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Abstract

We adapt graphical causal structure learn-
ing methods to apply to nonstationary time
series data, specifically to processes that ex-
hibit stochastic trends. We modify the like-
lihood component of the BIC score used by
score-based search algorithms, such that it
remains a consistent selection criterion for in-
tegrated or cointegrated processes. We use
this modified score in conjunction with the
SVAR-GFCI algorithm [15], which allows us
to recover qualitative structural information
about the underlying data-generating process
even in the presence of latent (unmeasured)
factors. We demonstrate our approach on
both simulated and real macroeconomic data.

1 Introduction

Standard methods for causal structure learning from
time series data, including techniques based on graphi-
cal models, typically rely on a stationarity assumption.
A multivariate stochastic process is nonstationary when
the joint distribution (or conditional distribution, given
initial values) of the variables changes over time. There
are many varieties of nonstationarity, but the present
focus will be on “stochastic trends,” which are common
features of (e.g.) macroeconomic time series, such as
interest and inflation rates. Stochastic trends occur
when the usual autoregressive stability condition fails,
and so some variables exhibit so-called “random walk”
behavior [14]. Specifically, we consider the case where
the characteristic polynomial has some unit roots, but
the process becomes stable upon differencing (so, we ex-
clude explosive processes). This includes cointegrated
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processes, wherein linear combinations of multiple time
series are stationary.

We begin with some brief background on structural
vector autoregressions, causal graphical models, and
algorithms which learn causal graphs from time series
data. Then, we use a toy example to explain why
simply taking first differences of nonstationary variables
is not sufficient for accurate structure learning, and
instead we introduce an approach which makes use of
a reparameterization of the data-generating process
in error-correction form. Finally, we present some
simulation results and an application to macroeconomic
time series data from Denmark to support our claim
that structure learning from nonstationary data can be
feasibly and fruitfully tackled by graphical methods.

2 Background

In the following, we use boldface letters to denote
vectors of random variables, e.g., Xt is a k × 1 vector
of time series variables (X1,t, ..., Xk,t)

′. To accomodate
the possibility of unmeasured variables, we sometimes
write X̃t = (L′t,X

′
t)
′ where Lt is a l×1 vector of latent

components.

2.1 Structural VAR models and their
graphical representations

Causal models are often presented as systems of non-
parametric structural equations, which have corre-
sponding graphical representations [23, 18, 19]. In our
dynamical setting, we assume the underlying stochastic
process {X̃t}t∈N is generated by some unknown linear
structural vectorautoregression (SVAR), including arbi-
trary latent components. A (k+ l)-dimensional order-p
SVAR process may be written:

Γ̃0X̃t = Γ̃1X̃t−1 + ...+ Γ̃pX̃t−p + ε̃t (1)

∀t ∈ N where X̃t = (L′t,X
′
t)
′, ε̃t is a vector of mutu-

ally and serially independent exogenous error variables,
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and Γ̃0 has unit diagonal. Rearranging terms such
that (̃I− Γ̃0)X̃t is on the rhs (̃I being the identity
matrix) should make clear that the “contemporane-
ous” causal relations are collected in Γ̃0. We assume
Γ̃0 can be made lower triangular, i.e., that there is a
recursive causal ordering. We limit our attention to
linear and recursive data-generating processes in order
to take advantage of existing theoretical results, and
because linearity is typically assumed in macroecono-
metric practice; however, generalizing our approach to
nonparametric and possibly non-recursive settings is
an important direction for future research.

