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7 Previous Results

In this section, we recall several results about the idealized HMC dynamics from the companion paper [33].

Consider two solutions (q(1)
t

, p(1)
t

) and (q(2)
t

, p(2)
t

) of Equation (2.2). Denote by q̃
t

:= q(2)
t

�q(1)
t

and p̃
t

:= p(2)
t

�p(1)
t

the di↵erences between these solutions, and denote by q̂
t

:= kq̃
t

k2 and p̂
t

:= kp̃
t

k2 the magnitudes of these
di↵erences. The following is Theorem 3 of [33] (or, equivalently, Theorem 6 in the combined arXiv preprint [34]):

Theorem 3 (Contraction For Hamiltonian Mechanics with Convex Potentials). For 0  T  1
2
p

2

p
m2

M2
,

q̂
T



1 � 1

8
(
p

m2T )2
�

⇥ q̂0. (7.1)

We will also require the following intermediate bound on the stability of solutions to Hamilton’s equations, which
is the first part of Lemma 2.2 of [33, 34]:

Lemma 7.1. For all t � 0,

q̂
t

 k1e
t

p
M2 + k2e

�t

p
M2 (7.2)

p̂
t

 k1

p
M2e

t

p
M2 � k2

p
M2e

�t

p
M2 ,

where k1 = 1
2 (q̂0 + p̂0p

M2
), k2 = 1

2 (q̂0 � p̂0p
M2

).

8 Leapfrog Integrator

In this section, we bound the error of the leapfrog integrator when it is used to approximate the continuous HMC
dynamics. Recall the notation q?

✓

, p?

✓

from Equation (2.4).

Lemma 8.1. (Leapfrog method error)

Fix ✓ > 0. We have

kq?

✓

(q,p) � q
✓

(q,p)k  ✓2 M2p
m2

r
U(q) +

1

2
kpk2 (8.1)

and

kp?

✓

(q,p) � p
✓

(q,p)k  3✓2M2

r
U(q) +

1

2
kpk2. (8.2)

Proof. For all t � 0, we have by conservation of energy that

U(q
t

(q,p)) +
1

2
kp

t

(q,p)k2 = U(q) +
1

2
kpk2

and so we also have

kq
t

(q,p)k  1p
m2

r
U(q) +

1

2
kpk2. (8.3)
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This implies

kU 0(q
t

(q,p))k 
����
Z kq

t

(q,p)k

0

D
q

t

(q,p)
kq

t

(q,p)k
U 0��

`

s

(0,q

t

(q,p))
ds

���� (8.4)


Z kq

t

(q,p)k

0

M2ds = M2kq
t

(q,p)k
Eq. (8.3)

 M2p
m2

r
U(q) +

1

2
kpk2 8t � 0.

Therefore,

kp � p
t

(q,p)k =

����
Z

t

0

U 0(q
s

(q,p))ds

���� 
Z

t

0

kU 0(q
s

(q,p))kds  t ⇥ M2p
m2

r
U(q) +

1

2
kpk2,

for all t � 0, and so

kq + p✓ � q
✓

(q,p)k =

�����

Z
✓

0

(p � p
t

(q,p))dt

����� 
Z

✓

0

kp � p
t

(q,p)kdt (8.5)


Z

✓

0

t ⇥ M2p
m2

r
U(q) +

1

2
kpk2dt =

1

2
✓2 M2p

m2

r
U(q) +

1

2
kpk2.

Continuing,

kq + p✓ � 1

2
✓2U 0(q) � q

✓

(q,p)k  kq + p✓ � q
✓

(q,p)k +
1

2
✓2kU 0(q)k (8.6)

Eq. (8.4),(8.5)

 2 ⇥ 1

2
✓2 M2p

m2

r
U(q) +

1

2
kpk2.

This completes the proof of Inequality (8.1).

We now prove Inequality (8.2). By the conservation of energy bound, kp
t

(q,p)k  p
2
q

U(q) + 1
2kpk2 for all

t � 0, so we have

kq
t

(q,p) � qk  t
p

2

r
U(q) +

1

2
kpk2

for all t � 0. Applying this bound gives

kU 0(q
t

(q,p)) � U 0(q)k =

�����

Z kq

t

(q,p)�qk

0

D
q

t

(q,p)�q
kq

t

q,p)�qk
U 0��

`

s

(q,q

t

(q,p))
ds

����� (8.7)


Z kq

t

(q,p)�qk

0

����D q

t

(q,p)�q
kq

t

q,p)�qk
U 0��

`

s

(q,q

t

(q,p))

���� ds


Z kq

t

(q,p)�qk

0

M2ds = M2kq
t

(q,p) � qk  M2t
p

2

r
U(q) +

1

2
kpk2.

Applying this bound to the quantity of interest,

kp + ✓U 0(q) � p
✓

(q,p)k =

�����

Z
✓

0

(U 0(q
t

(q,p)) � U 0(q))dt

����� (8.8)


Z

✓

0

kU 0(q
t

(q,p)) � U 0(q)kdt


Z

✓

0

M2t
p

2

r
U(q) +

1

2
kpk2dt =

1p
2
✓2M2

r
U(q) +

1

2
kpk2.
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We also have

kU 0(q?

✓

(q,p)) � U 0(q)k  kU 0(q?

✓

(q,p)) � U 0(q
✓

(q,p))k (8.9)

+ kU 0(q
✓

(q,p)) � U 0(q)k
 M2kq?

✓

(q,p)) � q
✓

(q,p)k + kU 0(q
✓

(q,p)) � U 0(q)k
Eq. (8.6),(8.7)

 M2

"
✓2 M2p

m2

r
U(q) +

1

2
kpk2

#
+ M2✓

p
2

r
U(q) +

1

2
kpk2

 4M2✓

r
U(q) +

1

2
kpk2,

where the last inequality holds since ✓ 
p

m2

M2
.

