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Note that the Propositions with numbers≤ 11 are ones that
appear in the body of the main paper, and Propositions with
higher numbers are only stated here in the Supplement.

Utility Results

First we define d-separation and m-separation for refer-
ence. Given two elements Vi, Vj ∈ V , and X ⊆ V \
{Vi, Vj}, we say that a path from Vi to Vj is blocked by
X if ∗→ Xk →, ← Xk ←∗, or ← Xk → exists on the
path, where Xk ∈ X , or if ∗→ Vh ←∗ exists on the path,
where Vh 6∈ X and Deh ∩X = ∅. ∗ stands for either an ar-
rowhead or tail edge-mark, allowing for bidirected edges.
We say Y is m-separated from Z given X in G(V ) if every
path from an element of Y to an element of Z is blocked by
X in G(V ). d-separation is the special case where all edges
are directed.

Proposition 4 For any disjoint subsets Y (a), Z(a), X(a)
of V (a) and a subset a′ of a, if (Y (a), a′ ⊥⊥ Z(a) |
X(a))G(a) then for any A′′ ⊇ A, (Y (a′′), a′ ⊥⊥ Z(a′′) |
X(a′′))G(a′′).

Proof: Assume a m-connected path from an element in Y
or a′ to Z(a) in G(a′′). If this path does not intersect an
element in A′′ \ A, then it is also present in G(a). If this
path does intersect A′′ \ A, any element Ai ∈ A′′ on this
path cannot contain an outgoing edge on the path (since
such edges do not exist in G(a′′). As a result, all edges on
the path also exist in G(a). Since the conditioning set is the
same in both cases, the path is m-connected in G(a), which
is a contradiction. �

Proposition 12 Given a DAG G(V ∪ H), G(V )(a) =
G(a)(V ).

Proof: By definition, both graphs agree on the set of ran-
dom and fixed vertices. Note that G and G(a) have the same
set of edges, and that A ∩H = ∅. Consequently, any edge
from Vi to Vj in G(V )(a) corresponds to a marginally d-
connected path from Vi to Vj with all intermediate vertices

in H in G(V ∪ H). And similarly, such a path exists for
any edge from Vi to Vj in G(a)(V ). This establishes the
bijection between edges. �

Independence statements implied by d-separation on ob-
served variable subsets of G(V ∪H)(a), for A ⊆ V trans-
late into m-separation statements of G(V )(a).

Proposition 13 For any disjoint subsets Y (a), Z(a), X(a)
of V (a) and a subset a′ of a,

(Y (a), a′ ⊥⊥ Z(a) | X(a))G(V ∪H)(a) ⇒
(Y (a), a′ ⊥⊥ Z(a) | X(a))G(V )(a).

Proof: This follows immediately from the fact that m-
separation statements in a latent projection ADMG G(V )
are in a one-to-one correspondence with d-separation state-
ments in a DAG G(V ∪ H) on V , and the SWIG global
Markov property. �

A Complete Identification Algorithm For
Path-Specific Counterfactual Distributions In
Hidden Variable Causal Models

Here we introduce a concise formulation of the complete
identification algorithm for edge-consistent path-specific
counterfactual distributions given in [6] via kernels, con-
ditional graphs, and the fixing operation.

Kernels, Conditional Graphs, and Fixing

A kernel qV (V | W ) is a mapping from XW to densi-
ties over V . Given A ⊆ V , we define conditioning and
marginalization in the usual way:

qV (A|W ) ≡
∑
V \A

qV (V |W ); qV (V \A|A,W ) ≡ qV (V |W )

qV (A|W )
.

A conditional graph G(V,W ) is a graph with two types of
vertices, random V and fixed W , with the property that for
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any fixed vertex in W , its set of parents is empty.1 We will
consider conditional ADMGS (CADMGs), or conditional
DAGs (CDAGs) as a special case. A SWIG G(V (a)) may
be viewed as a conditional graph of the form G(V (a), a),
where we denote the set of fixed vertices by a.

For a CADMG G(V,W ), and Vi ∈ V , define

DisGi ≡ {Vj | Vj ↔ . . .↔ Vi in G} (district of Vi).

Note that districts are only defined for, and may only con-
tain, random vertices in V not fixed vertices in W . The set
of districts in G is denoted by D(G).

A vertex Vi ∈ V in a CADMG G(V,W ) is said to be fix-
able if Dei ∩Disi = ∅. For such a vertex, define the oper-
ator φi(G) that yields a new CADMG G(V \ {Vi},W ∪
{Vi}), obtained by removing all edges with arrowheads
into Vi, and keeping all other edges in G(V,W ).

