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Abstract

We obtain quantitative bounds on the mixing
properties of the Hamiltonian Monte Carlo
(HMC) algorithm with target distribution in
d-dimensional Euclidean space, showing that
HMC mixes quickly whenever the target log-
distribution is strongly concave and has Lip-
schitz gradients. We use a coupling argu-
ment to show that the popular leapfrog im-
plementation of HMC can sample approx-
imately from the target distribution in a
number of gradient evaluations which grows
like dˆ1/2 with the dimension and grows at
most polynomially in the strong convexity
and Lipschitz-gradient constants. Our results
significantly extend and improve on the di-
mension dependence of previous quantitative
bounds on the mixing of HMC and of the un-
adjusted Langevin algorithm in this setting.

1 Introduction

Markov chain Monte Carlo (MCMC) algorithms are
ubiquitous in Bayesian statistics and other areas, and
Hamiltonian Monte Carlo (HMC) algorithms are some
the most widely-used MCMC algorithms [21, 10, 37]
. Despite the popularity of HMC and the widespread
belief that HMC outperforms other algorithms in high-
dimensional statistical problems (see e.g. [2]), its theo-
retical properties are not as well-understood as some of
its older cousins, such as the Random Walk Metropo-
lis algorithm (RWM) or Metropolis-Adjusted Langevin
Algorithm (MALA). This lack of theoretical results
can make it harder to optimize HMC algorithms, and
it means we do not have a good understanding of when
HMC is better than other popular algorithms.
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Several recent papers have begun to bridge this gap,
most notably by proving geometric ergodicity of nu-
merical implementations of HMC under general con-
ditions [30], establishing some quantitative bounds on
the rate of convergence for an “ideal” implementation
of HMC with Gaussian target distributions [47], and
relating HMC to Langevin dynamics [42]. In this pa-
per and our companion paper [33], we extend this work
by obtaining rapid mixing bounds for both “ideal”
and “numerical” implementations of HMC in an im-
portant general class of target distributions ⇡ on Rd:
those which are strongly log-concave and also satisfy
the Lipschitz-gradient condition. In this regime, we
show upper bounds on the mixing rate of HMC that
are better than those of many competitor algorithms,
including the unadjusted Langevin algorithm [17, 16].
Our work is particularly close to that of [47], which
is to our knowledge the only previous paper giving
quantitative non-asymptotic bounds on the mixing of
HMC. We improve on their conclusions by greatly im-
proving the dependence of their bounds on the dimen-
sion of the target distribution, extending their analysis
from Gaussian to general strongly log-concave targets,
proving convergence in stronger norms, and provid-
ing rates for numerical implementations of HMC algo-
rithms rather than merely “ideal” versions of HMC.

Although our assumptions are quite strong and so our
results are far from providing a complete understand-
ing of HMC, the strongly log-concave distributions
are an important special case. Recall that a distri-
bution ⇡ is strongly log-concave if the Hessian ma-
trix of � log(⇡) has eigenvalues bounded below by a
positive number m2, and has log-density with Lips-
chitz gradient if the eigenvalues are bounded above
by a positive number M2. Many important poste-
rior distributions in statistics, including the “ridge re-
gression” posterior associated with Gaussian priors for
logistic regression, are strongly log-concave (see Sec-
tion 5 for explicit bounds). In addition to this, there
is some historical interest in comparing MCMC al-
gorithms based on their performance for log-concave
targets. Most MCMC algorithms are expected to per-
form well in this situation, and so the performance of
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many Monte Carlo algorithms has been studied ex-
tensively in the strongly log-concave setting (see e.g.
[48, 11, 16, 18], and many others). Thus, extending the
analysis of the strongly log-concave setting to HMC
has the added advantage of giving a sensible compar-
ison of the performance of HMC to its competitors,
such as the Langevin algorithm and the ball walk.

Following the work of [47], our companion paper [33]
studied an “idealized” HMC algorithm - one that has
no numerical error. We showed that this ideal chain
mixes in Õ((M2

m2
)2) steps on strongly log-concave ⇡ (see

Theorem 1 of [33]). Using this result, the present pa-
per bounds the computational costs of various numeri-
cal implementations of HMC. This provides theoretical
evidence that HMC can be much faster than compet-
ing algorithms in realistic situations (see Theorem 1).
To our knowledge, these are the first quantitative mix-
ing bounds for the popular leapfrog implementation of
HMC.