In the graphical causal modeling literature, systems
of structural equations correspond to directed acyclic
graphs (DAGs) that encode qualitative features of the
equations, e.g., which variables are causally related
and what conditional independence relationships are
implied by the model. A DAG G is a pair (V,E) where
V is a set of vertices and E a set of directed edges (→)
connecting vertices subject to the restriction that there
is no sequence of directed edges from any vertex to
itself (no cycles). Vertices in V typically index some
set of random variables. Specifically, corresponding to
(1) is a dynamic DAG G with vertices corresponding
to elements of {X̃t}t∈N, such that non-zero coefficients
(Γ̃s)ij 6= 0 s ∈ (1, ..., p) and (̃I− Γ̃0)ij 6= 0 imply di-
rected edges Vj,t−s → Vi,t and Vj,t → Vi,t (respectively)
in G. If Vj,t′ → Vi,t in G we say Vj,t′ is a parent (direct
cause) of Vi,t, and denote the set of parents of Vi,t in
G by pa(Vi,t,G). Note that dynamic DAGs have an
infinite number of vertices, since the SVAR model is de-
fined for all t ∈ N. However, in practice we only handle
finite segments, since these models exhibit a repeating
structure. An example is in Figure 1a. Restricting
attention to only observed variables, the system may
be represented by a dynamic MAG (maximal ancestral
graph), which is a kind of mixed graph that includes
both directed (→) and bidirected (↔) edges [21, 26].
The latter correspond roughly to dependencies induced
by latent common causes in the underlying “full” model.
An example is in Figure 1b. See [15] for more details
on dynamic DAGs, dynamic MAGs, and their causal
interpretations.

Previous work on learning causal graphical models from
time series data has largely ignored the possibility of
relevant unmeasured processes and focused mostly on
learning only the contemporaneous relations, i.e., zeros
in the (marginal) matrix Γ0. Building on work initi-
ated by [24], the authors of [2, 4, 9, 16, 5] have used
graphical or related methods to learn contemporaneous
causal relationships, having assumed that all relevant
variables are measured. Typically, learning proceeds
by estimating a reduced form vector autoregression (in
some cases, in error-correction form) and executing

a search procedure like PC [23] or LiNGaM [22] on
the residuals, which corresponds to finding zeros in Γ0.
Recently, [15] introduced methods for learning dynamic
graphical models with unrestricted latent components.
These algorithms, called SVAR-FCI and SVAR-GFCI,
accomodate unmeasured variables by focusing on the
dynamic MAG representation. More precisely, since
SVAR-FCI and SVAR-GFCI use only conditional in-
dependence information to narrow down the range of
causal models consistent with observed data, these al-
gorithms may only recover a Markov equivalence class
of dynamic MAGs, i.e., a set of models which all imply
the same conditional independence relations. A Markov
equivalence class of dynamic MAGs is represented by a
dynamic PAG (partial ancestral graph). PAGs include
◦→ and ◦–◦ edges in addition to the possible edges in a
MAG, where the ◦ mark represents uncertainty about
the underlying orientation (i.e, it could be a “tail” or
an “arrowhead”).

SVAR-FCI is a constraint-based method, which uses
sequential hypothesis tests of conditional independence
to perform model selection. SVAR-GFCI is a hybrid
score-based method, which uses greedy optimization
of a model score to learn most of the connections in
a graph, followed by some additional independence
tests. Both algorithms use a variation of the orienta-
tion rules from the FCI algorithm [23, 27]. The greedy
score-based approach relies on the availability of some
model score satisfing three abstract properties: decom-
posability (that the score can be decomposed into a
sum of “local” contributions), score-equivalence (that
Markov equivalent graphs yield the same score), and
consistency (that the score selects the true model in the
limit). These properties imply an important property,
called local consistency, that is sufficient to prove con-
sistency of the search procedure, as we discuss below
[3]. The BIC score is a popular choice that satisfies
these properties, and is indeed used in conjunction
with SVAR-GFCI in [15]. Our goal will be to devise a
score which satisfies these properties in a nonstationary
setting. Then, we can perform model selection with
SVAR-GFCI, which we describe in detail in the supple-
mentary material. First, we elaborate why stochastic
trends pose a problem for traditional structure learning
techniques.

2.2 Stochastic trends

Some nonstationary data is nonstationary because at
least one variable in the system (perhaps a latent) ex-
hibits a stochastic trend. When such a variable causally
affects other variables, several variables may exhibit
trending behavior and some subsets of the variables
may be cointegrated. This poses a problem for us-
ing conditional independence-based methods of causal
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Xi,t−2 Xi,t−1 Xi,t

Xj,t−2 Xj,t−1 Xj,t

L1 L1 L1

Xk,t−2 Xk,t−1 Xk,t

L2 L2 L2

(a)

Xi,t−2 Xi,t−1 Xi,t

Xj,t−2 Xj,t−1 Xj,t

Xk,t−2 Xk,t−1 Xk,t

(b)

Figure 1: a) A dynamic DAG with latent processes. b) The implied dynamic MAG over the observed processes.
Note that some latents can induce apparently “infinite-order” dependencies in the MAG; see [15] for an explanation.