Given a CADMG G(V,W ), and a kernel qV (V |W ), if Vi
is fixable, define the operator φi(qV ;G) as yielding a new
kernel

qV \{Vi}(V \ {Vi}|W ∪ {Vi}) ≡
qV (V |W )

qV (Vi | MbGi ,W )
,

where MbGi , the Markov blanket of Vi in G, is defined to be
DisGi ∪{Pa

G
j | Vj ∈ DisGi }.

A set of vertices Z ⊆ V is said to be fixable in G(V,W ), if
there exists a fixable sequence Z1, . . . , Zk on vertices in Z
such thatZ1 is fixable in G,Z2 is fixable in φ1(G),Z3 is fix-
able in φ2(φ1(G)), and so on. Given a sequence αZ for el-
ements in Z, we define φαZ (G) and φαZ (qV ;G) in the nat-
ural way by operator composition. For any two valid fixing
sequences αZ , βZ for a fixable set Z, φαZ (G) = φβZ (G).
Hence, for a fixable Z, we define φZ(G) to mean “fix ele-
ments in Z in G by any fixable sequence.”

Given a CADMG G(V,W ), if Z ⊆ V is fixable, then R ≡
V \ Z is called a reachable set. A reachable set R such
that D(φZ(G(V,W ))) contains a single element is called
intrinsic. If there exists a set of kernels

{qD(D|PaD,W )|D is intrinsic in G(V,W )} ,

where PaD ≡
⋃
Vi∈D{Pai \D | Vi ∈ D}, such that for all

fixable sets Z in G(V,W ), and all fixable sequences αZ ,
we have

φαZ (qV (V |W );G(V,W )) =∏
D∈D(φZ(G(V,W )))

qD(D|PaD,W ),

we say qV (V | W ) is in the nested Markov model of
G(V,W ).

1Note that some elements of V may have an empty parent set
as well.

For any such qV (V | W ), it can be shown that for any fix-
able Z in G(V,W ), and any fixable sequences α, β for Z,
φαZ (qV (V |W );G(V,W )) = φβZ (qV (V |W );G(V,W )).
As a result, we write φZ(qV (V |W );G(V,W )) to mean “fix
elements in Z in qV (V |W ) using any fixable sequence.”

Moreover, we have

{qD(D|PaD,W )|D is intrinsic in G(V,W )}
= {φV \D(qV (V |W );G(V,W ))| is intrinsic in G(V,W )}.

We have the following important results.

Proposition 14 If qV ∪H(V ∪ H|W ) is in the Markov
model for the CDAG G(V ∪ H,W ), then qV (V |W ) ≡∑
H qV ∪H(V ∪ H|W ) is in the nested Markov model for

the latent projection CADMG G(V,W ).

Proof: This is shown in [1]. �

The complete algorithm for an edge-consistent
p(Y (π, a, a′)) for Y ⊆ V is stated as follows.

Proposition 15 Let Y ∗ ≡ anGV \A(Y ). Then
p(Y (π, a, a′)) is identified in G(V ) if and only if for
every D ∈ D(GY ∗), paG(D) ∩ A are assigned to either a
subset of a or a subset of a′, and D is intrinsic in G(V ).
Moreover, if p(Y (π, a, a′)) is identified, we have

p(Y (π, a, a′)) =
∑
Y ∗\Y

∏
D∈D(GY ∗ )

φV \D(p(V );G(V ))
∣∣
ãD
,

(8)

where ãD is defined to be the appropriate subset of a asso-
ciated with paG(D) ∩ A if those elements are assigned by
the definition of Y (π, a, a′), and the appropriate subset of
a′ associated with paG(D) ∩A otherwise.

Proof: This is shown in [6]. �

Note that the kernels φV \D(.) are well defined by Proposi-
tion 14, since causal inference always starts with a causal
model that implies a distribution that factorizes with respect
to a (possibly hidden variable) DAG.

Remaining Proofs

Now we turn to proving results related to Sections 5 and 6
in the main paper.

Proposition 9 Fix an element p(V) in the causal model
for a DAG G(V ), and consider the corresponding ele-
ment pe(Ve) in the restricted causal model associated with
a DAG Ge(V ∪ ACh). Then p(V ) = pe(V,ACh) and
p(V (π, a, a′)) = pe(V (aπ)).