More specifically, our main result shows that a simple
numerical implementation of HMC can approximately
sample from the stationary distribution with a num-
ber of gradient evaluations that grows at rate O

d

(
p

d)
in the dimension (see Theorem 1). For comparison,
the best available mixing time bound for the unad-
justed Langevin algorithm on strongly log-concave ⇡
grows like O

d

(d), a much larger dependence on dimen-
sion than our bounds for unadjusted leapfrog HMC
[17, 16]. Our bounds also compare favorably to the
ball walk, whose best available mixing time bound is
roughly O(d2 M2

m2
) [48] (note however that the partic-

ular assumptions made in di↵erent papers are slightly
di↵erent).

Our main techniques in this paper are explicit com-
parisons of ODEs and probabilistic coupling bounds.
Roughly speaking, we show that the popular leapfrog
implementation of HMC is not too far from the “ideal”
HMC algorithm near the mode of the target distribu-
tion, and that even poor numerical implementations
exhibit drift towards the mode. These results allow us
to show that numerical implementations are not too
much slower than the ideal HMC algorithm analyzed
in the companion paper [33]. There is a long history
of obtaining contraction results to control the conver-
gence of Markov chains, di↵usions, and solutions to
(S)PDEs. We mention especially [3] (which studies
a process closely related to Langevin and HMC), [19]
(which obtains coupling-based bounds even in the non-
concave case), and [7] (which was an early paper on
contraction for Markov chains).

1.1 Updates on Recent Work

The papers [36, 19], which appeared after the first
version of this note, also use coupling techniques to
bound the running time of HMC when targeting high-
dimensional targets, obtaining more refined results in
various situations. They are almost certainly of inter-
est to anyone reading the present paper.

1.2 Guide to the Paper

The rest of the paper is organized as follows:

• In Section 2, we set notation.

• In Section 3, we state our main result.

• In Section 4, we give a larger collection of refer-
ences to related parts of the research literature.
While the introduction focuses on related results
this section includes references to many papers
that use or originate the techiques used in this
paper.

• In Section 5, we show that a popular statistical
model satisfies the assumptions of Theorem 1.

• In Section 6 we discuss open problems related to
the HMC algorithm, as well as how to precondi-
tion the target distribution to improve the run-
ning time of HMC.

The supplementary material contains most of the
proofs, and is organized as follows:

• In Section 7 we recall several results about the ide-
alized HMC dynamics from the companion paper
[33].

• In Section 8 we bound the error of the leapfrog
integrator that is used in Algorithm 2 to approx-
imate the continuous Hamiltonian dynamics.

• In Section 9 we provide many generic MCMC
bounds, which we then use to compare the “ideal”
chain studied in [33] to the unadjusted leapfrog
HMC chain studied in the present paper. This
allows us to bound the running time of the un-
adjusted leapfrog HMC chain and prove Theorem
1.

2 Assumptions and Algorithms

2.1 Preliminary Notation

For any function f : Ra ! R, we use the shorthand
f 0 := rf , and for v 2 Ra denote by D

v

f := hv, rfi
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the directional derivative in the direction v. For a
vector-valued function g = (g1, . . . , gb

)> and v 2 Ra,
we define the coordinate-wise directional derivative
D

v

g := (D
v

g1, . . . , Dv

g
b

).

Throughout the paper, our goal is to sample from a
stationary distribution ⇡(q) on Rd, which we will write
as ⇡(q) / e�U(q) for some potential function U : Rd 7!
R+. We always assume that U is strongly convex:

Assumptions 2.1 (Strong Convexity). We assume
that U : Rd 7! R is di↵erentiable and that there exists
m2 > 0 such that

hU 0(x) � U 0(y), x � yi � 2 m2kx � yk2 8x, y 2 Rd.

Recall that any strongly convex function has a unique
minimizer. Throughout this paper, we assume with-
out loss of generality that this minimizer is 0 in or-
der to simplify notation. We will also assume that U
is second-order di↵erentiable, so that strong convex-
ity implies that the eigenvalues of the Hessian of U
are lower bounded by m2. We prove a rapid mixing
bound under the following additional assumption on
the gradient:

Assumptions 2.2 (Lipschitz Gradient). We assume
that there exists a constant 0 < M2 < 1 so that
kD

v

U 0(q)k  M2 for all q 2 Rd and v 2 Rd.