structure learning. It is well-known that traditional
tests of conditional independence or non-correlation
cannot be straightforwardly applied to variables exhibit-
ing stochastic trends, since such variables will appear
correlated even when the processes are independent
[25, 6, 7, 12]. Specifically, standard correlation tests
rely on estimators of population-level correlation, such
as the sample Pearson correlation coefficient, which in
nonstationary settings fail to converge to any true value
that measures correlation (or dependence) between
the processes. However, in practice the observations
will often be difference-stationary: when Xt exhibits
a stochastic trend ∆Xt ≡ Xt − Xt−1 may be stable
and therefore stationary. That is, the variables will be
I(1) (integrated of order one). One seemingly natural
strategy to try is to use conditional independence tests
among the differenced variables to search for a causal
structure. The resultant model would be a causal graph
over a transformed variable set, but presumably the
model would bear some relationship to the original (not
differenced, i.e., in levels) data-generating process.

Such a procedure would produce inaccurate results,
because differencing can induce spurious correlations.
To see this, consider a simple two-variable example.1

Assume the data-generating process is a linear, two-
variable structural VAR with no contemporaneous
causal connection:

Xt = αXt−1 + βYt−1 + εXt

Yt = δXt−1 + γYt−1 + εYt
(2)

Say that the coefficients are chosen such that there is
one unit root in the characteristic polynomial, ensuring
stochastic nonstationarity. εXt and εYt are mutually and
serially independent Gaussian random variables. Note
that X and Y mutually cause each other at one lag,

1The example and problem were suggested by Kevin
Hoover, personal communication.

but there is not contemporaneous causation between
them. The differenced transformation of this model
is simply obtained by carrying-through the difference
operator:

∆Xt = α∆Xt−1 + β∆Yt−1 + ∆εXt

∆Yt = δ∆Xt−1 + γ∆Yt−1 + ∆εYt
(3)

The structural coefficients relating differenced vari-
ables are just the same as those in the original data-
generating process (2), so one may hope that a pro-
cedure which learns the qualitiative structure of (3)
can be directly leveraged in service of estimating the
coefficients in (2). (Parameter estimation, presumably,
would be done in a separate step once the structure is
known, using something like maximum likelihood tech-
niques for nonstationary data.) Unfortunately, though
it is not obvious from the written form of (3), the differ-
enced variables ∆Xt and ∆Yt are (contemporaneously)
dependent. To see this, consider a special case of the
model with coefficients δ = γ = 0 and α = 1, so that Xt

behaves like a random walk influenced by a stationary
Yt.

Xt = Xt−1 + βYt−1 + εXt

Yt = εYt
(4)

From these equations one can derive:

∆Xt = βεYt−1 + εXt

∆Yt = εYt − εYt−1
(5)

Notice how the expressions for ∆Xt and ∆Yt in terms
of purely stationary components both include εYt−1, so
they will be correlated. Another way of putting this
is that differencing has induced correlation among the
error terms in system (4): ∆εXt and ∆εYt are both seri-
ally correlated (∆εXt is correlated with ∆εXt−1 because
they overlap) and mutually correlated.

Taking all the dependencies among the errors into ac-
count, the graphical representation corresponding to
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∆Xt−1 ∆Xt

∆Yt−1 ∆Yt

∆εYt−1 ∆εYt

∆εXt−1 ∆εXt

Figure 2: The graphical representation of the differ-
enced version of system (4). Here dashed double-headed
edges represent correlations among the errors induced
by differencing, and the solid directed edges correspond
to true structural connections among levels.

the differenced version of system (4) (including the
error variables) is in Figure 2. While this model shares
some features with the underlying data-generating pro-
cess (4), the correlated errors ensure that the output
of a typical causal search algorithm applied to these
differenced variables would be quite misleading. This
simple example also highlights a problem with a sug-
gestion due to Moneta et al. [16, p. 103]. In that paper,
the authors propose a procedure which involves causal
search on the estimated residuals from a VAR model,
along the lines of work discussed earlier. Specifically,
where the researcher has I(1) variables but detects no
cointegration, Moneta et al. prescribe estimating the
VAR in first differences, and performing tests of vanish-
ing partial correlation on the residuals as input into a
search algorithm such as PC. This would not produce
correct causal conclusions, since patterns of partial cor-
relation among the residuals from differences do not
correspond to patterns of partial correlation among the
original variables in levels.