Proof: By definition of the causal model for G, we have

p(V (π, a, a′) = v)=
∑

εi:fi(aPaπ
i
,a′

Paπ
i

,vPai \A)=vi

p(ε1, . . . , εk),



Daniel Malinsky, Ilya Shpitser, Thomas Richardson

where for each Vi, Paπi is the subset of Pai ∩Awith an edge
from Pai to Vi in π, and Paπi is the subset of Pai ∩A with
an edge from Pai to Vi not in π. Similarly, by definition of
the restricted causal model for Ge(V ∪ACh), we have

pe(V (aπ) = v) =
∑

εi:fi(aπ
Pai ∩ACh ,vPai \A)=vi

p(ε1, . . . , εk).

The equivalence follows immediately. Note that the same
argument establishes p(V ) = pe(V,ACh), by letting π be
the empty set of paths, and A = ∅. �

Proposition 16 Assume there exists elements
p1(V), p2(V) in the causal model for G such that
p1(V ) = p2(V ), but p1(V (π, a, a′)) 6= p2(V (π, a, a′)).
Then p(V (aπ)) is not identified in the restricted causal
model for Ge(V ∪ACh).

Proof: Follows immediately by Proposition 9. �

We state formally our claim in the main paper that the latent
projection and extended graph operations commute.

Proposition 17 Fix a DAG G(V ∪ H), and let A ⊆ V .
Then Ge(V ∪ ACh), the latent projection onto V ∪ ACh of
Ge(V ∪ H ∪ ACh) is equal to the extended graph G(V ∪
ACh)e applied to the latent projection G(V ).

Proof: By definition, the two graphs have the same vertices.
That the two graphs share the same edges follows from the
definition of Ge, which stipulates that the only edge into
each variable in ACh is from the corresponding variable in
A, i.e., there are no directed paths from any H into any
element of ACh not through some element of A. So, all
bidirected edges induced by the latent projection operation
are between vertices in V , which are shared between the
two graphs. �

Proposition 10 For any Y ⊆ V , p(Y (π, a, a′)) is identi-
fied in the ADMG G(V ) if and only if p(Y (aπ)) is identified
in the ADMG Ge(V,ACh). Moreover if p(Y (aπ)) is identi-
fied, we have

pe(Y (aπ)) =∑
Y ∗\Y

∏
D∈D(Ge

Y ∗ )

φ(V ∪ACh)\D(p
e(V,ACh);Ge)

∣∣
ãD

(9)

where Y ∗ ≡ anGe
V \ACh

(Y ), and ãD is defined to be the

appropriate subset of aπ associated with paG(D) ∩ACh.

Proof: Assume p(Y (π, a, a′)) is identified in G(V ) via
(8). The conclusion follows from Proposition 9, and the
fact that the functional in (8) in p(V ) is equal to (9) in
pe(V,ACh).

Assume p(Y (π, a, a′)) is not identified, and fix a witness
of this fact, which is either a hedge or a district with a

recanting set of parents in A. If the witness is a hedge,
the construction in [5] yields p1(V) and p2(V), such that
p1(V ) = p2(V ), but p1(Y (π, a, a′)) 6= p2(Y (π, a, a′)) If
the witness is a recanting district, the construction in [3],
described also in [6], yields p1(V) and p2(V), such that
p1(V ) = p2(V ), but p1(Y (π, a, a′)) 6= p2(Y (π, a, a′)).
In both cases, this immediately implies the conclusion by
Corollary 16. �

Proposition 11 If (Y (x, z) ⊥⊥ Z(x, z) | W (x, z))Ge(x,z)
and T ⊆ W then (Y (x, t) ⊥⊥ T (x, t) | Z(x, t),
W1(x, t))Ge(x,t) if and only if (Y (x, z, t) ⊥⊥ T (x, z, t) |
W1(x, z, t))Ge(x,z,t), where W1 =W \ T .

Proof: The set of possible d-connecting paths from
Y (x, z, t) to T (x, z, t) in Ge(x, z, t) is a subset of the set
of possible d-connecting paths from Y (x, t) to T (x, t) in
Ge(x, t). For any such path that exists in both graphs, if
it is blocked by W1(x, t) in Ge(x, t), it will be blocked
by W1(x, z, t) in Ge(x, z, t). If it is blocked by Z(x, t)
in Ge(x, t), the path will be blocked in Ge(x, z, t) by con-
struction of Ge(x, z, t). If it is blocked by collider without
Z(x, t),W1(x, t) descendants in Ge(x, t), the same will re-
main true in Ge(x, z, t). Thus, if (Y (x, t) ⊥⊥ T (x, t) |
Z(x, t), W1(x, t))Ge(x,t), then (Y (x, z, t) ⊥⊥ T (x, z, t) |
W1(x, z, t))Ge(x,z,t).