Therefore,
����p + ✓U 0(q)�1

2
✓2 U 0(q?

✓

(q,p)) � U 0(q)

✓
� p

✓

(q,p)

����

 kp + ✓U 0(q) � p
✓

(q,p)k +

����
1

2
✓2 U 0(q?

✓

(q,p)) � U 0(q)

✓

����

Eq. (8.8)

 1p
2
✓2M2

r
U(q) +

1

2
kpk2 +

1

2
✓kU 0(q?

✓

(q,p)) � U 0(q
j

)k
Eq. (8.9)

 1p
2
✓2M2

r
U(q) +

1

2
kpk2 + 2✓2M2

r
U(q) +

1

2
kpk2

 3✓2M2

r
U(q) +

1

2
kpk2.

This completes the proof of the lemma.

We find it convenient to define dedicated notation q†✓

T

: Rd ⇥Rd ! Rd for the global leapfrog integrator as follows

(the global leapfrog integrator is used in steps 4-7 in Algorithm 2, where qbT

✓

c = q†✓

T

(X 0
i

,p
i

)). This will be used
throughout the rest of the paper.

Algorithm 3 Global leapfrog integrator

parameters: Potential U , trajectory time T > 0, and accuracy ✓ > 0.
input: Initial point q 2 Rd, initial momentum p 2 Rd.
output: q†✓

T

(q,p), p†✓

T

(q,p).

1: Set q0
† = q and p0

† = p.

2: for i = 0 to dT

✓

� 1e do

3: Compute qi+1
† = q?

✓

(qi

†, p
i

†) and pi+1
† = p?

✓

(qi

†, p
i

†).
4: end for
5: Set q†✓

T

(q,p) = qi+1
† , p†✓

T

(q,p) = pi+1
† .

Lemma 8.2. Fix parameters T, ✓ > 0 satisfying 7✓  T  1
2
p

2

p
m2

M2
and T

✓

2 N, and let q†✓

T

be the function

defined Algorithm 3 with these parameters. Then we have the bound on position error

kq†✓

T

(q,p) � q
T

(q,p)k  6✓ ⇥ T ⇥ M2p
m2

p
H(q,p) (8.10)

and a bound on energy error

|H(q†✓

T

(q,p), p†✓

T

(q,p)) � H(q,p)|  7
✓

T
H(q,p). (8.11)



Mixing of Hamiltonian Monte Carlo on strongly log-concave distributions 2: Numerical integrators

t = 0 t = T

t = T � T1

t = T � T2

t = T � T3

t = T � T4

t = T

(q4
† , p4

†)

(q3
† , p3

†)

(q2
† , p2

†)

(q1
† , p1

†)

(q1, p1)

(q2, p2)

(q3, p3)

(q4, p4)

q
T

(q0, p0)

q
T1(q

1
† , p1

†)

q†✓

T

(q0, p0) := q5
†

q5 ⌘ q
T4(q

4
† , p4

†)

Figure 2: This is an illustration of the proof of Lemma 8.2. Steps taken by the leapfrog integrator are repre-
sented by black dashed lines. The true Hamiltonian trajectories are blue curves. Only the Hamiltonian trajectory
q
t

(q,p) on the bottom belongs to the idealized HMC Markov chain. We imagine the other Hamiltonian trajec-
tories to help us bound the error. The distance between (qi, pi) (blue dot, blue arrow) and (qi

†, p
i

†) (black dot,
black arrow) at each time t = T �T

i

are bounded using Lemma 8.1. The distance between any blue dot at t = T
to the blue dot directly below it is bounded using Lemma 7.1.

Proof. In this proof we will use the notation of Algorithm 3. Define qi+1 := q
✓

(qi

†, p
i

†) and pi+1 = p
✓

(qi

†, p
i

†) for

every i 2 0, 1, . . . , T

✓

. Also set q0 = q and p0 = p. Set E := H(q,p) = U(q) + 1
2kpk2.

We will now prove the following claim by induction: For all 0  j  T

✓

, the inequality

|H(qj

† , p
j

†) � E|  j ⇥ 7

✓
✓

T

◆2

E (8.12)

is satisfied. The case i = 0 is obvious, since H(q0
† , p0

†) = H(q,p) = E. We now fix i and assume that Inequality
(8.12) is satisfied for all 0  j  i; we then show that it is satisfied for j = i + 1.

Inductive assumption: Suppose that |H(qi

†, p
i

†) � E|  i ⇥ 7
�

✓

T

�2
E, and that i  T

✓

� 1.

Since i  T

✓

� 1  T

✓

and ✓

T

 1
7 , Inequality (8.12) implies that

H(qi+1, pi+1)
Conservation of Energy

= H(qi

†, p
i

†)  E + 7
✓

T
E  2E. (8.13)

Then Lemma 8.1 and Inequality (8.13) together imply that

kqi+1
† � qi+1k  ✓2 M2p

m2

p
E (8.14)

and

kpi+1
† � pi+1k  ✓2M2

p
E. (8.15)

But by Equation (8.13),

kpi+1k  2
p

E. (8.16)
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Therefore, by the triangle inequality,

kpi+1
† k2 � kpi+1k2  (kpi+1

† � pi+1k + kpi+1k)2 � kpi+1k2 (8.17)

= kpi+1
† � pi+1k2 + 2kpi+1

† � pi+1k ⇥ kpi+1k
Eq. 8.16

 kpi+1
† � pi+1k2 + 2kpi+1

† � pi+1k ⇥ 2
p

E

= kpi+1
† � pi+1k ⇥ (kpi+1

† � pi+1k + 4
p

E)

Eq. 8.15

 ✓2M2

p
E ⇥ (✓2M2

p
E + 4

p
E)

= E✓2M2 ⇥ (✓2M2 + 4).

