the analysis in this paper. In particular,
we study a standard derivative-free algorithm in an
offline setting and derive explicit bounds on its sam-
ple complexity, carefully controlling the dependence on
not only the tolerance e, but also the dimension and
conditioning of the underlying problem.

Our analysis assumes a distinct form of randomness in
the underlying linear system: the initial state is chosen
randomly from an unknown distribution, but the linear
dynamics at each time step remain deterministic [17].
We refer to this setting as the randomly initialized set-
ting. We are now in a position to discuss related work
on the problem, and to state our contributions.

Related work: Quantitative gaps between model-
based and model-free reinforcement learning have been
studied extensively in the setting of finite state-action
spaces [5, 10, 6], and several interesting questions here
still remain open.

For continuous state-action spaces and in the specific
context of the linear quadratic systems, classical sys-
tem identification has been model-based, with a partic-
ular focus on asymptotic results (e.g., see the book [28]
as well as references therein). Non-asymptotic guar-
antees for model-based control of linear quadratic sys-
tems were first obtained by Fiechter [18], who studied
the offline problem under additive noise and obtained
non-asymptotic rates for parameter identification us-
ing nominal control procedures. In more recent work,
Dean et al. [11] proposed a robust alternative to nom-
inal control, showing an improved sample complexity
as well as better-behaved policies. The online setting
for model-based control of linear quadratic systems
has also seen extensive study, with multiple algorithms
known to achieve sub-linear regret [12, 1, 3].

In this paper, we study model-free control of these
systems, a problem that has seen some recent work
in both the offline [17] and online [2] settings. Most
directly relevant to our work is the paper of Fazel et
al. [17], who studied the offline setting for the ran-
domly initialized LQR, and showed that a population
version of gradient descent, when run on the non-
convex LQR cost objective, converges to the global
optimum. In order to turn this into a derivative-free
algorithm, they constructed near-exact gradient esti-
mates from reward samples and showed that the sam-
ple complexity of such a procedure is bounded polyno-
mially in the parameters of the problem; however, the
dependence on various parameters is not made explicit
in their analysis.

Also of particular relevance to our paper is the exten-
sive literature on zero-order optimization. Flaxman et
al. [19] showed that these methods can be analyzed
for convex optimization by making an explicit con-
nection to function smoothing, and Agarwal et al. [4]
improved some of these convergence rates. Results are
also available for strongly convex [23], smooth [20] and
convex [33, 14, 47] functions, with Shamir [39, 40] char-
acterizing the fundamental limits of many problems in
this space. Broadly speaking, all of the methods in this
literature can be seen as variants of stochastic search:
they proceed by constructing estimates of directional
derivatives of the function from randomly chosen zero
order evaluations. In the regime where the function
evaluations are stochastic, different convergence rates
are obtained based on whether such a procedure uses
a one-point estimate that is obtained from a single
function evaluation [19], or a k-point estimate [4] for
some k > 2. There has also been some recent work
on constrained zero-order optimization of high dimen-
sional non-convex functions [7], as well zero-order op-
timization of non-convex functions satisfying certain
smoothness properties that are motivated by statisti-
cal estimation [46].

Our contributions In this paper, we study ran-
domly initialized linear quadratic systems in the of-
fline setting through the lens of derivative-free opti-
mization. Our main contribution is to establish upper
bounds on the sample complexity as a function of the
dimension, error tolerance, and curvature parameters
of the problem instance. In contrast to prior work, the
rates that we provide are explicit, and the algorithm
that we analyze is a standard and practical two-point
variant of the stochastic search heuristic. Our main
contribution is stated in the following informal theo-
rem (to be stated more precisely in the sequel):

Main Theorem (informal). In an m-dimensional
state space, with high probability one can obtain an
e-approzimate solution to a linear quadratic system
from observing the noisy costs of O(m?/€) trajectories
from the system.

In our theoretical statements, the multiplicative pre-
factors are explicit lower-order polynomials of the cur-
vature properties of the cost function. From a techni-
cal standpoint, we build upon some known properties
of the LQR cost function established in past work on
randomly initialized systems [17]. We also isolate and
sharpen some key properties that are essential to es-
tablishing sharp rates of zero-order optimization; as
an example, compared to the setting with random-
initialization and one-point reward feedback studied
by Fazel et al. [17], establishing these properties allows
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us to analyze a natural algorithm that improves® the
dependence of the bound on the error tolerance € from
at least O (1/€*) to O (1/e). Crucially, our analysis is
complicated by the fact that we must ensure that the
iterates are confined to the region in which the linear
system is stable, and such stability considerations in-
troduce additional restrictions on the parameters used
in our optimization procedure.