Now, assume for contradiction, (Y (x, z, t) ⊥⊥ T (x, z, t) |
W1(x, z, t))Ge(x,z,t), but (Y (x, t) 6⊥⊥ T (x, t) | Z(x, t),
W1(x, t))Ge(x,t), with a witnessing d-connecting path from
some Y1(x, t) to some T1(x, t). If this path is not a possi-
ble d-connecting path in Ge(x, z, t), it must contain a non-
collider through an element of Z, and thus is blocked by
Z(x, t) in Ge(x, t). If this path is a possible d-connecting
path in Ge(x, z, t) it must be blocked by a collider which
contains no descendants in W1(x, z, t) in Ge(x, z, t), but
remains open due to this collider containing descendants in
Z(x, t) in Ge(x, t).

But this implies the existence of a d-connecting path in
Ge(x, t) from an element Y1(x, t) in Y (x, t) to an element
Z1(x, t) in Z(x, t) given W1(x, t), and thus also given
W (x, t) (since no element in T (x, t) will block this path by
construction). Since we can choose Z1(x, t) to be the clos-
est element in Z(x, t) to Y1(x, t) involved in the witnessing
path, we obtain that Y1(x, z) 6⊥⊥ Z1(x, z) |W (x, z), which
is a contradiction. �

Corollary 2 For any Ge(x) and any conditional dis-
tribution p(Y (x)|W (x)), there exists a unique maximal
set Z(x) = {Zi(x) ∈ W (x) | p(Y (x)|W (x)) =
p(Y (x, zi)|W (x, zi) \ {Zi(x, zi)})} such that Rule 2 ap-
plies for Z(x, z) in Ge(x, z) for p(Y (x, z)|W (x, z)).

Proof: Fix two maximal sets Z1(x) and Z2(x) such
that Rule 2 applies for Z(x, z) in Ge(x, z) for
p(Y (x, z)|W (x, z)). If Z1(x) 6= Z2(x), fix T (x) ∈
Z1(x) \Z2(x). By the previous proposition, Rule 2 applies
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for Z2(x) ∪ T (x), contradicting our assumption. �

Theorem 2 Let p(Y (π, a, a′) | W (π, a, a′)) be a con-
ditional path-specific distribution in the causal model for
G, and let p(Y (aπ) | W (aπ)) be the corresponding dis-
tribution in the extended causal model for Ge(V ∪ ACh).
Let Z be the maximal subset of W such that p(Y (aπ) |
W (aπ)) = p(Y (aπ, z) | W (aπ, z) \ Z(aπ, z)). Then
p(Y (aπ) | W (aπ)) is identifiable in Ge if and only if
p(Y (aπ, z),W (aπ, z) \ Z(aπ, z)) is identifiable in Ge.

Proof: The proof strategy follows that of the completeness
argument in [4]. We expand the argument here to be more
transparent. In addition, we must handle an additional case
of non-identifiability that arises in mediation problems, that
has to do with structures called recanting districts in [3].

If p(Y (aπ, z),W (aπ, z)\Z(aπ, z)) is identified in Ge, then
p(Y (aπ) |W (aπ)) is identifiable in Ge since

p(Y (aπ)|W (aπ)) = p(Y (aπ, z)|W (aπ, z) \ Z(aπ, z))

=
p(Y (aπ, z),W (aπ, z) \ Z(aπ, z))

p(W (aπ, z) \ Z(aπ, z))
.

Now assume p(Y (aπ, z),W (aπ, z) \ Z(aπ, z))
is not identified in Ge. Either p(W (aπ, z)) is
identified or not. If p(W (aπ, z)) is identified,
p(Y (aπ, z)|W (aπ, z) \ Z(aπ, z)) is identified if and
only if p(Y (aπ, z),W (aπ, z) \ Z(aπ, z)) is. Since the
latter is false by assumption, our conclusion follows.

Assume p(W (aπ, z)) is not identified. Let ã = a ∪ z,
and π̃ be the set comprised of π and all outgoing di-
rected edges from elements in Z. Then the distribution
p(W (aπ, z)) is equal to p(W (ãπ̃)), which in turn is equiv-
alent to p(W (π̃, ã, a′)).

p(W (π̃, ã, a′)) could fail to be identified in the causal
model for G for two reasons. Either there could exist a
hedge structure [5] for p(W (a)), or there could exist a
recanting district structure [3] in D(GW∗), where W ∗ ≡
An
GV \A
W . We consider these cases in turn.

