
Probabilistic Riemannian Submanifold Learning
with Wrapped Gaussian Process Latent Variable

Models: Supplementary Material

1 Pseudo-Algorithm forWGPLVM
A pseudo-code algorithm for training the WGPLVM is provied in Alg. 1.

2 Details on Manifolds Used
The n-sphere Sn is a Riemannian manifold with exponential and logarithmic
maps given by

Expp(v) = cos(‖v‖2)p+ sin(‖v‖2)
v

‖v‖2
,

Logp(q) = arccos (〈p, q〉) q − 〈p, q〉p
‖q − 〈p, q〉p‖2

,
(1)

where ‖ · ‖2 is the 2-norm induced by the standard Euclidean innerproduct 〈·, ·〉.
Kendall’s shape space forms a quontient manifold of the sphere, so the

operations defined for Sn apply, when working with the right quotient repre-
sentatives. Kendall’s shape space has the additional constraint of representing
shapes with respect to an optimal translation between a pair of shapes. Let X,Y
be the 2×N data matrices of two shapes, where N is the amount of landmarks,
and each column represents the x, y-coordinates after quontienting away scale
and translation. Then, the Procrustean distance between the shapes X,Y is
given by

min
R
‖X −RY ‖2, (2)

where R is a rotation matrix. The shapes are aligned by choosing a reference
point, and aligning the population elements by minimizing the Procrustean
distance.

The space SPD(n) of symmetric, positive definite matrices can be
given the structure of a Riemannian manifold, by endowing it with the Log-
Euclidean metric. The tangent space at each point is the space of n-by-n
symmetric matrices, and the affine-invariant metric is given by

gP (V,U) = Trace[V TU ], (3)
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Algorithm 1 Training WGPLVM. Input: basepoint function m, kernel kΘ,
initial latent variables x = {xi}Ni=1, dataset p = {pi}Ni=1, learning rate λ. Each
logarithmic map should be express with respect to a frame W on the manifold.
while Not converged do

# Compute logarithmic maps and save into a matrix as rows
[Logm(x)(p)]i ← Logm(xi)(pi)
# Compute prior covariance matrix:
[Kx,Θ]ij ← kΘ(xi, xj)
# Compute objective:
L← −− dN

2 ln(2π)− d
2 ln |Kx,Θ| − 1

2Logm(x)(p)
TK−1

x,ΘLogm(x)(p)
# Compute gradients and update parameters
x← x+ λ∇xL
Θ← Θ + λ∇ΘL

end while

and the exponential and logarithmic maps are given by

ExpP (A) = exp(log(p) + v), LogP (Q) = log(Q)− log(P ), (4)

where exp stands for the matrix exponential and log for the matrix logarithm.
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3 Latent Space Visualization
Here we provide the latent space visualizations for the diffusion-tensor and
diatom datasets.
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Figure 1: The latent spaces for the diffusion-tensor dataset learned using the
WGPLVM and GPLVM models. The colors indicate the FA of the given tensor.

The fractional anisotropy (FA) of a 3× 3 SPD matrix is a shape descriptor
taking values between 0 and 1, where an FA of 0 corresponds to a round tensor,
and an FA near 0 corresponds to a very thin one. Given the eigenvalues λ1, λ2, λ3

for an SPD matrix, its FA is defined as

√
3

2

√
(λ1 − λ̂)2 + (λ2 − λ̂)2 + (λ3 − λ̂)2√

λ2
1 + λ2

2 + λ2
3

,

where λ̂ is the mean of the eigenvalues. In the latent space shown in Fig. 1,
the latent variables are colored according to the FA of their associated tensor,
and we see that both models provide a smooth transition between different FA
values.

The latent space visualization of the diatom dataset is found in Fig. 2; here
the latent variables are colored by the species of the corresponding diatom, see
Fig. 3 for a visualization of species representatives.

4 Comparing the Geometries
In this section, we compare the geometries in Euclidean and Riemannian cases.
The aim is to try and understand, when the performance is improved. We do this
by visualizing the distribution of data point distances to the corresponding popu-
lation means, the distances and means computed according to the corresponding
metrics.

As can be seen in Fig. 4, in the femur (2-sphere) and diatom (Kendall’s
shape space) cases, the distributions look very similar. In fact, in the diatom
case, they are essentially the same. The Kendall’s shape space forms a quotient
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Figure 2: The latent spaces for the diatom dataset learned using the WGPLVM
and GPLVM models. The colors indicate the species of the diatom corresponding
to the latent variable, see Fig. 3.

Figure 3: Representatives of each of the 37 diatom classes with corresponding
class colors used in Fig. 2. Note that variation inside of each class can be
considerable.

Figure 4: Distributions of distances between the data points and the population
means. The bar plots indicate the density of data points that lie x-fraction of the
maximum distance away from the mean. The corresponding continuous curves
represent the cumulative distributions.

manifold of the sphere, which in this case is high dimensional (d = 180). In
such high dimension, escaping the manifold becomes increasingly more difficult
(most of the volume of the sphere is close to the boundary), and thus both the
metrics are essentially the same. This might explain, why the WGPLVM did
not improve notably on the GPLVM.

In the crypto-tensor experiment, the distribution implies the presence of
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extreme outliers under the Euclidean metric. The Log-Euclidean metric, on the
other hand, transforms the metric scale, evening out the distribution. This could
very well explain, why we see large improvement with the WGPLVM compared
to the GPLVM.

In the DTI experiment, the distribution of Euclidean distances looks more
even. This might imply, that in this occasion, the Euclidean distance is better at
capturing the trend of the data. However, the improved uncertainty estimates of
the WGPLVM could be explained, as the Euclidean models are not confined to
SPD(n). Therefore, the distributions do not follow the conic shape of SPD(n).
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