2 Background and problem set-up

In this section, we discuss the background related to
zero-order optimization and the setup for the linear
quadratic control problem.

2.1 Optimization background

We first introduce some standard optimization related
background and assumptions, and make the zero-order
setting precise.

Stochastic zero-order optimization: We con-
sider optimization problems of the form
min f(x) : = Eeup [F(x, €)], (1)

zeEX

where £ is a zero mean random variable that represents
the noise in the problem, and the function f above can
be non-convex in general with a possibly non-convex
domain X C R<.

In particular, we consider stochastic zero-order opti-
mization methods with oracle access to noisy function
evaluations. We operate under the two point ora-
cle model, in which the optimizer specifies a pair of
points (z,y), and obtains the random values F(z,¢)
and F(y,§).

Function properties: Before defining the optimiza-
tion problems considered in this paper by instantiating
the pair of functions (f, F), let us precisely define some
standard properties that make repeated appearances
in the sequel.

Definition 1 (Locally Lipschitz Gradients). A con-
tinuously differentiable function g with domain X is
said to have (¢, B) locally Lipschitz gradients at © € X
if for all y € X with ||z — y|l2 < 8.

IVg(y) = Vg(@)ly < olly — x|, (2)

We often say that g has locally Lipschitz gradients, by
which we mean for each z € X the function g has lo-
cally Lipschitz gradients, albeit with constants (¢, )
that may depend on x. This property guarantees that

!While the rates established by Fazel et al. [17] are not
explicit, their algorithm is conservative and a bound of or-
der 1/€* can be distilled by working through their analysis.

the function g has at most quadratic growth locally
around every point, but the shape of the quadratic
and the radius of the ball within which such an ap-
proximation holds may depend on the point itself.

Definition 2 (Locally Lipschitz Function). A contin-
uwously differentiable function g with domain X is said
to be (X, Q) locally Lipschitz at x € X if for ally € X
such that ||z — yll2 < ¢

l9(y) — g(x)] < My — 2| (3)

As before, when we say that the function g is locally
Lipschitz, we mean that this condition holds for all
x € X, albeit with parameters (A, ¢) that may depend
on x. The local Lipschitz property guarantees that
the function g grows no faster than linearly in a local
neighborhood around each point.

Definition 3 (PL Condition). A continuously dif-
ferentiable function g with domain X and a finite
global minimum g* is said to be u-PL if it satisfies
the Polyak-Lojasiewicz (PL) inequality with constant
w >0, given by

IVg(@))3 > p (9(x) —g*)  forallzeX. (4)

The PL condition, first introduced by Polyak [34]
and Lojasiewicz [29], is a relaxation of the notion of
strong convexity. It allows for a certain degree of
non-convexity in the function g. Note that Inequal-
ity (4) yields an upper bound on the gap to opti-
mality that is proportional to the squared norm of
the gradient. Thus, while the condition admits non-
convex functions, it requires that all first-order sta-
tionary points also be global minimizers. Karimi et
al. [25] recently showed that many standard first-order
convex optimization algorithms retain their attractive
convergence guarantees over this more general class.

2.2 Optimal control background

We now turn to some basic background on optimal
control and reinforcement learning. An optimal con-
trol problem is specified by a dynamics model and
a real-valued cost function. The dynamics model
consists of a sequence of functions {h¢(ss, ar, 2)}y>0,
which models how the state vector s; transitions to
the next state sy when a control input a; is applied
at a time-step t. The term z; captures the noise dis-
turbance in the system. The cost function c¢(s¢, a;)
specifies the cost incurred by taking an action a; in
the state s;. The goal of the control problem is to find
a sequence of control inputs {a; },-,, dependent on the

history of states H; : = (so, $1,- -, St—1), SO as to solve
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the optimization problem

minE Z'ytct(st,at) s.t. i1 = he(se, a, 2¢),

t>0

(5)

where the expectation above is with respect to the
noise in the transition dynamics as well as any random-
ness in the selection of control inputs, and 0 < v <1
represents a multiplicative discount factor. A mapping
from histories H; to controls a; is called a policy, and
the above minimization is effectively over the space of
policies.