Since structure learning applied to first differences will
fail to reproduce the structural relationships in the
data-generating process (in levels), we instead pro-
ceed by making use of likelihood calculations in a re-
parameterization of the data-generating process.

3 An error-correction approach

In applied econometric work, analysis of nonstation-
ary data which is cointegrated typically proceeds by
re-specifying the data-generating process in VECM
(“vector error-correction model”) form. We begin by
assuming the data-generating process is (1), and allow
that the system is not stable (the matrix coefficients
fail to satisfy the usual eigenvalue condition), but as-
sume that all variables become stable upon differencing
[14]. Thus, the process admits nonstationary solutions,
including cointegration relations. The VECM param-
terization of (1) is written in terms of both differences

and levels, as follows:

∆X̃t =(̃I− Γ̃0)∆X̃t + Π̃X̃t−1 (6)

+ B̃1∆X̃t−1 + ...+ B̃p−1∆X̃t−p−1 + ε̃t

The parameters are related to those in (1) by Γ̃1 =
Π̃ + Γ̃0 + B̃1, Γ̃i = B̃i − B̃i−1(i = 2, ..., p − 1), and
Γ̃p = −B̃p−1. Notice that despite the appearance of
differences in the VECM form, the errors are preserved,
i.e., they are the same errors as in the original SVAR in
levels. Also, we preserve the contemporaneous relation-
ships in Γ̃0, so this model may sometimes be referred
to as the structural VECM. The cointegration typical
of stochastic trend models manifests in the reduced
rank of the coefficient matrix Π in the marginal model.
Cointegration can be attributed to some number of
“driving trends,” i.e., possibly latent common causes of
measured variables which themselves behave as random
walks, and which are thus simultaneously responsible
for the nonstationarity of their effects and for the coin-
tegrated behavior [8]. In this case, the driving trends
may be included in Lt, though we do not place any
specific restrictions on Lt, except that the components
are I(1). In contrast to typical cointegration analysis,
our aim is not to estimate the number of cointegrating
relationships or precisely which linear combinations of
levels are stationary, but rather to learn the structural
relationships in (1) among the observed variables. Facts
about the cointegrating relations can subsequently be
inferred from the estimated model, under some assump-
tions.

The VECM parameterization (6) is useful in a score-
based approach because we can straightforwardly con-
sistently estimate the parameters and thus calculate
maximum likelihood for a candidate model. If we can
calculate the maximum likelihood, then we can calcu-
late the model’s BIC score. So, a greedy score-based
procedure is feasible: for every candidate causal edge,
we derive the corresponding structural VECM parame-
terization, estimate its parameters, calculate the BIC
score difference, and add or remove the candidate edge
depending on whether the score improves. In its first
phase, the SVAR-GFI algorithm searches for the best-
scoring DAG model, even though no DAG perfectly
describes the distribution due to the presence of latent
variables. In the subsequent stages of the algorithm,
SVAR-GFCI performs conditional independence tests
to remove some edges and then propagates orientation
rules to transform the result into a valid PAG (see the
supplement). For these subsequent conditional inde-
pendence tests, we can use the BIC score again. Since
the score-based phase of the algorithm considers candi-
date DAG models, our discussion of scores in the next
section is concerned with scoring DAGs.
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3.1 The BIC score for integrated data and as
independence test

Consider two candidate dynamic DAG models, G1 and
G2, corresponding to fully oberved SVARs. Let the
pair of vertices (Xi,t, Xj,s) be called homologous to
pair (Xm,a, Xn,b) if m = i, n = j, and t− s = a− b. In
our structure learning procedure we consider insertions
and deletions of homologous sets of edges since in the
SVAR parameterization the coeffiecients for Xi,t−1 →
Xj,t−1 and Xi,t → Xj,t (etc.) are the same parameter.
Without loss of generality assume G2 has one additional
homologous set of edges but is otherwise the same as
G1. For each model we can derive the corresponding
VECM form as in (6). The BIC score for a model Gi is