Also, Equation (8.13), together with Assumption 2.1, implies that

kqi+1k  1p
m2

p
2E, (8.18)

and thus (again by Assumption 2.2) that

kU 0(qi+1)k
Assumption 2.2

 M2kqi+1k
Eq. 8.18

 M2p
m2

p
2E. (8.19)

Therefore,

U(qi+1
† ) � U(qi+1)  max

x2Convex Hull({q

i+1
,q

i+1
† })

kU 0(x)k ⇥ kqi+1
† � qi+1k (8.20)

Assumption 2.2


⇣
kU 0(qi+1)k + M2kqi+1

† � qi+1k
⌘

⇥ kqi+1
† � qi+1k

Eq. 8.19


✓

M2p
m2

p
2E + M2kqi+1

† � qi+1k
◆

⇥ kqi+1
† � qi+1k

Eq. 8.14


✓

M2p
m2

p
2E + M2✓

2 M2p
m2

p
E

◆
⇥ ✓2 M2p

m2

p
E


⇣p

2 + M2✓
2
⌘

⇥ ✓2 M2
2

m2
E.

Hence the total change in energy is bounded by

|H(qi+1
† , pi+1

† ) � H(qi

†, p
i

†)| (8.21)

Conservation of Energy
= |H(qi+1

† , pi+1
† ) � H(qi+1, pi+1)|

Eq. 8.20, 8.17


⇣p

2 + M2✓
2
⌘

⇥ ✓2 M2
2

m2
E +

1

2
E✓2M2 ⇥ (✓2M2 + 4)

 �4 + 1.5M2✓
2
�⇥ ✓2 M2

2

m2
E  (4 + 1.5) ⇥ ✓2 M2

2

m2
E = 5.5[

✓

T
⇥ T ]2

M2
2

m2
E

 5.5

✓
✓

T
⇥ 1

2
p

2

p
m2

M2

◆2 M2
2

m2
E  7

✓
✓

T

◆2

E,

where the second inequality is true since 0 < M2
m2

 1, and the third and fourth inequalities are true since

✓  T  1
2
p

2

p
m2

M2
 1p

M2
.

Therefore,

|H(qi+1
† ,pi+1

† ) � E|
Eq. 8.21

 |H(qi

†, p
i

†) � E| + 7

✓
✓

T

◆2

E (8.22)
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by inductive assumption

 i ⇥ 7

✓
✓

T

◆2

E + 7

✓
✓

T

◆2

E = (i + 1) ⇥ 7

✓
✓

T

◆2

E.

This completes the proof by induction of Inequality (8.12) (and in particular this implies Inequality (8.11)).

Therefore, since ✓

T

 1
7 ,

|H(qi

†, p
i

†) � E|  i ⇥ 7

✓
✓

T

◆2

E  E, 8 0  i  T

✓
. (8.23)

Therefore, by Lemma 8.1

kqi

† � qik  ✓2 M2p
m2

p
E and kpi

† � pik  ✓2M2

p
E (8.24)

for all 0  i  T

✓

.

Define T
i

:= T � ✓ ⇥ i for all i. Therefore, since T
i+1  T  1

2
p

2

p
m2

M2
 1p

M2
, for all i  T

✓

� 1, we have by
Lemma 7.1

kq
T

i+1(q
i+1
† , pi+1

† ) � q
T

i

(qi

†, p
i

†)k (8.25)

= kq
T

i+1(q
i+1
† , pi+1

† ) � q
T

i+1(q
i+1, pi+1)k

Lemma 7.1 1

2

 
kqi+1

† � qi+1k +
kpi+1

† � pi+1kp
M2

!
eT

i+1
p

M2

+
1

2

 
kqi+1

† � qi+1k � kpi+1
† � pi+1kp

M2

!
e�T

i+1
p

M2

 1

2

 
kqi+1

† � qi+1k +
kpi+1

† � pi+1kp
M2

!
e

+
1

2

 
kqi+1

† � qi+1k � kpi+1
† � pi+1kp

M2

!
e0


 

kqi+1
† � qi+1k +

kpi+1
† � pi+1kp

M2

!
e

Eq. 8.24


 

✓2 M2p
m2

p
E +

✓2M2

p
Ep

M2

!
e  6✓2 M2p

m2

p
E,

where the second inequality is true since 0  T
i+1  1p

M2
and since the functions et + e�t and et � e�t are both

nondecreasing in t for t � 0; the fifth inequality is true since
p

m2  p
M2.

Therefore, since q
T

✓

† = q†✓

T

(q,p), T0 = T , and (q0
† , p0

†) = (q,p), by the triangle inequality (see Figure 2) we have

kq†✓

T

(q,p) � q
T

(q,p)k = kq
T

✓

† � q
T0(q

0
† , p0

†)k

 kq
T

✓

† � q
T

(T

✓

�1)
(q

T

✓

�1

† , p
T

✓

�1

† )k +

T

✓

�2X

i=0

kq
T

i+1(q
i+1
† , pi+1

† ) � q
T

i

(qi

†, p
i

†)k

= kq
T

✓

† � q
T

✓ k +

T

✓

�2X

i=0

kq
T

i+1(q
i+1
† , pi+1

† ) � q
T

i

(qi

†, p
i

†)k

Eq. 8.24

 ✓2 M2p
m2

p
E +

T

✓

�2X

i=0

kq
T

i+1(q
i+1
† , pi+1

† ) � q
T

i

(qi

†, p
i

†)k
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Eq. 8.25

 ✓2 M2p
m2

p
E +

T

✓

�2X

i=0

6✓2 M2p
m2

p
E  T

✓
⇥ 6✓2 M2p

m2

p
E.