There is a distinction to be made here between the
classical fully-observed setting in stochastic control in
which the dynamics model h; is known—in this case,
such a problem may be solved (at least in principle) by
the Bellman recursion (see, e.g., Bertsekas [8]), and the
system identification setting in which the dynamics are
completely unknown. We operate in the latter setting,
and accommodate the further assumption that even
the cost function ¢; is unknown.

In this paper, we assume that the state space is m-
dimensional, and the control space is k-dimensional,
so that s; € R™ and a; € R*¥. The linear quadratic
system specifies particular forms for the dynamics and
costs, respectively. In particular, the cost function
obeys the quadratic form

T T
¢t =8, Qs + a, Ray

for a pair of positive definite matrices (Q, R) of the
appropriate dimensions. Additionally, the dynamics
model is linear in both states and controls, and takes
the form

si41 = Asy + Bay,

where A and B are transition matrices of the appropri-
ate dimension. The randomness in the problem comes
from choosing the initial state sy at random from a
distribution D.

Throughout this paper, we assume? that for a random
variable v ~ D, we have

Ep] =0, Efvv'] =1, and |[v||? < C,, as. (6)

2It is important to note that our assumption of identity
covariance of the noise distributions can be made without
loss of generality: for a problem with non-identity (but
full-dimensional) covariance X, we may re-parametrize the
problem with the modifications

A =x"12AxY? 0 B =%7?B, and s, = 2%,

in which case the new problem with states s; and the pair

of transition matrices (A’, B') is driven by noise satisfying
the assumptions (6).

While we assume boundedness of the distribution
for convenience, our results extend straightforwardly
to sub-Gaussian distributions by appealing to high-
probability bounds for quadratic forms of sub-
Gaussian random vectors [22] and standard truncation
arguments. The final iteration complexity also changes
by at most poly-logarithmic factors in the problem pa-
rameters; for brevity, we operate under the assump-
tions (6) throughout the paper and omit standard cal-
culations for sub-Gaussian distributions.

By classical results in optimal control theory [24, 48],
the optimal controller for the LQR problem under
both of these noise models takes the linear form a; =
—K*s,, for some matrix K* € R¥*™, When the sys-
tem matrices are known, the controller matrix K* can
be obtained by solving the discrete-time algebraic Ric-
cati equation [36].

With the knowledge that the optimal policy is an in-
variant linear transformation of the state, one can
reparametrize the LQR objective in terms of the linear
class of policies, and focus on optimization procedures
that only search over the class of linear policies. Be-
low, we define such a parametrization under the noise
models introduced above, and make explicit the con-
nections to the stochastic optimization model (1).

Random initialization For each choice of the (ran-
dom) initial state sg, let Cinit,y (K s0) denote the cost
of executing a linear policy K from initial state sg, so
that

o0

Cone 300 := 3 (s Qs+l Bar). (7

t=0

where we have the noiseless dynamics ;11 = As;+ Ba,
and a; = —Ks; for each t > 0. While Cinit (K s0) is
a random variable that denotes some notion of sample
cost, our goal is to minimize the population cost

C'init,'y(‘Kr) = ]ESONDO [Cinitﬁ(K; SO)] (8)
over choices of the policy® K.

From here on, the word policy will always refer to
a linear policy, and since we work with this natural
parametrization of the cost function, our problem has
effective dimension D = m - k, given by the product of
state and control dimensions.

A policy K is said to stabilize the system (A, B) if we
have pspec(A — BK) < 1, where pgpec(-) denotes the
spectral radius of a matrix. We assume throughout
that the LQR system to be optimized is controllable,
meaning that there exists some policy K satisfying the

3Such a setting should be contrasted with the setting
with additive noise, for which we also obtain guarantees;
these can be found in the full version of the present pa-
per [30].
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condition pgpec(A—BK) < 1. Furthermore, we assume
access to some policy Ky with finite cost (see the re-
lated literature [17, 12]); we use such a policy Ky as
an initialization for our algorithms.

2.2.1 Some properties of the LQR cost
function

Let us turn to establishing properties of the pair of
population cost function Cinit ~(K') and its sample vari-
ant Cinit, v (K, 59), in order to place the problem within
the context of optimization.