Throughout the paper, we make a few small abuses of
notation. For any function f : X 7! Y between two
sets, and any S ⇢ X, we define

f(S) = {f(x) : x 2 S}.

In addition, we will generally write x for the single-
element set {x} when this does not result in any am-
biguity.

2.1.1 Distributions and Mixing

We denote the distribution of a random variable X by
L(X) and write X ⇠ ⌫ as a shorthand for L(X) = ⌫.

For two probability measures ⌫1, ⌫2 on Rd, define the
Wasserstein-k distance

W
k

(⌫1, ⌫2)
k = inf

(X,Y )2C(⌫1,⌫2)
E[kX � Y kk],

where C(⌫1, ⌫2) is the set of all random variables on
Rd ⇥ Rd with marginal distributions ⌫1 and ⌫2.

2.1.2 Big-O Notation

For two nonnegative functions f, g : Rn 7! [0, 1),
we write f = O(g) as shorthand for the statement:
there exist constants 0 < C1, C2 < 1 so that for
all x1, . . . , xn

with k(x1, . . . , xn

)k > C1, we have

f(x1, . . . , xn

)  C2 g(x1, . . . , xn

). Similarly, we write
f = ⌦(g) as shorthand for the statement: there exist
constants 0 < C1, C2 < 1 so that for all x1, . . . , xn

with k(x1, . . . , xn

)k > C1, we have g(x1, . . . , xn

) 
C2 f(x1, . . . , xn

). We write f = ⇥(g) if both f = O(g)
and g = O(f). Relatedly, we write f = o(g) as short-

hand for the statement: lim
x1,...,x

n

!1
f(x1,...,x

n

)
g(x1,...,x

n

) = 0.
Finally, we use “f grows at most polynomially in x”
as shorthand for “there exist 0 < C1, C2, C3 < 1 such
that f(x)  C1xC2 for all x > C3.”

We give two small extensions of this notation; all
of these modifications apply in the obvious way to
⌦(·), ⇥(·) and o(·). First, when we wish to view
a function as depending on only a subset of its ar-
guments, we indicate the arguments of interest us-
ing a subscript. For example, if f(x, y) = |x|

1+y

2 ,

we may write f(x, y) = O(|x|) but may also write
f(x, y) = O

x

(|x|) or f(x, y) = O
y

(1). Second, we
use a “tilde” superscript ⇠ to indicate that the re-
lationship holds “up to logarithmic factors.” For ex-
ample, we write f = Õ(g) if there exist constants
0 < C1, C2 < 1 so that, for all x1, . . . , xn

, we have
f(x1, . . . , xn

)  C1 g(x1, . . . , xn

) log(g(x1, . . . , xn

))C2 .
Finally, we note that we can always view a function
as taking additional arguments, and do so without
comment when needed. For example, we may write
(x + y)2 = O(x2 + y2 + z2), even though the variable
z2 does not appear explicitly in the expression on the
left-hand side.

2.1.3 Ideal HMC Dynamics

A Hamiltonian of a simple system is written as

H(q, p) = U(q) +
1

2
kpk2, (2.1)

where q represents ‘position’, p represents ‘momen-
tum,’ U represents ‘potential energy,’ and 1

2kpk2 rep-
resents ‘kinetic energy.’

For fixed q 2 Rd, p 2 Rd, we denote by {q
t

(q,p)}
t�0,

{p
t

(q,p)}
t�0 the solutions to Hamilton’s equations:

dq
t

(q,p)

dt
= p

t

(q,p), (2.2)

dp
t

(q,p)

dt
= �U 0(q

t

(q,p)),

with initial conditions

q0(q,p) = q, p0(q,p) = p.

When the initial conditions (q,p) are clear from the
context, we write q

t

, p
t

in place of q
t

(q,p) and p
t

(q,p),
respectively. The dependence of these solutions on the
Hamiltonian H is always suppressed in our notation,
as it will always be clear from the context.
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For a fixed integration time T 2 R+ and starting point
q 2 Rd, we define the solution map Qq

T

: Rd 7! Rd by

Qq
T

(p) := q
T

(q,p). (2.3)

For V > 0, denote by �
V

(·) the normal distribution
on Rd with mean 0 and variance V times the identity
matrix. Algorithm 1 defines the simplest “ideal” HMC
Markov chain (see Figure 1):

Algorithm 1 Idealized HMC

parameters: Potential U , trajectory time T > 0.
input: Initial point X0 2 Rd.
output: Markov chain X0, X1, . . ..