If there exists a hedge structure, fix a districtD inD(GW∗),
where W ∗ ≡ An

GV \A
W , such that there is a larger district

D′ containing D that forms the hedge structure with D.
Further, find the minimal subset W ′ of W such that the set
of all childless vertices in the hedge structure (contained in
D′) is in An

GV \A
W ′ . Let H be the smallest set of vertices that

contains W ′, D′, and such that the set of childless vertices
in the hedge structure is in AnGHW ′ .

Assume without loss of generality that each vertex in GH
has at most one child. We construct elements p1(H) and
p2(H) in the causal model in GH as follows. In p1(H)
each structural equation is a bit parity function of the par-
ents, and each bidirected arc corresponds to a binary la-
tent common parent where each such latent is involved in
precisely two functions. Moreover, each such latent vari-

able εij that is a parent of Vi and Vj is drawn from a uni-
form distribution p(εij). In p2(H) the same is true, except
no element in D′ \ D is involved in the structural equa-
tion for any element in D, and no εij that is a parent of
an element in D′ \ D and an element in D exists. It has
been shown in [5] that if p1(H) and p2(H) are constructed
in this way, they induce p1(H), p1(W

′(aH∩A)) and
p2(H), p2(W

′(aH∩A)) respectively, such that p1(H) =
p2(H) (i.e., the induced observational distributions are the
same), but p1(W ′(aH∩A)) 6= p2(W

′(aH∩A)) (i.e., the in-
duced potential outcome distributions are distinct).

Specifically, let R be the set of childless vertices in GD′ .
Then it has been shown that p1(D′) = p2(D

′) is a dis-
tribution uniform over any assignment to D′ such that
the number of 1 values in R is even. At the same time,
p1(R(aH∩A)) is a uniform distribution over assignments
with even number of 1 values, while p2(R(aH∩A)) is a
uniform distribution. Since each element in H \ R has
a single parent in GH , the bit parity function for those
elements simply reduces to the identity function. Note
that more general structural equations suffice for the ar-
gument, as long as the linear transformation that maps
p(D′(aH∩A)) to p(W ′(aH∩A)) ≡

∑
D′ p(W

′(aH∩A) |
D′(aH∩A))p(D

′(aH∩A)) is one to one.

Consider a path π in G(a) from some element Wi in W ′

to an element Yj in Y , such that Wi is m-connected to Y
givenW , and the edge on the path adjacent toWi has an ar-
rowhead into Wi (Pearl called such paths backdoor paths).
Such a path must exist by construction of W . In addition,
consider the smallest subset W ′′ of W such that Wi is m-
connected to Yj given W ′′ in G(a). Pick the smallest set
H ′ containing H such that the above m-connection state-
ment holds in G(a)H′ . We now extend p1(H) and p2(H) to
p1(H′) and p2(H′) to show p(Yj(aH′∩A) |W ′(aH′∩A)) is
not identified.

We have three base cases. The first case assumes the first
node Zj on π not in H is a parent of an element Zi in
H . Let the structural equation corresponding to Zi be the
bit parity function of all its parents in GH′ , including Zj
in both p1(H′) and p2(H′), and let p(Zj) be the uniform
distribution on a binary variable.

In this case, the observed data distributions are p1(H |
Zj)p1(Zj) and p2(H | Zj)p2(Zj). p1(Zj) = p2(Zj)
by construction. Next, note that p1(H | Zj = 0) =
p2(H | Zj = 0) equal to the distributions p1(H) = p2(H)
given in the previous construction. Specifically these dis-
tributions are uniform on all assignments to R with an
even number of 1 values. By symmetry, p1(H | Zj =
1) = p2(H | Zj = 1), with the distributions be-
ing uniform on all assignments to R with an odd num-
ber of 1 values. By above construction and results in [5],
p1(H(aH∩A) | Zj(aH∩A) = 0) = p1(H | Zj = 0),
while p2(H(aH∩A) | Zj(aH∩A) = 0) is a uniform dis-
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tribution. Since p1(Zj(aH∩A)) = p1(Zj) = p2(Zj) =
p2(Zj(aH∩A)), we have that p1(Zj(aH∩A), R(aH∩A))
only has positive probability if the number of 1 values in
{Zj} ∪ R is even, while p2(Zj(aH∩A), R(aH∩A)) is a
uniform distribution. This implies p1(Zj(aH∩A) = 0 |
R(aH∩A) = 0) = 1, while p2(Zj(aH∩A) = 0 |
R(aH∩A) = 0) < 1, which establishes the base case.