This completes the proof of Inequality (8.10).

9 Mixing of Approximate HMC

In this section, we prove the main bounds used in the proof of Theorem 1. We first need the generic bounds in
the following subsection:

9.1 Perturbation Bounds for Markov Chains

We give some simple general bounds on small perturbations of Markov chains. As this section is not specifically
about HMC, the notation used here is essentially independent of the notation used in the remainder of the paper.
We begin by recalling the definition of the trace of a Markov chain on a set:

Definition 9.1 (Trace Chain). Let K be the transition kernel of an ergodic Markov chain on state space ⌦
with stationary measure µ, and let S ⇢ ⌦ be a subset with µ(S) > 0. Let {X

t

}
t�0 be a Markov chain evolving

according to K, and iteratively define

c0 = inf{t � 0 : X
t

2 S}, c
i+1 = inf{t > c

i

: X
t

2 S}.

Then

X̂
t

= X
c

t

, t � 0 (9.1)

is the trace of {X
t

}
t�0 on S. Note that {X̂

t

}
t�0 is a Markov chain with state space S, and so this procedure

also defines a transition kernel with state space S. We call this kernel the trace of the kernel K on S.

Note that Equation (9.1) defines a coupling between {X
t

}
t�0 and its trace chain {X̂

t

}
t�0; we call this the

“natural” coupling between a chain and its trace.

Recall the following bound from [35]:

Lemma 9.2. Let K be a transition kernel on Rd with unique stationary measure µ and contraction coe�cient
 > 0 satisfying

W1(K(x, ·), K(y, ·))  (1 � )kx � yk (9.2)

for all x, y 2 Rd. Let Q be a transition kernel on Rd. Assume that

sup
x2Rd

W1(K(x, ·), Q(x, ·)) < � (9.3)

for some fixed � � 0. Then Q satisfies

W1(⇡1 QI , ⇡2 KI)  (1 � )I W1(⇡1, ⇡2) +
�


(9.4)

for all measures ⇡1, ⇡2 and I 2 N. Furthermore, if Q is ergodic with stationary measure ⌫ , then

W1(µ, ⌫)  �


. (9.5)

We add the following short lemma:

Lemma 9.3. Let K, Q be two ergodic transition kernels on Rd with stationary measures µ and ⌫, let d : (Rd)2 7!
[0, 1) be a nonnegative function, and let S ⇢ Rd be a measurable set with µ(S), ⌫(S) > 0. Let x, y 2 S, let s 2 N
and let K̂, Q̂ be the traces of K, Q on S. Next, fix any coupling of {X

t

}
t�0 ⇠ K, {Y

t

}
t�0 ⇠ Q with X0 = x,
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Y0 = y, and let the pairs {X̂
t

}
t�0 ⇠ K̂, {X

t

}
t�0 and {Ŷ

t

}
t�0 ⇠ Q̂, {Y

t

}
t�0 be coupled according to the natural

coupling of a chain to its trace (as in Definition 9.1).

Then

E[d(X̂
s

, Ŷ
s

)1
�>s

]  E[d(X
s

, Y
s

)],

where

� = min{t : X
t

/2 S or Y
t

/2 S}.

Proof. We have

E[d(X̂
s

, Ŷ
s

)1
⌧>s

] = E[d(X
s

, Y
s

)1
�>s

]

 E[d(X
s

, Y
s

)],

where the equality follows from the fact that {X
t

}⌧

t=0 = {X̂
t

}⌧

t=0 (and similarly for {Y
t

}⌧

t=0), and the inequality
follows from the fact that d � 0 and 1

�>s

2 [0, 1].

We use these to prove the following bound, which we can use if the approximation of K by Q is not uniformly
good:

Lemma 9.4. Let K be a transition kernel on metric space Rd with unique stationary measure µ and contraction
coe�cient  > 0 satisfying

W1(K(x, ·), K(y, ·))  (1 � )kx � yk (9.6)

for all x, y 2 Rd. Let Q be a transition kernel on Rd. Fix � > 0 and define V (x) ⌘ e�kxk. Assume that there
exists 0 < ↵ < 1, 0  � < 1 so that

Q(x, ·)[V ]  (1 � ↵)V (x) + �, (9.7)

K(x, ·)[V ]  (1 � ↵)V (x) + � 8x 2 Rd.

Assume that there exists some 4�

↵

< C < 1 and � > 0 so that

sup
x : V (x)C

W1(K(x, ·), Q(x, ·)) < �. (9.8)

Then Q satisfies

W1(Q
I(x, ·), µ)  2 log(C)

�
(1 � )s +

�


+

�(s + 1)

�↵C
(8 + 2 log(C)) , (9.9)

for all 0  s  I 2 N and all x satisfying V (x)  �

↵

. Furthermore, if Q is ergodic with stationary measure ⌫,

W1(µ, ⌫)  inf
s2{0,1,...}

2 log(C)

�
(1 � )s +

�


+

�(s + 1)

�↵C
(8 + 2 log(C)) . (9.10)

Proof. We make some initial estimates. Let {XI}I�0 be a Markov chain evolving according to Q and started at
a (possibly random) point X0 satisfying E[V (X0)]  �

↵

. By Inequality (9.7),

E[V (XI)]  (1 � ↵)E[V (XI�1)] + �  . . . (9.11)

 (1 � ↵)IE[V (X0)] +
�

↵
 2�

↵
8I 2 N.