First, it is important to note that the population cost
function Cinit, (K) is non-convex. In particular, for any
unstable policy, the state sequence blows up and the
costs becomes infinite, but as noted by Fazel et al. [17],
the stabilizing region {K : pspec(A — BK) < 1} is non-
convex, thereby rendering our optimization problems
non-convex.

In spite of this non-convexity, the cost function exhibit
many properties that make it amenable to fast stochas-
tic optimization methods. Variants of the following
properties were first established by Fazel et al. [17] for
the random initialization cost function Cinity. The fol-
lowing Lemma 1 and Lemma 2 require certain refine-
ments of their claims, which we prove in Appendix C.

Lemma 1 (LQR Cost is locally Lipschitz). Given any
linear policy K, there exist positive scalars (Ay,Cx),
depending on the function value Cinier(K), such that
for all policies K' satisfying | K’ — K||r < x, and for
all initial states sg, we have

|Cinit,y (I 50) — Cinit,y (K 50)| < A | K" — K| .

Lemma 2 (LQR Cost has locally Lipschitz Gradi-
ents). Given any linear policy K, there exist posi-
tive scalars (B, ¢« ), depending on the function value
Cinit,y (K), such that for all policies K' satisfying || K’ —
K| r < Bk, we have

IV Cinit 7 (K") = VCinit (K| < ¢l K" = K| (10)

Lemma 3 (LQR satisfies PL). There exists a univer-
sal constant puq > 0 such that for all stable policies
K, we have

mvcinitn/ (K) IH% > qur(cinitry (K) - Cinit,y (K*))a

where K* is the global minimum of the cost function
Cinit,~ -

For the sake of exposition, we have stated these proper-
ties without specifying the various smoothness and PL
constants. Please see A,Rpendix C for explicit expres-
sions for the tuple (g, Ax, ¢x, Br, Cx, thigr) as functions
of the parameters of the LQR problem.

2.2.2 Stochastic zero-order oracle in LQR

Let us now describe the form of observations that we
make in the LQR system. Recall that we are operating
in the derivative-free setting, where we have access to
only (noisy) function evaluations and not the problem
parameters; in particular, the tuple (A, B, @, R) that
parametrizes the LQR problem is unknown.

Our observations consist of the noisy function evalua-
tions Cinit,~ (K; so) and we consider two-point setting.
In the two-point setting, a query of the function at the
points (K, K') obtains the pair of noisy function val-
ues Cinit,y (K s0) and Cinit,y(K'; s9) for an initial state
sp drawn at random; this setting has an immediate
operational interpretation as running two policies with
the same random initialization.

A few points regarding our query model merit discus-
sion. First, note that in the context of the control
objective, each query produces a noisy sample of the
long term trajectory cost, and so our sample complex-
ity is measured in terms of the number of rollouts, or
trajectories. Such an assumption is reasonable since
the “true” sample complexity that takes into account
the length of the trajectories is only larger by a small
factor—the truncated, finite cost converges exponen-
tially quickly to the infinite sum for stable policies.
Second, we note that while the one-point query model
was studied by Fazel et al. [17] for the random initial-
ization model—albeit with sub-optimal guarantees—
we study a two-point query model, which is known
to lead to better dimension-dependence in zero-order
stochastic optimization [14].

3 Main results

Our main result is the analysis of a stochastic zero-
order optimization algorithm (Algorithm 1) for the lin-
ear quadratic regulator (LQR) problem, for which we
provide bounds on the sub-optimality gap that hold
with non-trivial probability. We begin by introducing
the stochastic zero-order algorithm that we analyze for
this setting, previously analyzed by Agarwal et al. [4]
and Shamir [40] in the context of convex optimization.

3.1 Stochastic zero-order algorithm

We analyze a standard zero-order algorithm for
stochastic optimization [4, 40] in application to the
LQR problem. We introduce some notation required
to describe this algorithm, operating in the general set-
ting where we want to optimize a function f: X — R
of the form f(z) = E¢op[F(x;€)]. Here we assume the
inclusion X C R?, and let D denote a generic source
of randomness in the zero-order function evaluation.

The zero-order algorithms that we study here use
noisy function evaluations in order to construct near-
unbiased estimates of the gradient. Let us now de-
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scribe how such an estimate is constructed in the two-
point setting. Let S¥=! = {u € R : ||jul]z = 1} denote
the d-dimensional unit shell. Let Unif(S?~!) denote
the uniform distribution over the set S4—1.

