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1 Description of SVAR-GFCI
We reproduce several definitions and pseudcode from [4] to describe the SVAR-GFCI algorithm. The algorithm
calls SVAR-GES as a subroutine, which is a modfied version of the GES algorithm [3]. As described in
[4], SVAR-GES simply modifies the steps of GES to enforce the time order and repeating structure of the
presumed SVAR data-generating process.

Definition 1.1. Two variables are adjacent if there is some edge between them. Denote the set of adjacencies
of X by adj(X,G). A path is a sequence of distinct adjacent vertices containing at least two vertices,
e.g., 〈Xi, Xi+1, ..., Xi+n〉. A path is a directed path from Xi to Xn if for all m ∈ {1, ..., n} the edge
Xi+m−1 → Xi+m occurs.

Definition 1.2. Let the pair of vertices (Xi,t, Xj,s) be called homologous to pair (Xm,a, Xn,b) if m = i,
n = j, and t− s = a− b. hom(Xi,t, Xj,s,G) denotes the set of vertex pairs homologous to (Xi,t, Xj,s) in graph
G.

Definition 1.3. Given a path π in a graph G, a non-endpoint vertex Xj on π is called a collider if the two
edges incident to Xj are both into Xj , i.e., have arrowheads at Xj (∗→ Xj ←∗). (Note the ∗ mark is used to
represent any possible endpoint.) A v-structure is a triple 〈Xi, Xj , Xk〉 such that Xi ∗→ Xj ←∗ Xk and Xi

and Xk are not adjacent.

Definition 1.4. Let X ∈ pds(Xi, Xj ,G) if and only if X 6= Xi, X 6= Xj, and there is a path π between Xi

and X in G such that for every subpath 〈Xm, Xl, Xh〉 of π either Xl is a collider on the subpath in G or
〈Xm, Xl, Xh〉 is a triangle in G. A triangle is a triple 〈Xm, Xl, Xh〉 where each pair of vertices is adjacent.

Definition 1.5. Let adjt(Xi,t,G) = {Xj,s : Xj,s ∈ adj(Xi,t,G), s ≤ t} and pdst(Xi,t, Xk,u,G) = {Xj,s :
Xj,s ∈ pds(Xi,t, Xk,u,G), s ≤ max(t, u)}.

Note that SVAR-GFCI takes as input a score and an independence test. Typically, independence tests have
a user-specified rejection threshold α. The BIC CI test as we defined it has no user-specified threshold,
but instead the level of the test naturally varies with sample size in an approximately Bayesian way (as
mentioned in the main text). So, α should be considered an optional input below. Of course, the score used
with SVAR-GFCI in the present context is the VECM BIC score.
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Algorithm 1.1: SVAR-GFCI(Score,Test, α)

Input: Data on variables Xt, ...,Xt−p = {X1,t, ..., Xk,t, ..., X1,t−p, ..., Xk,t−p}
Output: Dynamic PAG segment P
1. G ← SVAR-GES(Score)
2. Form the graph P on vertex set Xt, ...,Xt−p with adjacencies in G and ◦–◦ edges.
3. n← 0
4. repeat
5. for all pairs of adjacent vertices (Xi,t, Xj,s) s.t. |adjt(Xi,t,P) \ {Xj,s}| ≥ n

and subsets S ⊂ adjt(Xi,t,P) \ {Xj,s} s.t. |S| = n
6. if Xi,t ⊥⊥ Xj,s|S according to (Test, α)

then

Delete edge Xi,t ◦–◦ Xj,s from P.
Delete edge Xm,a ◦–◦ Xn,b ∀(Xm,a, Xn,b) ∈ hom(Xi,t, Xj,s,P).
Let sepset(Xi,t, Xj,s) = sepset(Xi,t, Xj,s) = S.

7. end
8. n← n+ 1
9. until for each pair of adjacent vertices (Xi,t, Xj,s), |adjt(Xi,t,P) \ {Xj,s}| < n.
10. for all adjacent vertices (Xi,t, Xj,s) orient Xi,t ∗→ Xj,s iff s > t.
11. for all triples (Xi,t, Xk,r, Xj,s) s.t. Xi,t ∈ adjt(Xk,r,P) and Xj,s ∈ adjt(Xk,r,P)

but Xi,t 6∈ adjt(Xj,s,P), orient Xi,t ∗→ Xk,r ←∗ Xj,s iff
(Xi,t, Xk,r, Xj,s) is a v-structure in G, or it is a triangle in G
and Xk,r 6∈ sepset(Xi,t, Xj,s); then also orient Xm,a ∗→ Xo,c ←∗ Xn,b

∀(Xm,a, Xo,c) ∈ hom(Xi,t, Xk,r,P) and ∀(Xn,b, Xo,c) ∈ hom(Xj,t, Xk,r,P)
12. for all pairs (Xi,t, Xj,s) adjacent in P if ∃S s.t.