The second case assumes the first node Zj on π not in
H is a child of an element Zi in H . We also consider
the third case where Yj ∈ H , here by letting Yj =
Zi. If p(Zj(aH′∩A) | W ′(aH′∩A)) (or p(Yj(aH′∩A) |
W ′(aH′∩A))) is not identified, we are done. Otherwise,
we assume p(Zj(aH′∩A) |W ′(aH′∩A)) is identified. Con-
sider the edge subgraph G′H′ of GH′ that lacks the outgoing
directed edges from Zi within H .

Since the childless vertices in the hedge structure are in
AnGHW ′ , if Zi is not in the hedge structure in H , it must be
on a directed path in GH from some childless vertex in the
hedge structure to an element of W ′. Since we assumed
each vertex in GH has at most one child, removing the
outgoing arrow from Zi in GH′ results in G′H′ containing
the hedge structure for p(Zj(aH′∩A),W ′′(aH′∩A)), where
W ′′ =W ′ \ {Wi} and Wi is W ′ ∩DeGH′ (Zj).

If p(W ′′(aH′∩A)) is identified, we are done, since
we established the base case where p(Zj(aH′∩A) |
W ′′(aH′∩A)) is not identified. If p(W ′′(aH′∩A)) is not
identified, note that W ′′ is a strictly smaller set then W ′,
and we restart the base case argument, finding a hedge or
a recanting district for this smaller set, constructing a new
set H , and a new backdoor path to an element in Y . Since
the new subset of W is strictly smaller, we can only do this
a finite number of times before encountering another base
case.

If Zi is in the hedge structure in H , then the
resulting graph G′H′ contains a hedge structure for
p(Zj(aH′∩A),W

′(aH′∩A)) with the set of childless ver-
tices of the previous hedge and also Zi (since it is now
childless in H). Given the hedge construction above, we
have p1(Zj(aH′∩A) = 0 | W ′(aH′∩A) = 0) < 1, while
p2(Zj(aH′∩A) = 0 | W ′(aH′∩A) = 0) = 1, and we are
done.

We now consider the inductive cases on the path π. Con-
sider Zk and Zk+1 on the path, where Zk+1 is closer to Yj
on the path. We have the following cases.

If Zk+1 is a parent of Zk, or Zk+1 is a child of Zk, then in
G′H′ :

p1(Zk+1(aH′∩A)|W ′(aH′∩A)) =∑
Zk

p1(Zk(aH′∩A)|W ′(aH′∩A))p1(Zk+1(aH′∩A)|Zk(aH′∩A))

p2(Zk+1(aH′∩A)|W ′(aH′∩A)) =∑
Zk

p2(Zk(aH′∩A)|W ′(aH′∩A))p2(Zk+1(aH′∩A)|Zk(aH′∩A)).

Let

p1(Zk+1(aH′∩A)|Zk(aH′∩A)) = p2(Zk+1(aH′∩A)|Zk(aH′∩A)).

Then we have

p1(Zk+1(aH′∩A)|W ′(aH′∩A)) 6= p2(Zk+1(aH′∩A)|W ′(aH′∩A))

if and only if

p1(Zk(aH′∩A)|W ′(aH′∩A)) 6= p2(Zk(aH′∩A)|W ′(aH′∩A)).

These latter distributions are not equal in p1(H′) and
p2(H′) by the inductive hypothesis.

If Zk+1 is a sibling of Zk, we repeat the above two cases,
since this case may be rephrased without loss of generality
in terms of an unobserved variable Hk that is a parent of
both Zk+1 and Zk.

If Zk+1 and Zk are both parents of a variable Ck which is
an ancestor of element Wk in W ′, we have:

p1(Zk+1(aH′∩A)|Wk(aH′∩A),W
′(aH′∩A)) =∑

Zk

p1(Zk+1|Wk, Zk)×

p1(Wk|Zk)∑
Zk
p1(Wk|Zk)p1(Zk|W ′(aH′∩A))

p1(Zk|W ′(aH′∩A))

p2(Zk+1(aH′∩A)|Wk(aH′∩A),W
′(aH′∩A)) =∑

Zk

p2(Zk+1|Wk, Zk)×

p2(Wk|Zk)∑
Zk
p2(Wk|Zk)p2(Zk|W ′(aH′∩A))

p2(Zk|W ′(aH′∩A))

Assume Wk = Ck. We must choose

p1(Zk+1,Wk | Zk) = p2(Zk+1,Wk | Zk)

such that

p1(Zk+1(aH′∩A)|Wk(aH′∩A),W
′(aH′∩A)) 6=

p2(Zk+1(aH′∩A)|Wk(aH′∩A),W
′(aH′∩A))

if
p1(Zk|W ′(aH′∩A)) 6= p2(Zk|W ′(aH′∩A)),

(which is true by the inductive hypothesis).