Oren Mangoubi, Aaron Smith

By Markov’s inequality, then,

P[ sup
I�shI

V (X
h

) > r]  2�(s + 1)

↵r
(9.12)

for any fixed integers 0  s  I and any r > 0. Rewriting this,

P[ sup
I�shI

e�kX

h

k > r]  2�(s + 1)

↵r
8 r > 0, (9.13)

and so

P[ sup
I�shI

kX
h

k > r]  2�(s + 1)

↵
e��r 8r > 0, (9.14)

which gives

E[( sup
I�shI

kX
h

k) ⇥ { sup
I�shI

V (X
h

) � C}] (9.15)

= E[( sup
I�shI

kX
h

k) ⇥ { sup
I�shI

kX
h

k � 1

�
log(C)}]

Eq. 9.14


Z 1

1
�

log(C)

2�(s + 1)

↵
e��rdr =

2�(s + 1)

�↵C
.

Also, by Jensen’s inequality, Equation (9.11) implies that,

e�E[kXIk]  E[e�kXIk] = E[V (XI)]
Eq. 9.11

 2�

↵
,

and so

E[kXIk]  ��1 log(
2�

↵
). (9.16)

Now let {YI}I�0 be a Markov chain evolving according to K and started at Y0 ⇠ µ. Then by Inequality (9.7),

E[V (Y0)] = E[V (Y1)]  (1 � ↵)E[V (Y0)] + �,

which implies that E[V (Y0)]  �

↵

. Therefore, by the same argument we used to show Inequalities (9.13), (9.15),
and (9.16) (but replacing K with Q and X

h

with Y
h

), we must have, respectively,

E[ sup
I�shI

kY
h

k ⇥ { sup
I�shI

V (Y
h

) � C}]  2�(s + 1)

�↵C
(9.17)

and

P[ sup
I�shI

e�kY

h

k > r]  2�(s + 1)

↵r
8r > 0 (9.18)

and

E[kYIk]  ��1 log(
2�

↵
). (9.19)

We now prove Inequality (9.9) using an explicit coupling. Fix integers 0  s  I < 1. Let {X
h

}I�s

h=0, {Y
h

}I�s

h=0 be
Markov chains with transition kernels Q and K respectively, and starting points X0 = x and Y ⇠ µ. We begin
to construct our coupling of these two chains by allowing them to evolve independently over the time interval
{0, 1, . . . , I � s}.
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Next, let Q̃, K̃ be the traces of Q, K on the set {z 2 Rd : V (z)  C}. Fix � > 0. By Lemmas 9.2 and 9.3, it is
possible to couple two Markov chains {X̃

i

}
i�0, {Ỹ

i

}
i�0 with transition kernels Q̃, K̃ and starting points

X̃0 =

(
XI�s

, V (XI�s

)  C

0, V (XI�s

) > C
(9.20)

Ỹ0 =

(
YI�s

, V (YI�s

)  C

0, V (YI�s

) > C

so that

E[kX̃
s

� Ỹ
s

k1
�>s

]  (1 � )s sup
x,y : V (x), V (y)C

kx � yk +
�


+ �, (9.21)

where

� = min{t � 0 : X
s

/2 S or Y
s

/2 S}.

Next, couple {X
h

}I
h=I�s

to {X̃
h

}s

h=0 (respectively, couple {Y
h

}I
h=I�s

to {Ỹ
h

}s

h=0) according to the natural
coupling of a Markov chain to its trace on a set (that is, the coupling in Definition 9.1). Defining ⌧

X

= min{h �
I � s : V (X

h

) > C}, ⌧
Y

= min{h � I � s : V (Y
h

) > C}, and ⌧ = min{⌧
X

, ⌧
Y

}, we have:

E[kXI � YIk] = E[kXI � YIk
⌧>I ] + E[kXI � YIk

⌧I ]

 E[kXI � YIk
⌧>I ] + E[(kXIk + kYIk)

⌧I ]

 E[kXI � YIk
⌧>I ] + E[(kXIk + kYIk)

⌧

X

I ] + E[(kXIk + kYIk)
⌧

Y

I ]

 E[kXI � YIk
⌧>I ] + E[(kXIk + kYIk)

⌧

X

I ⇥ (
⌧

Y

I +
⌧

Y

>I)]

+ E[(kXIk + kYIk)
⌧

Y

I ⇥ (
⌧

X

I +
⌧

X

>I)]

 E[kXI � YIk
⌧>I ] + E[kXIk

⌧

X

I ]

+ E[kYIk
⌧

Y

I ] + E[kYIk
⌧

X

I ⇥
⌧

Y

>I ]

+ E[kYIk
⌧

Y

I ] + E[kXIk
⌧

X

I ] + E[kXIk
⌧

Y

I ⇥
⌧

X

>I ]

 E[kXI � YIk
⌧>I ] + E[kXIk

⌧

X

I ]

+ E[kYIk
⌧

Y

I ] + E[
1

�
log(C)

⌧

X

I ⇥
⌧

Y

>I ]

+ E[kYIk
⌧

Y

I ] + E[kXIk
⌧

X

I ] + E[
1

�
log(C)

⌧

Y

I ⇥
⌧

X

>I ]

 E[kX̃
s

� Ỹ
s

k
⌧>I ] + 2E[ sup

I�shI
kX

h

k ⇥ { sup
I�shI

V (X
h

) � C}]

+
1

�
log(C)P[ sup

I�shI
V (X

h

) � C}]

+ 2E[ sup
I�shI

kY
h

k ⇥ { sup
I�shI

V (Y
h

) � C}]

+
1

�
log(C) ⇥ P[ sup

I�shI
V (Y

h

) � C}]

Eq. 9.13,9.18

 E[kX̃
s

� Ỹ
s

k
⌧>I ] + 2E[ sup

I�shI
kX

h

k ⇥ { sup
I�shI

V (X
h

) � C}]

+ 2E[ sup
I�shI

kY
h

k ⇥ { sup
I�shI

V (Y
h

) � C}] + 2��1 log(C) ⇥ 2�(s + 1)

↵C
.