S ∈ pdst(Xi,t, Xj,s,P) or S ∈ pdss(Xj,s, Xi,t,P) and Xi,t ⊥⊥ Xj,s|S
according to (Test, α)

then

Delete edge Xi,t ◦–◦ Xj,s from P.
Delete edge Xm,a ◦–◦ Xn,b ∀(Xm,a, Xn,b) ∈ hom(Xi,t, Xj,s,P).
Let sepset(Xi,t, Xj,s) = sepset(Xi,t, Xj,s) = S.

13. Reorient all edges as ◦–◦ and repeat steps 10 and 11.
14. Exhaustively apply orientation rules (R1-R10) in [7] to orient

remaining endpoints, orienting all homologous pairs similarly.
15. return P.

2 Proofs
Proposition 1. The VECM BIC score is locally consistent under assumptions A1 and A2.

Proof. The proof of local consistency in [3] only requires that the score is decomposible and consistent. That
the VECM BIC score is decomposible is true by definition of the score. So, we only need to argue that the
VECM BIC score is consistent. Under assumptions A1 and A2, least squares regression is consistent for
estimating the VECM parameters, so we have a consistent estimate of Σ. The consistency of the VECM BIC
score follows from a result in [6]. In that work, the author defines a novel model score called the Posterior
Information Criterion (PIC), and shows that the PIC score is consistent for I(1) processes under assumptions
weaker than those stated here (p. 768). The PIC score is more complicated than BIC in finite samples, but
asymptotically the PIC and BIC are almost equivalent, except that the PIC includes an extra constant factor
κ > 0 multiplying the penalty term, i.e., that PIC is asymptotically T

2 log |Σ̂| − κd
2 log T (p. 776). In fact,

κ ≥ 1 for VECM models, since the additional penalty on model dimension comes from double-counting the
parameters of the cointegrating matrix Π in a VECM [1, p. 7-8].

The BIC score ranks models in the same order as the PIC score, asymptotically. To see this, consider
two models G1 and G2. Say PIC ranks G1 higher than G2. There are two cases to consider. In the first
case, the two models have the same likelihoods. PIC(G1) > PIC(G2) if and only if 0 > (d1 − d2)κ log T , i.e.,
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d2 > d1. The BIC score would then also rank G1 higher than G2. In the second case, the models have different
likelihoods. PIC(G1) > PIC(G2) if and only if T

2 log |Σ̂1|− T
2 log |Σ̂2| > (d1−d2)κ log T . Since κ log T ≥ log T

for κ ≥ 1, the BIC score would also rank G1 higher than G2. Thus, the consistency of the VECM BIC score
follows from the consistency of the PIC score.

For related work on the consistency of the BIC score for order selection (determining p) and cointegration
rank selection, see [5] and [2] respectively. We note that future research may explore the prospects of using the
PIC score (either in its exact finite sample form, or in asymptotic form) in place of BIC in greedy score-based
search.

Proposition 2. Assume the stochastic process {X̃t}t∈N, where X̃t = (L′t,X
′
t)
′, satisfies A1-A3. LetM be

the MAG implied by G over Xt, ...,Xt−p and PAG P the equivalence class ofM. Given T observations of
the marginal subprocess {Xt}t∈N, the SVAR-GFCI algorithm with the VECM BIC score and BIC CI test is a
consistent estimator of P.

Proof. Under assumptions A1-3 the VECM BIC score is a decomposable, consistent, and score-equivalent
score. The BIC CI test is a consistent test of conditional independence, as a consequence of local consistency
of the score. The conclusion follows from the consistency of the SVAR-GFCI algorithm [4].

X1,t−1 X1,t

X2,t−1 X2,t

X3,t−1 X3,t

X4,t−1 X4,t

X5,t−1 X5,t

L2,t−1 L2,t

L1,t−1 L1,t

Figure 1: The assumed data-generating process for our nonstationary simulation study. The latent processes
are pure random walks.
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