For a given scalar »r > 0 and a random direction
u ~ Unif(S9~!) chosen independently of the random
variable £, consider the two point gradient estimate

glx):= [F(x +ru,é) — F(x — ru,f)] %u (11)

We point outside that the gradient estimate g(z) above
depends on the random direction v and the smoothing
radius r. For notational convenience, in the rest of the
paper, we hide the dependence on u and r.

The resulting ratios are almost unbiased approxima-
tions of the secant ratio that defines the derivative
at x, and these approximations get better and better
as the smoothing radius r gets smaller. On the other
hand, small values of the radius r may in general result
in estimates with large variance. Our algorithms make
use of such randomized approximations in a sequence
of rounds by choosing appropriate values of the radius
r; the general form of such an algorithm is stated be-
low.

Algorithm 1 Stochastic Zero-Order Method

1: Given iteration number 7' > 1, initial point zg €
X, step size > 0 and smoothing radius 7 > 0

2: fort € {0,1,...,T—1} do

3: Sample & ~ D and u; ~ Unif(S?-1)

4 g(xy) = [F(z +ru, &) — Fz — rug, &)] sty

5

Tyy1 T — ng(e)
return zr

3.2 Convergence guarantees

We now turn to analyzing Algorithm 1 in the settings
of LQR. As mentioned before, the difficulty of opti-
mizing the LQR cost function is governed by multiple
factors such as stability, non-convexity of the feasible
set, and non-convexity of the objective. Furthermore,
the Lipschitz gradient and Lipschitz properties for this
cost function only hold locally with the radius of local-
ity depending on the current iterate. Most crucially,
the function is infinite outside of the region of stability,
and so large steps can have disastrous consequences
since we do not have access to a projection oracle that
brings us back into the region of stability. It is thus
essential to control the behavior of our stochastic, high
variance algorithm over the entire course of optimiza-
tion.

Our strategy to overcome these challenges is to per-
form a careful martingale analysis, showing that the
iterates remain bounded throughout the course of the
algorithm; the rate depends, among other things, on
the variance of the gradient estimates obtained over

the course of the algorithm. By showing that the al-
gorithm remains within the region of finite cost, we
can also obtain bounds on the locally Lipschitz and
smoothness parameters, so that our step-size can be
set accordingly.

Let us now introduce some notation in order to make
this intuition precise. We are interested in optimizing
a function f = E, [C(:; so)] obeying the PL inequality
as well as certain local curvature conditions.

Recall that we are given an initial point Ky with finite
cost C(Ky); the global upper bound on the cost that
we target in the analysis is set according to the cost
C(Ky) of this initialization. Given the initial gap to
optimality Ag : = C(Ky) — C(K*), we define the set

G°:={K | C(K)—C(K*) < 10A,}, (12)

corresponding to points K whose cost gap is at most
ten times the initial cost gap Ag.

Assume that the function C is (¢k, Sx) locally smooth
and (Mg, (x) locally Lipschitz at the point K. Thus,
both of these properties hold simultaneously within a
neighborhood of radius p, = min{fy, (x} of the point
K. Now define the quantities

¢o:= sup ¢r, Ag:= sup Ag, and pgy

i= infO PK -
Kego Kego Keg

By defining these quantities, we have effectively trans-
formed the local properties of the function C into global
properties that hold over the bounded set G°. We also
define a convenient functional of these curvature pa-

rameters 6y := min{ﬁ, i—z}, which simplifies the

statements of our results. Additionally, we define

Goo

sup [[g(K)2, and
Kego

Go = sup E [|lg(K) — E[g(K) | K][l3] ,
Kego

where the stochastic gradient g(z) is defined in step
(4) of Algorithm 1. In Appendix A.2, provide the fol-
lowing concrete upper bounds for G, and Gs:

Goo < D)o and Gy < D2 (13)

With this set-up, we are now ready to state the main
result regarding the convergence rate of Algorithm 1
for LQR.