Applying Inequalities (9.15), (9.17), and (9.21),

E[kXI � YIk]
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 (1 � )s sup
x,y : V (x), V (y)C

kx � yk +
�


+

8�(s + 1)

�↵C

+ 2��1 log(C) ⇥ 2�(s + 1)

↵C
+ �

 (1 � )s

2 log(C)

�
+

�


+

�(s + 1)

�↵C
(8 + 2 log(C)) + �,

where the second line uses the fact sup
x,y : V (x), V (y)C

kx � yk  2 log(C)
�

. Since � > 0 was arbitrary, this
completes the proof of Inequality (9.9).

To prove Inequality (9.10), we note by the ergodicity of Q and Inequality (9.9) that, for fixed x satisfying
V (x)  �

↵

,

W1(⌫, µ) = lim
I!1

W1(Q
I(x, ·), µ)

 lim
I!1

inf
0sI


2 log(C)

�
(1 � )s +

�


+

�(s + 1)

�↵C
(8 + 2 log(C))

�

= inf
s2{0,1,...}


2 log(C)

�
(1 � )s +

�


+

�(s + 1)

�↵C
(8 + 2 log(C))

�
,

which completes the proof.

9.2 Bounds on unadjusted HMC Algorithm

We now prove a mixing bound for the unadjusted HMC algorithm described in Algorithm 2. The proof strategy
is:

• We use the error bounds on the leapfrog integrator proved in Section 8 to show that the unadjusted HMC
Markov chain described in Algorithm 2 is a “small perturbation” of the ideal HMC Markov chain described
in Algorithm 1.

• We use the “small perturbation” results of Section 9.1 to show that the unadjusted HMC Markov chain
inherits the good mixing properties of the ideal HMC chain (the latter are summarized in Section 7).

We set some notation to be used throughout this section. We always fix a target potential U that satisfies

Assumptions 2.1 and 2.2. We also fix integration time 0  T  1
2
p

2

p
m2

M2
and let K be the transition kernel

defined in Algorithm 1 with these parameters.

For any 0  ✓  T

5 , we denote by Q the transition kernel defined by Algorithm 2 with these parameters. We use
the notation from Algorithms 1 and 2 in our analyses of these algorithms. We begin with coarse bounds on the
behavior of the HMC chain:

Lemma 9.5. Set notation as above. Fix C 0 > 0 and 0 < �  1
32

p
2m2 and define V (x) ⌘ e�kxk for all x 2 Rd.

Let  := 1
8 (

p
m2T )2 and fix ✓ > 0 such that 6✓ T M2p

m2

p
M2 < . Then for all x 2 Rd we have the drift condition

K(x, ·)[V ]  (1 � ↵)V (x) + �, (9.22)

Q(x, ·)[V ]  (1 � ↵)V (x) + �,

where

↵ = 1 � (1 + e� d

8 )e
�

⇣
�+6✓ T

M2p
m2

p
M2

⌘
C

0+�(1+6✓ T M2)
q

d

m2

� = e�C

0
(1 � ↵).

Moreover,

kq†✓

T

(x,p)k 
✓

1 �  + 6✓ T
M1.5

2p
m2

◆
kxk + (1 + 6✓ T M2)

kpkp
2m2

, (9.23)

for any x,p 2 Rd.
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Proof. We begin by coupling two Markov chains evolving according to Algorithm 1 to a Markov chain evolving
according to Algorithm 2.

Let p0,p1, . . . be independent N (0, I
d

) Gaussians. Recalling the forward mapping representation (2.3) of Algo-
rithm 1, we set initial conditions X0 = x, Y0 = 0, and inductively define

X
i+1 = QX

i

T

(p
i

), Y
i+1 = QY

i

T

(p
i

)

for i 2 N. This gives a coupling of two copies {X
i

}
i�0, {Y

i

}
i�0 of the idealized HMC chain defined in Algorithm

1. We couple these two chains to a Markov chain (X 0
0, X

0
1, . . .) generated by Algorithm 2 with starting point

X 0
0 = X0 = x by inductively setting

X 0
i+1 = q†✓

T

(X 0
i

,p
i

)

for all i � 0. Note that the resulting Markov chain evolves according to Algorithm 2.

Define p0 = p0, so p0 ⇠ N (0, I
d

). By Theorem 3 we have

kX1 � Y1k  (1 � ) kX0 � Y0k = (1 � ) kX0k. (9.24)

Also, by conservation of energy for Hamilton’s equations,

U(Y1)  H(Y0,p0) = 0 +
1

2
kp0k2.

By strong convexity of U (Assumption 2.1), we have m2kY1k2  U(Y1), so

kY1k  1p
m2

p
U(Y1)  kp0kp

2m2
. (9.25)

Therefore, combining Inequalities (9.24) and (9.25),

kX1k  kX1 � Y1k + kY1k  (1 � ) kX0k + kY1k  (1 � ) kX0k +
kp0kp
2m2

and so,

e�kX1k  e�(1�)⇥kX0ke
�

kp0kp
2m2 . (9.26)

Inequality (9.26) implies that

e�kX1k 
(

(1 � ↵0)e�kX0k, kX0k � C 0

�0, kX0k  C 0,

where ↵0 = 1 � e
��C

0+�

kp0kp
2m2 and �0 = e

�(1�)C0+�

kp0kp
2m2 are random variables that depend on p0. Thus, for

any X0,

e�kX1k  (1 � ↵0)e�kX0k + �0. (9.27)

Now, kp0k2 ⇠ �2
d

, so by the Hanson-Wright concentration inequality (see, for instance, [23, 45]), we have

P(kp0k2 > s + d)  e� s

8 for s > d.