BICi = log p(D|Θ̂,Gi)−
d

2
log T (7)

where D is the observed data, Θ̂ is the vector of pa-
rameters that maximize the likelihood for model Gi, T
is the sample size, and d is the number of estimated
parameters. Typically for a model corresponding to an
I(1) process, the log-likelihood term would be calcu-
lated for the corresponding VECM parameterization
using reduced rank regression, conditional on some
“known” rank reduction determined from a prior se-
quence of tests [11, 14, p. 294-5]. In our case, we do
not impose any rank restrictions. This is important for
the greedy search strategy we employ which considers
only single-edge changes to a candidate model, thus
requiring only calculations of “local” score differences
[3]. Alternative procedures may consider incorporating
rank reduction information, but at the cost of inducing
cross-equation parameter dependence and thus forgoing
the computational scaleability of “local” score-based
structure learning.

In our case, we may compare two candidate models G1
and G2 that differ by one homologous set of edges by
estimating the corresponding parameters in the VECM
form, and subsequently the BIC score difference (or
rather, the “local” contribution to the score difference
attributed to the single-parameter change). The differ-
ence in dimension is always one, since we only consider
single-parameter differences in the course of greedy
search.

Recall the definition of a locally consistent score [3]:
Definition 3.1. Let G be any DAG, and let G′ be the
DAG that results from adding the edge Xi → Xj. A
scoring criterion S(G,D) is locally consistent if the
following two properties hold:

1. If Xi 6⊥⊥ Xj |pa(Xj ,G) then limT→∞ P(S(G′,D) >
S(G,D)) = 1

2. If Xi ⊥⊥ Xj |pa(Xj ,G) then limT→∞ P(S(G′,D) <
S(G,D)) = 1

[3, Lemma 7] proves the local consistency of the BIC
score in the i.i.d. sampling and Gaussian setting. From
local consistency of the BIC score one may derive the
following observation:2

Xi ⊥⊥ Xj |Z iff BIC1 − BIC2 > 0 (8)

in the limit as T →∞ where G2 and G1 are identical
except for the additional edge Xi → Xj in G2, and Z
is identified with the set of parents of Xj in G1. In the
Gaussian setting, the maximum log-likelihood for Xj

is

−T log(2π)− T

2
log(σ̂2)− 1

2σ̂2

T∑
t=1

(ε̂t)
2

where where σ̂2 and ε̂t are the ML estimates of the
variance and residuals. Let RSSi =

∑T
t (ε̂t)

2 be the
residual sum of squares estimated from each specifica-
tion (i ∈ {1, 2}), and consider estimating the variance
for both models with the unbiased estimator for the
larger model, as is commonly done: σ̂2 = RSS2

T−(d+1) .
Then we have

BIC1 − BIC2 > 0 iff
1

σ̂2
(RSS1 −RSS2) < log T

The term on the left hand side is distributed F1,T−d−1.
(Without using the σ̂2 = RSS2

T−(d+1) estimator for both
variances, one may derive the same test statistic but
only after a Taylor expansion.) Thus, using the BIC
score difference is equivalent to a hypothesis test with
critical value varying as a function of sample size. Hy-
pothesis testing with critical value depending on sample
size (approximately) manifests the Bayesian alternative
to classical hypothesis testing at fixed level [10].

To see how this works practically in the I(1) setting, it
may help to consider a simple example with 3 processes
(all assumed to be observed), and p = 2. First note:

Γ0Xt = Γ1Xt−1 + Γ2Xt−2 + εt

Γ0∆Xt = (Γ1 − Γ0 + Γ2)Xt−1 − Γ2∆Xt−1 + εt

∆Xt = (I− Γ0)∆Xt + (Γ1 − Γ0 + Γ2)Xt−1

− Γ2∆Xt−1 + εt

Consider a data-generating process for
Xt = (X1,t, X2,t, X3,t)

′ where

Γ0 =

1 −γ012 0
0 1 −γ023
0 0 1

 Γ1 =

γ111 γ112 0
γ121 γ122 0
0 0 γ133


2The idea of using the BIC score difference as a gen-

eral independence test was introduced in [20]. This holds
whenever the BIC score is locally consistent. Relatedly, [17]
connect BIC score differences to vanishing partial correla-
tions in i.i.d. multivariate Gaussian models. See also [1] for
prior work on the relationship between the BIC score and
F-tests.
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Γ2 =