For a fixed Wk, we have 5 degrees of freedom:
p(Zk+1), p(Wk|Zk+1, Zk), p(Wk|Zk+1, 1 − Zk),
p(Wk|1− Zk+1, Zk), and p(Wk|1− Zk+1, 1− Zk).

It suffices to specify these in such a way that the linear map-
ping induced by

p(Zk+1 |Wk, Zk) =
p(Zk+1)p(Wk | Zk+1, Zk)∑
Zk+1

p(Zk+1)p(Wk | Zk+1, Zk)
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is a one-to-one mapping, and for some Wk, c = p1(Wk |
Zk) = p2(Wk | Zk), and k = p1(Wk | 1−Zk) = p2(Wk |
1− Zk) are chosen such that

p1(Zk|W ′(aH′∩A))
p2(Zk|W ′(aH′∩A))

6= k + p1(Zk|W ′(aH′∩A))(c− k)
k + p2(Zk|W ′(aH′∩A))(c− k)

,

for some p1(Zk|W ′(aH′∩A)) 6= p2(Zk|W ′(aH′∩A)). But
there are sufficient degrees of freedom to satisfy both prop-
erties. In particular, we can choose p1(Zk|W ′(aH′∩A)) and
p2(Zk|W ′(aH′∩A)) to be distinct one-to-one mappings
(since these are 2 by 2 matrices, and almost all such ma-
trices are full column rank) and c 6= k to obtain the above
inequality.

If Wk 6= Ck, the above construction may be trivially ex-
tended by letting all variables on the directed path from Ck
to Wk be identity functions of their parents.

Assume there exists a recanting district D in D(GW∗),
where W ∗ ≡ AnGV \A(W ). Further, find the minimal sub-
set W ′ of W such that the set of all childless vertices in
D is in AnGV \A(W

′). Let H be the smallest set of vertices
that contains W ′, D, an element Ai ∈ A ∩ PaG(D) with
a conflicting treatment assignment, and such that the set of
childless vertices in D is in AnGH (W

′).

Consider any edge subgraph of GH such that each vertex
has at most one child. We construct elements p1(H) and
p2(H) in the causal model in GH as follows. In p1(H) each
structural equation is a bit parity function of the parents,
and each bidirected arc between Vi and Vj corresponds to
a binary latent common parent εij where each such latent
is involved in precisely two functions. Moreover p(εij) is a
uniform distribution. In p2(H) the same is true, except Ai
is not involved in the structural equation for any element
in D. It has been shown in [3] that p1(H) = p2(H), but
p1(W

′(π, ai, a
′
i)) 6= p2(W

′(π, ai, a
′
i)).

As before, consider a backdoor path π in G(a) from some
elementWi inW ′ to an element Yj in Y , such thatWi is m-
connected to Y given W , and the edge on the path adjacent
to Wi has an arrowhead into Wi. Such a path must exist
by construction of W . In addition, consider the smallest
subset W ′′ of W such that Wi is m-connected to Yj given
W ′′ in GV \A. Pick the smallest set H ′ containing H such
that the above m-connection statement holds in GH′ . We
now extend p1(H) and p2(H) to p1(H′) and p2(H′) to show
p(Yj(aH′∩A) |W ′(aH′∩A)) is not identified.

We have three base cases. The first case assumes the first
node Zj on π not in H is a parent of an element Zi. In this
case, we let Zi be the bit parity function of all its parents
in GH′ , including Zj in both p1(H′) and p2(H′). By rea-
soning analogous to the hedge case, this implies p1(H ′) =
p2(H

′), but p1(Zj(aH′∩A) = 0 | W ′(aH′∩A) = 0) < 1,
while p2(Zj(aH′∩A) = 0 |W ′(aH′∩A) = 0) = 1.

The second case assumes the first node Zj on π not in H is
a child of an elementZi inH . The third case, which we also

consider here, assumes Y ∈ H , in which case we let Y =
Zi. If p(Zj(π, ai, a′i) | W ′(π, ai, a′i)) (or p(Y (π, ai, a

′
i) |

W ′(π, ai, a
′
i))) is not identified, we are done. Otherwise,

we assume p(Zj(π, ai, a′i) | W ′(π, ai, a′i)) is identified.
Consider the edge subgraph G′H′ of GH′ that lacks the out-
going directed edges from Zi within H .