Therefore, for any � such that 0 < � < 1
16

p
2m2,

P

e
�

kp0kp
2m2 > e

�

p
s+dp
2m2

�
 e� s

8 for s > d
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and so

P

e
�

kp0kp
2m2 > r

�
 e� 1

8 ((

p
2m2
�

log(r))2�d) for r > e
�

p
2dp

2m2 . (9.28)

However, for r > e
�

p
2dp

2m2 , we have

e� 1
8 ((

p
2m2
�

log(r))2�d) = e
1
8 d[elog(r)]�

1
8 (

p
2m2
�

)2 log(r) = e
1
8 dr� 1

8 (

p
2m2
�

)2 log(r) (9.29)

 e
1
8 dr� 1

8

p
2m2
�

p
2d.

Inequalities (9.28) and (9.29) together give

P

e
�

kp0kp
2m2 > r

�
 e

1
8 dr� 1

8

p
2m2
�

p
2d for r > e

�

p
2dp

2m2 , (9.30)

and hence

E

e
�

kp0kp
2m2

�
Eq. 9.30

 e
�

p
2dp

2m2 +

Z 1

e

�

p
2dp

2m2

e
1
8 dr� 1

8

p
2m2
�

p
2ddr

= e
�

p
2dp

2m2 +
1

1
8

p
2m2

�

p
2d � 1

e
� 1

8 d+�

p
2dp

2m2  (1 + e� d

8 ) e
�

p
2dp

2m2

where the inequality uses the fact that �  1
16

p
2m2. So we have

E

e
�

kp0kp
2m2

�
 (1 + e� d

8 )e
�

p
2dp

2m2 for 0 < �  1

16

p
2m2. (9.31)

Therefore,

E[e�kX1k]
Eq. 9.27

 E[(1 � ↵0)e�kX0k] + E[�0] (9.32)

= E[e
��C

0+�

kp0kp
2m2 e�kX0k] + E[e

�(1�)C0+�

kp0kp
2m2 ]

Eq. 9.31

 (1 + e� d

8 )e��C

0
e
�

p
2dp

2m2 e�kX0k + (1 + e� d

8 )e�(1�)C0
e
�

p
2dp

2m2 ,

where the assumption of Inequality (9.31) is satisfied because 0 < �  1
32

p
2m2 < 1

16

p
2m2.

Next, since 6✓ T M2p
m2

> 0, we have

1 � ↵ = (1 + e� d

8 )e
�

⇣
�+6✓ T

M2p
m2

p
M2

⌘
C

0+�(1+6✓ T M2)
q

d

m2 (9.33)

� (1 + e� d

8 )e
��C

0+�

p
2dp

2m2

and

� = e�C

0
(1 � ↵) � (1 + e� d

8 )e
�(1�)C0+�

p
2dp

2m2 . (9.34)

Therefore, substituting Inequalities (9.33) and (9.34) into Inequality (9.32), we get

E[V (X1)]  (1 � ↵)V (X0) + �,

and hence
K(x, ·)[V ]  (1 � ↵) ⇥ V (x) + �. (9.35)
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This proves the first line of Ineqality (9.22). We now prove Inequality (9.23), before finally proving the second
line of Inequality (9.22). By Lemma 8.2, for every p 2 Rd we have

kq†✓

T

(x,p) � q
T

(x,p)k  6✓ T
M2p
m2

p
H(X0,p) (9.36)

Assumption 2.2

 6✓ T
M2p
m2

r
M2kX0k2 +

1

2
kpk2  6✓ T

M2p
m2

"
p

M2kX0k2 +

r
1

2
kpk2

#
.

Also, by the same calculation that was used to prove Inequality (9.26), we have

e�kq

T

(x,p)k  e�(1�)⇥kxke
�

kpkp
2m2 8p 2 Rd. (9.37)

And so for all p 2 Rd we have,

kq†✓

T

(x,p)k  kq
T

(x,p)k + kq†✓

T

(x,p) � q
T

(x,p)k
Eq. 9.37, 9.36

 (1 � ) kxk +
kpkp
2m2

+ 6✓ T
M2p
m2

p
M2kxk +

1p
2
kpk

�


✓

1 �  + 6✓ T
M2p
m2

p
M2

◆
kxk +

✓
1p
2m2

+
1p
2
6✓ T

M2p
m2

◆
kpk.

This proves Inequality (9.23). Inequality (9.23) in turn implies that

kX 0
1k 

✓
1 �  + 6✓ T

M1.5
2p
m2

◆
kX0k + (1 + 6✓ T M2)

kp0kp
2m2

and so

e�kX

0
1k  e�kX0ke

�

✓
�+6✓ T

M

1.5
2p
m2

◆
kX0k+�(1+6✓ T M2)

kp0kp
2m2 .

Since 6✓ T M2p
m2

p
M2 < , this implies

e�kX

0
1k 

(
(1 � ↵00)e�kX0k, kX0k � C 0

e�kX

0
1k  �00 kX0k  C 0,

where

↵00 := 1 � e
�

✓
�+6✓ T

M

1.5
2p
m2

◆
C

0+�(1+6✓ T M2)
kp0kp
2m2

�00 := e
�

✓
1�+6✓ T

M

1.5
2p
m2

◆
C

0+�(1+6✓ T M2)
kp0kp
2m2

are random variables that depend on p0. Thus,

e�kX

0
1k  (1 � ↵00)e�kX0k + �00

for any X0, and so

E[e�kX

0
1k]  E[(1 � ↵00)e�kX0k + �00] (9.38)

= E[1 � ↵00] e�kX0k + E[�00]

= E
"
e
�

✓
�+6✓ T

M

1.5
2p
m2

◆
C

0+�(1+6✓ T M2)
kp0kp
2m2

#
e�kX0k

+ E
"
e
�

✓
1�+6✓ T

M

1.5
2p
m2

◆
C

0+�(1+6✓ T M2)
kp0kp
2m2

#



Oren Mangoubi, Aaron Smith

Eq. 9.31
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where Inequality (9.31) is applied in the fourth line with � = � (1 + 6✓ T M2) (note that the condition on �

is satisfied, since 6✓ T M2  6✓ T M

1.5
2p
m2

<  < 1 implies � < 2�  2 ⇥ 1
32

p
2m2 = 1

16

p
2m2). Therefore, since

X0 = X 0
0 = x,

E[V (X 0
1)]  (1 � ↵)V (X 0

0) + �,

and hence

Q(x, ·)[V ]  (1 � ↵) ⇥ V (x) + �. (9.39)

This proves the second line of Inequality (9.22), completing the proof of the lemma.