0 γ212 0
0 0 0
0 0 0


Assume the true parameter values are such that the
characteristic polynomial has a unit root, but differ-
ences are stable.3 Write Xt, Yt, Zt for X1,t, X2,t, X3,t

for readability in what follows. In learning the struc-
ture of such a model, we compare changes to BIC
scores from inserting or deleting edges, essentially test-
ing whether the elements γsij are zero, conditional on
other edges being present. For example: at some stage
of the search procedure the edge Yt → Xt is consid-
ered, given that the parent set of Xt has been deter-
mined (at an earlier stage) to include true parents
Xt−1, Yt−1, and Yt−2 (i.e., γ111, γ112, and γ212 have been
judged to be non-zero). That is, the algorithm needs to
decide whether γ012 = 0, equivalent to deciding whether
Yt ⊥⊥ Xt|{Xt−1, Yt−1, Yt−2}. Regressing Xt on Yt and
the other parents would produce spurious results since
Xt is nonstationary. Instead, we calculate the local
difference in BIC scores by comparing RSS from two
regressions with differenced dependent variables, the
latter imposing γ012 = 0:

∆Xt ∼ ∆Yt +Xt−1 + Yt−1 + ∆Yt−1
versus

∆Xt ∼ Xt−1 + Yt−1 + ∆Yt−1

So the procedure here is straightforward. The score
difference is just calculated from the RSS difference
for these two VECM regressions (and log T ). The
analagous procedure would determine if any γ2ij is
zero, e.g., for γ212 just add or drop ∆Yt−1 from the
corresponding regressions. Determining the zeros in
Γ1 requires somewhat more care, since the matrix of
coefficients on Xt−1 in the VECM parameterization
is a mixture of the fundamental structural matrices
(Γ1 − Γ0 + Γ2). To determine, for example, whether
γ112 = 0, we cannot simply add/drop Yt−1 from the
VECM regression of ∆Xt on ∆Yt, Xt−1, and ∆Yt−1
since the coefficient on Yt−1 in the VECM parameter-
ization is γ112 + γ012 + γ212. We want to check whether
γ112 = 0 in the equation for ∆Xt, which is

∆Xt = γ012∆Yt + (γ111 − 1)Xt−1

+ (γ112 + γ012 + γ212)Yt−1 − γ212∆Yt−1 + ε1,t.

3Note that we assume here and throughout only that
the parameters in the true model have this property, not
necessarily every submodel or supermodel we consider in
the course of search. This is important because necessarily
in the course of our procedure we consider setting various
parameters in the Γ matrices to zero, and not all such
models will have the same properties vis-à-vis unit roots.

This can be rearranged to

∆Xt = γ012(∆Yt + Yt−1) + (γ111 − 1)Xt−1

+ γ112Yt−1 + γ212(Yt−1 −∆Yt−1) + ε1,t

= γ012Yt + (γ111 − 1)Xt−1 + γ112Yt−1

+ γ212Yt−2 + ε1,t

So we compare:

∆Xt ∼ Yt +Xt−1 + Yt−1 + Yt−2
versus

∆Xt ∼ Yt +Xt−1 + Yt−2

The difference in the RSS from these two specifications
gives us the difference in BIC scores from inserting
or removing Yt−1 → Xt given the other parents of
Xt. In this case the algorithm is deciding whether
Yt−1 ⊥⊥ Xt|{Yt, Xt−1, Yt−2}.

We can generalize these observations into a rule for
calculating score comparisons for insertion and deletion
of edges. Let the p̃a(Xi,t,G) be the transformed parent
set of Xi,t in VECM form, constructed as follows (∀j):

Xj,t ∈ pa(Xi,t,G)⇒ {∆Xj,t, Xj,t−1} ∈ p̃a(Xi,t,G);

Xj,t−1 ∈ pa(Xi,t,G)⇒ Xj,t−1 ∈ p̃a(Xi,t,G);

Xj,t−2 ∈ pa(Xi,t,G)⇒ {∆Xj,t−1, Xj,t−1} ∈ p̃a(Xi,t,G).

This is the case for p = 2, but the principle is that
p̃a(Xi,t,G) contains all VECM variables (i.e., differ-
ences and lagged levels) which have non-zero coeffi-
cients in the VECM form of the underlying SVAR.
Then the estimated residuals ε̂i,t from the least squares
regression ∆Xi,t ∼ p̃a(Xi,t,G) are consistent estimates
of the underlying error terms εi,t.