If Zi is not in D, by reasoning analogous to reasoning in
the hedge case, GH′ contains the recanting district structure
for p(Zj(π, a, a′),W ′′(π, a, a′)), whereW ′′ =W ′ \{Wi}
and Wi is W ′ ∩ DeGH′ (Zj). If p(W ′′(π, a, a′)) is iden-
tified, we are done, since we established the base case
where p(Zj(π, a, a′) | W ′′(π, a, a′)) is not identified. If
p(W ′′(π, a, a′)) is not identified, note that W ′′ is a strictly
smaller set then W ′, and we restart the base case argument,
finding either a hedge or a recanting district for this smaller
set, constructing a new set H , and a new backdoor path
to an element in Y . Since the new subset of W is strictly
smaller, we can only do this a finite number of times before
encountering another base case.

IfZi is inD, then the resulting graph G′H′ contains a recant-
ing district structure for p(Zj(π, a, a′),W ′(π, a, a′)) with
the set of childless vertices of the previous district and also
Zi (since it is now childless in H). Given the recanting dis-
trict construction, p1(Zj(π, a, a′) = 0 | W ′(π, a, a′) =
0) < 1, while p2(Zj(π, a, a′) = 0 | W ′(π, a, a′) = 0) =
1, and we are done.

Since we now established bases for the induction for the
recanting district case, we can apply the inductive ar-
gument for the hedge case to conclude p(Y (π, ai, a

′
i) |

W ′(π, ai, a
′
i)) is not identified, as above. Having estab-

lished that p(Y (π, ai, a
′
i) | W ′(π, ai, a′i)) is not identified

in GH′ or G′H′ , it is trivial to extend p1(H′) and p2(H′) to
p1(V) and p2(V) for G(V ).

Finally, our conclusion is established for Ge(V,ACh) and
p(Y (aπ) |W (aπ)) by Proposition 9. �

A Weaker Causal Model

We phrased all our discussion in terms of the functional
causal model, defined by the restriction (3). A weaker
causal model called the finest fully randomized causally in-
terpretable structured tree graph (FFRCISTG) suffices for
many causal inference tasks. This model asserts that the
variables,

{Vi(pai) | i ∈ {1, . . . , k}} , (10)

are mutually independent for every v ∈ XV , where pai
is the subset of v associated with Pai. Note that the set
of independences asserted by (10) is a subset of the set
of independences asserted by (3). In particular, (10) only
asserts independences among a set of potential outcomes
associated with a globally consistent intervention opera-
tion, while (3) may allow independences among potential
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outcomes with inconsistent interventions. For example, a
model defined by (3) may assert that Y (a,m) ⊥⊥ M(a′),
while (10) never asserts such an independence if a 6= a′.

Since the SWIG global Markov property only asserts inde-
pendences on random variables associated with a globally
consistent intervention operation, it is implied not only by
(3) but also the weaker model represented by (10) [2]. Po-
tential outcomes like p(Y (a,M(a′))) that arise in media-
tion analysis are not identified under (10), but are some-
times identified under (3); see [7] for details. Note, how-
ever, that our rephrasing of edge-consistent counterfactuals
p(Vi(π, a, a

′)) in the causal model for G(V ) in terms of
an intervention p(Vi(aπ)) in the extended causal model for
Ge(V ∪ ACh) leads to an identification theory for which
model (10) for the variables in Ve is sufficient. The reason
that counterfactuals p(Vi(π, a, a′)) requiring the stronger
set of assumptions (3) may be rephrased as counterfactu-
als p(Vi(aπ)) only requiring the weaker set of assumptions
(10) has to do with the specific way in which Ge was con-
structed. Specifically, Ge implicitly imposed strong restric-
tions on the associated FFRCISTG, having to do with de-
terministic relationships between Ai and Aji as well as ab-
sences of edges between any element Aji in ACh and any
element in ChGi other than Vj . Had these edges not been
absent in Ge, identification would no longer be possible. In
some sense, Ge is the graph corresponding to the “weakest”
FFRCISTG that encodes assumptions associated with the
functional model on G. These assumptions may be viewed
informally as stating that a treatment variable Ai in A may
be decomposed into components that only influence partic-
ular children (immediate effects) of Ai, and no other chil-
dren of Ai.
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