We show that we can use the approximation bound in Lemma 9.4:

Lemma 9.6. Set notation and parameters as in the statement of Lemma 9.5. Then, using the same notation,
the assumptions (9.6), (9.7) and (9.8) of Lemma 9.4 hold for any choice of C > 0 and the choice

� = 6✓ T
M2p
m2

 
p

M2�
�1 log(C) +

p
dp
2

!
.

Proof. Inequalities (9.6) and (9.7) follow immediately from Theorem 3 and Lemma 9.5, respectively. So we
need only prove Inequality (9.8). Fix x 2 Rd and let p0 ⇠ N (0, I

d

) be a standard spherical Gaussian. Set
X1 := q

T

(x, p0) and X 0
1 := q†✓

T

(x, p0), so that X1 ⇠ K(x, ·) and X 0
1 ⇠ Q(x, ·). By Lemma 8.2,
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p
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Therefore,

sup
x : V (x)C
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Eq. 9.40
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This completes the proof of the lemma.

We conclude with a bound on the approximation error of Q after many steps:
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Lemma 9.7. Set notation and parameters as in Lemma 9.5, fix C > 4�

↵

, and let

� = 6✓ T
M2p
m2

✓p
M2�

�1 log(C) +
1p
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d
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Then Q satisfies
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for all 0  s  I 2 N and all x satisfying V (x)  �

↵

.

Proof. Set V (x) ⌘ e�kxk for all x 2 Rd. The proof now follows by applying Lemmas 9.4 and 9.6, with constants
given in the statement of Lemma 9.6.

Define the function

�(a, b) :=


2e

1
32 (4�2a) 16
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log(1+e

� b

8 )� 7
8

�
(9.41)

for a, b > 0. The following is essentially a restatement of Lemma 9.7:

Lemma 9.8. Choose ✏ > 0. Fix notation as in Lemma 9.5, with the additional constraints 0  T  1
2
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Then

W1(Q
I(x, ·), ⇡)  ✏ (9.42)

for all I � s and all x satisfying kxk 
p

dp
m2

. Furthermore, if Q is ergodic with stationary measure ⌫,

W1(⇡, ⌫)  ✏. (9.43)

Proof. By our assumption about the value of ✓, and recalling that 0 <  < 1 and 0 < m2  M2, we have
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We now choose C 0 = (1 + 16
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. By Inequalities (9.44), we have after some algebraic manipu-
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Also by Inequalities (9.44),
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Combining these two calculations,
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Note that C > 16, so we have the easy inequality
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Applying Inequality (9.45), this implies
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Therefore, Inequalities (9.46), (9.47), and (9.48) together imply that
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Inequality (9.45) also implies that C > 4�

↵

. Moreover, since 0 <   1
16 , our choice of � satisfies 0 < �  1

32

p
2m2.

Therefore, by Lemma 9.7 and Inequality (9.49), for all x satisfying V (x)  �

↵

, we have

W1(Q
I(x, ·), ⇡)  ✏ and W1(⇡, ⌫)  ✏.

This completes the proof of the desired mixing bounds for starting point x satisfying V (x)  �

↵

. To complete

the proof of the theorem, then, it is enough to show that V (x)  �

↵

for all x satisfying kxk 
q
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. To do so,

we must find a lower bound for �
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.
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By Inequality (9.34) and the trivial bounds ↵  1 and �, (1 � ), C 0 � 0, we have

�

↵
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2m2 e�(1�)C0 � e
�

p
dp

m2 .

Hence, the inequality V (x)  �
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m2 . That is,
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r
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}. (9.50)

This completes the proof.

We can now prove Theorem 1:

Proof of Theorem 1. Set notation as in Lemma 9.8 and let

✓0 =
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p
m2

18TM2(
p

M2��1 log(C) + 1p
2

p
d)

.

This theorem is then an immediate consequence of Lemma 9.8.
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[20] D. Ferré, L. Hervé, and J. Ledoux. Regular perturbation of V-geometrically ergodic Markov chains. Journal
of Applied Probability, 50(1):184–194, 2013.

[21] Mark Girolami and Ben Calderhead. Riemann manifold Langevin and Hamiltonian Monte Carlo methods.
Journal of the Royal Statistical Society: Series B (Statistical Methodology), 73(2):123–214, 2011.

[22] Martin Hairer, Andrew M Stuart, and Sebastian J Vollmer. Spectral gaps for a Metropolis–Hastings algo-
rithm in infinite dimensions. The Annals of Applied Probability, 24(6):2455–2490, 2014.

[23] David Lee Hanson and Farroll Tim Wright. A bound on tail probabilities for quadratic forms in independent
random variables. The Annals of Mathematical Statistics, 42(3):1079–1083, 1971.

[24] Jeremy Heng and Pierre E Jacob. Unbiased Hamiltonian Monte Carlo with couplings. arXiv preprint
arXiv:1709.00404, 2017.
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