We use S(∆Xi,t|p̃a(Xi,t,G),D) to denote local con-
tributions to the model score. The local contribu-
tion to the likelihood is derived from the residuals of
the least squares regression of ∆Xi,t on p̃a(Xi,t,G).
Consequently, when considering the edge addition
Xj,t−s → Xi,t (s ≥ 0) in graph G, the BIC score
difference is given by:

S(∆Xi,t|p̃a(Xi,t,G),D, γsij = 0)

−S(∆Xi,t|p̃a(Xi,t,G),D, γsij 6= 0)

where γsij = 0 and γsij 6= 0 indicate that the coefficient
corresponding to Xj,t−s → Xi,t is constrained to be
zero and non-zero respectively in the corresponding
regressions. There are perhaps multiple ways of im-
plementing these score-difference calculations; in our
software, we implement the calculation by rearranging
terms such that we only need to drop or add regressors
from the appropriate regressions to impose γsij = 0 or
γsij 6= 0, along the lines described in the three-variable
example above.
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3.2 Consistency of the procedure

Here we spell out the assumptions required for con-
sistency a bit more precisely. We make the following
assumptions:

A1 The data-generating process is Γ̃0X̃t = Γ̃1X̃t−1 +
...+ Γ̃pX̃t−p + ε̃t ∀t ∈ N, conditional on the initial
values (X̃−p+1, ..., X̃0)′ with X̃t = (L

′

t,X
′

t)
′
, Σ̃ =

E[ε̃tε̃
′
t] diagonal, and ε̃t ∼iid N(0, Σ̃). Γ̃0 has unit

diagonal and can be made lower triangular.

A2 The stochastic process {X̃t}t∈N is I(1), i.e.,
{∆X̃t}t∈N is stable.

A3 Let pt(X̃t, X̃t−1, ..., X̃t−p) be the joint den-
sity at time t (conditional on initial values).
pt(X̃t, X̃t−1, ..., X̃t−p) is Markov and faithful to
a dynamic DAG G for all t.

A3 allows that the joint distribution is the not same at
all times (nonstationarity), but assumes it always fac-
torizes according to the same graph, and that elements
of the process are conditionally independent iff they are
d-separated in that graph (the faithfulness assumption).
See [23] for relevant background on faithfulness. The
Gaussianity assumption in A1 guarantees that Markov
equivalent models will have the same likelihood.

We define the VECM BIC score for a candidate DAG
model as:

T

2
log |Σ̂| − d

2
log T (9)

where Σ̂ is derived from the least squares estimated
residuals of the corresponding VECM over observed
variables, d is the number of free parameters, and T is
the sample size. Proofs of the following propositions
can be found in the supplement.
Proposition 1. The VECM BIC score is locally con-
sistent under assumptions A1 and A2.

As a corollary of Proposition 1, we have an asym-
potically consistent test of conditional independence
for I(1) data, using the result (8): call this the BIC
CI test. With a locally consistent score and consis-
tent independence test, the SVAR-GFCI algorithm will
asymptotically select the true PAG [15].
Proposition 2. Assume the stochastic process
{X̃t}t∈N, where X̃t = (L′t,X

′
t)
′, satisfies A1-A3. Let

M be the MAG implied by G over Xt, ...,Xt−p and
PAG P the equivalence class ofM. Given T observa-
tions of the marginal subprocess {Xt}t∈N, the SVAR-
GFCI algorithm with the VECM BIC score and BIC
CI test is a consistent estimator of P.

Furthermore, the BIC CI test makes entirely constraint-
based search possible, and so in fact we may claim the

same property for SVAR-FCI when equipped with this
test. However, we limit our attention to SVAR-GFCI
here.