Theorem 1. Suppose that the step-size and smoothing
radius are chosen so as to satisfy

< min w1~ and
= 24000Gs" 200 Go )
(14a)

. [bop [ 1 Jeu
< Ly R A . (14b
Tmm{s% 15" 240 \/ 30" ° (14b)
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Then for a given error tolerance € such that
elog(120Ao/€) < 12 Ay, the iterate Kt of Algorithm 1

after T = ﬁ log (%) iterations satisfies the bound

C(Kr) —C(K*) < e (14c)

with probability greater than 3/4.

The proof of the theorem is deferred to Appendix A.

A few comments on Theorem 1 are in order. First,
notice that the algorithm is guaranteed to return an e-
accurate solution with constant probability. This suc-
cess probability can be improved to the value 1 — 0,
for any 0 € (0, i), by running the algorithm O(log(%))
times and choosing the iterate with the smallest final
cost. Such procedures to boost constant probability
results to high probability ones are standard in the lit-
erature on randomized algorithms [31, 43]. Further,
the probability bound of % in itself can be sharpened
by a slightly more refined analysis with different con-
stants. Additionally, by examining the proof, it can
be seen that we establish a result (cf. Proposition 1
in Appendix A) that is slightly stronger than Theo-
rem 1, and then obtain the theorem from this more
general result. The proof of the theorem itself is rela-
tively short, and makes use of a carefully constructed
martingale along with an appropriately defined stop-
ping time. As mentioned before, the main challenge in
the proof is to ensure that we have bounded iterates
while still preserving the strong convergence proper-
ties of zero-order stochastic methods for smooth func-
tions that satisfy the PL property. We now discuss
the dependence of the sample complexity on the vari-
ous parameters in more detail.

Dependence on e: Our bound shows that we have a
(’)(%) convergence rate. This fast rate arises due to the
relatively low variance of the gradient estimator in the
two-point setting, which is independent of the smooth-
ing radius r, as has been frequently noted in past liter-
ature on zero order optimization [4, 40, 14]. Lemma 1
establishes the Lipschitz property of the LQR cost
function for each instantiation of the noise variable sg,
which ensures that the Lipschitz constant of our sam-
ple cost function is also bounded; therefore, the noise
of the problem reduces as we approach the optimum
solution, enabling fast convergence. See Figure 1(a)
for a numerical confirmation of this scaling.

Dependence on dimension: The dependence on
dimension enters our bound via the variance of the
gradient estimate, as is typical of many derivative-free
procedures [14, 40]. The two-point setting gives rise
to a dimension dependence which is linear in D (the
dimension of our optimization variable), and the rea-
son is similar to why this occurs for convex optimiza-
tion [40]. It is particularly interesting to compare the

dimension dependence to results in model-based con-
trol [11] with noisy dynamics. There, the sample com-
plexity scales with the sum of state and control dimen-
sions m + k, whereas the dependence in the two-point
setting is on their product D = m - k. However, each
observation in that setting consists of a state vector of
length m, while here we only get access to scalar cost
values, and so in that loose sense, the complexities of
the two settings are comparable.

We observe that other dimension-dependent quantities
such as C,, sit implicitly in the bounds we have derived
for the curvature parameters (¢g, Ag, ().

Dependence on curvature parameters: The it-
eration complexity scales linearly in the smoothness
parameter of the problem ¢y, and quadratically in
the other curvature parameters Ag and u. See Ap-
pendix C.3 for precise definitions of these parameters
for the LQR problem. In particular, it is worth noting
that our tightest bounds for these quantities depend on
the dimension of the problem implicitly for some LQR
instances, and are actually lower-order polynomials of
the dimension-dependent quantity C(Kj). In practice,
however, it is likely that much sharper bounds can be
proved on these parameters, e.g., in simulation (see
Figure 1(c)), the dependence of the sample complex-
ity on the initial cost is in fact relatively weak—of the
order C(Ky)?—and our bounds are clearly not sharp
in that sense. An important direction for future work
is to derive tight bounds on the dependence on dimen-
sion and C(K) for the curvature parameters.

4 Experimental Results

In this section, we present experiments to examine the
accuracy of our theoretical results, and compare the
derivative-free approach to a variant of the algorithm
of Fazel et al. [17]. The algorithm given in Fazel et
al. [17] uses a one point estimate of the gradient that
suffers from a very high variance. Therefore, and in the
spirit of keeping our comparison fair, we instead inves-
tigate the performance of a batch version of the two-
point gradient estimate, which for large batch-sizes,
resembles the algorithm of Fazel et al. [17] in spirit,
since we obtain high-accuracy estimates of the gradi-
ents*. Importantly, note that Algorithm 1 corresponds
to using a batch size of 1 at each time step.