4 Simulation experiments

To explore the prospects of structure learning from I(1)
data with the VECM BIC score, we carried out a simu-
lation study on a small I(1) model. The data-generating
process is a dynamic DAG (shown in Figure 1 in the
supplementary material) that includes 5 measured pro-
cesses X1,t, ..., X5,t as well as two exogenous latent
confounding processes L1,t, L2,t. The latent processes
are pure random walks, i.e., Li,t = Li,t−1 + εi,t, which
induce stochastic nonstationarity among the observed
variables. All parameters in the observed processes
are chosen such that they do not create their “own”
nonstationary behavior – specifically, all edges con-
nected to measured variables are parameterized with
linear coefficients set to 0.55; the Li,t−1 → Li,t edges
carry coefficients of 1.0. All error terms are distributed
N(0, 1). The features of this model – specifically the
purely exogenous latent trends which are random walks,
affecting some combinations of variables but not all vari-
ables, the relatively sparse structure – are motivated
by common features of models in the cointegrated VAR
literature [13, 8].

We generated data from this model at varying sam-
ple size and learned a dynamic PAG from each data
set using SVAR-GFCI with an implementation of the
VECM BIC score. Average adjacency precision and re-
call statistics are reported in Figure 3, with 100 runs at
each sample size (new initial values were sampled from
N(0, 1) for each run). We also include, for compari-
son, performance results obtained with SVAR-GFCI
using the usual (unadjusted for nonstationarity) BIC
score, which does quite poorly as expected and in fact
increasingly worse with sample size.

The precision and recall results support our claim that
it is possible to perform structure learning from I(1)
series with a slightly modified score-based procedure.
We see that precision is quite high consistently, and re-
call is lower, though increasing with sample size. Note
that high precision means that there are almost no
false positives (we see an average of about one false
positive edge for these settings), in contrast with what
may be expected from the phenomenon of “spurious
regression,” where nonstationary levels regressed on
nonstationary levels frequently produce false judge-
ments of dependence between independently generated
processes. SVAR-GFCI using the unadjusted BIC score
for stationary data does poorly, much worse on both
precision and recall (except for small sample size pre-
cision of arrowheads, where the procedures perform
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Figure 3: Precision (white) and recall (grey) results from the nonstationary simulation study.

about the same).4

5 Danish macroeconomic data

Rbt−1 Rbt

Dpt−1 Dpt

Mt−1 Mt

Rmt−1 Rmt

Yt−1 Yt

Figure 4: Results on the Danish data. Rb = interest
rate on govt bonds, Rm = own interest rate on money
stock, M = log real money, Dp = inflation, Y = log
aggregate real income.

We apply our method to a data set of several I(1)
macroeconomic quantities – inflation rates, money
stock, aggregate income, and two interest rates – ob-
served quarterly in Denmark between 1973 and 2003:1
(T = 121). The data has been extensively examined in
[13] as well as other sources, and previously been used
by the Central Bank of Denmark for policy analysis.
In [13], the author considers multiple different VECM

4We find that at small samples sizes, many edges are
falsely removed (low recall on adjacencies) and so there
are many false unshielded triples oriented as colliders in
subsequent stages of the algorithm. With too few edges and
too many colliders, the output has high arrowhead precision
for the “wrong reasons.”

model specifications, some of which are inspired by the-
oretical hypotheses (e.g., how money drives inflation,
equilibrium in the money market, etc.) and some by
empirical regularities, such as persistent cointegration
relationships found in the data. In our data-driven
model specification discovered by SVAR-GFCI (Figure
4), we find some noteworthy features: namely, that
the two interest rates are linked by a common latent
mechanism (as arguably predicted by equilibrium in the
money market), and that (lagged) inflation does influ-
ence money indirectly through interest rates, but also
that the causal influence propagates back to inflation,
i.e., there is a feedback loop.

6 Conclusion

In this paper we extended previously introduced struc-
ture learning techniques to a nonstationary setting.
Stochastic trends, at least in the common case where
variables are I(1), are handled by replacing the usual
BIC score with the VECM BIC score; this takes advan-
tage of a re-parameterization of the data-generating
process in error-correction form, and then estimates
those parameters by maximum likelihood. Throughout,
we have assumed that the underlying data-generating
process is an SVAR in levels (with latent processes),
and the goal has been to recover as much information
as possible about the causal relations among observed
variables. Though the score-based procedure permits
cointegration relationships among some of the variables,
it does not make any use of such information even if
it is available. Thus, possible avenues for future re-
search include developing techniques which explicitly
incorporate cointegration information, or which shift
the focus to identifying features of the latent structure,
e.g., determining which latent processes are causes of
which measured processes, or perhaps what are the
causal relations among the latent variables themselves.
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