We conducted three different experiments. The first
was to verify that the scaling of the iteration complex-
ity with the parameter € is indeed the (9(%) rate that
Theorem 1 predicts. The second was to better under-
stand the scaling of the iteration complexity with the
parameter C(Kj), as well as to see how batching at
each time step affects performance. The third experi-
ment was used to compare the scaling of the step size

4We remark that Fazel et al. also study a zero order
natural gradient algorithm. We do not compare to this
since it requires access to a stronger oracle model.
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Figure 1. Number of samples required to reach an error tolerance of €, (a) plotted against increasing values of
1/e for different initialization values and (b) plotted against increasing values of C(Kj) for different batch sizes. In
(c), we depict the maximum step size that allows for convergence, plotted against the size of the minibatch used
to estimate the gradient. Each dotted line represents the line of best fit for the corresponding data points. For

more problem details, see Appendix D.

required to converge to optimum, with the batch size.
We used a 3 x 3 LQR problem for these experiments
with C(K™*) = 5.08; the other parameters are speci-
fied in Appendix D due to space constraints. In all of
our experiments, the step-size was manually tuned to
ensure the fastest possible rate of convergence.

We depict the results of the first experiment in Figure
1(a), where we average over 20 runs of the algorithm.
The best fit lines for each setting of the initialization
accuracy C(Kj) are plotted as dotted lines. The plot
confirms that the empirical scaling is roughly O(%), as
predicted by Theorem 1. We additionally verified this
on different LQR problem instances; the results are in
the Appendix D.

The results from the second experiment are shown in
Figure 1(b), where we also test multiple batch-sizes
for the problem. Once again, the best fit lines for
these data points are shown as dotted lines. The plot
reveals that the scaling with initial cost is of the or-
der O(C(Kp)?). This reveals a gap between the de-
pendency on C(Kjy) of the Lipschitz and smoothness
constants that our theoretical analysis provides, and
the true behavior of the problem. Another interesting
aspect of these plots is the behavior of batching for
this problem. Typically, we would expect that using
a larger batch size corresponds to being able to use a
proportionally larger step size for the problem, and so
the total zero order complexity while using different
batch sizes should remain more or less constant. How-
ever, the plots show that in the LQR problem, a larger
batch size requires more zero-order evaluations.

We explored this phenomenon further in the third ex-
periment, and our plots in Figure 1(c) show the maxi-
mum possible step-size that can be set to ensure con-
vergence. Notably, the step size is limited not just by
the variance of the gradient estimate (i.e. the size of
the batch), but additionally by stability considerations

in the problem. A larger batch does not help if the step
size is too large and one eventually takes a step out of
the region of stability, and our plots corroborate this
intuition. Further details are provided in Appendix D.

Discussion: We showed that under a two-point eval-
uation oracle, a canonical derivative-free optimization
method achieves a fast rate of convergence for the
non-convex LQR problem. Notably, our proof deals
directly with some additional difficulties that are spe-
cific to this problem and do not arise in the analysis
of typical optimization algorithms — in particular, we
handle both the unboundedness of the cost, and the
non-convexity of the domain directly. Interestingly,
our proof only relies on certain local properties of the
function that can be guaranteed over a bounded set,
and so our analysis is more broadly applicable.

While this paper analyzes a canonical zero-order op-
timization algorithm for model-free control of lin-
ear quadratic systems, many open questions remain.
First, in order to carry out a fair comparison between
model-based and model-free RL in this setting, it is im-
portant to analyze this algorithm for linear quadratic
systems with additive noise in the dynamics. Lower
bounds in the model-free setting are also interesting
in this regard, and likely to borrow from the exten-
sive literature on lower bounds in zero-order optimiza-
tion [39]. In the broader context of model-free rein-
forcement learning as well, there are many open ques-
tions. First, a derivative-free algorithm over linear
policies is reasonable even in other systems; can we es-
tablish provable guarantees over larger classes of prob-
lems? Second, there is no need to restrict ourselves to
linear policies; in practical RL systems, derivative-free
algorithms are run for policies that parametrized in
a much more complex fashion. How does the sample
complexity of the problem change with the class of
policies we are optimizing over?
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