1: for i = 0, 1, . . . do
2: Sample p

i

⇠ N(0, I
d

).
3: Set X

i+1 = QX

i

T

(p
i

).
4: end for

In the context of HMC, we refer to q
t

as the position
variable and p

t

as the momentum variable. In this
context, we call Rd the state space of the algorithm
and R2d the phase space of the HMC algorithm.

Note that the sequence {X
i

}
i�0 is a deterministic func-

tion of its initial value X0 and the i.i.d. sequence
{p

i

}
i�0 of momentum updates sampled during this

algorithm. In the Markov chain literature, this fact
is summarized by saying that this algorithm defines a
random mapping representation of {X

i

}
i�0 with up-

date sequence {p
i

}
i�0 (see Chapter 1.2 of [29]). In

particular, the fact that this algorithm gives a random
mapping representation means that it is possible to
define a coupling of two Markov chains evolving ac-
cording to this algorithm by defining a coupling of the
momentum updates. All of the HMC-based algorithms
defined in this paper will also have this property, and
we will use it throughout the paper to construct cou-
plings of Markov chains. We will generally couple these
Markov chains by setting their initial momenta to be
equal at each step. Finally, note that this algorithm
also naturally defines the nonreversible Markov chain
{(X

i

,p
i

)}
i�0, which we call the phase-space chain on

R2d.

2.2 Approximate HMC Dynamics and
unadjusted leapfrog HMC Algorithm

It is di�cult to solve Hamilton’s equations (2.2) for
most Hamiltonians of interest. In practice, one uses
numerical integrators such as the Euler or leapfrog in-
tegrator in order to approximate solutions, with the
leapfrog integrator being by far the most widely-used
in practice (see [39]). In this paper we study the

X1
X2

X3

X4

p3

p1

p2

Figure 1: The Hamiltonian Monte Carlo Markov chain
X1, X2, . . . with momentum p1,p2, . . ..

(unadjusted) leapfrog method. In this case, one ob-
tains the following unadjusted HMC (UHMC) Markov
chain; the main result of this paper is a bound on the
running time of this algorithm:

Algorithm 2 Unadjusted leapfrog HMC

parameters: Potential U , trajectory time T > 0, and
integrator step size ✓ > 0.
input: Initial point X 0

0 2 Rd,
output: Markov chain X 0

0, X
0
1, . . ..

1: for i = 0, 1, . . . do
2: Sample p

i

⇠ N(0, I
d

)
3: Set q0 = X 0

i

and p0 = p
i

4: for j = 0 to bT

✓

c � 1 do
5: Set

q
j+1 = q

j

+ ✓p
j

� 1

2
✓2U 0(q

j

)

p
j+1 = p

j

� 1

2
✓U 0(q

j

) � 1

2
✓U 0 (q

j+1) .

6: end for
7: Set X 0

i+1 = qbT

✓

c
8: end for

Algorithm 2 also naturally defines the phase-space un-
adjusted HMC Markov chain {(X 0

i

,p
i

)}
i�0. Note that

this Markov chain will generally not have the desired
stationary measure ⇡.

We set some notation for the leapfrog integrator. For
✓ > 0, we use the following shorthand for a single step
of the leapfrog integrator:

q?

✓

(q,p) := q + ✓p � 1

2
✓2U 0(q), (2.4)

p?

✓

(q,p) := p � 1

2
✓U 0(q) � 1

2
✓U 0 (q?

✓

(q,p)) , 8q,p 2 Rd.
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3 Main Result

Using the bounds on the mixing of ideal HMC dynam-
ics in our companion paper [33], we can obtain similar
results for the unadjusted numerical implementation
of HMC with the leapfrog integrator. Note that we
give a range on the value of the parameter ✓ for which
the conclusion holds.

Theorem 1 (Mixing of first-order Unadjusted HMC).
Fix 0 < ✏ < e�1, let U satisfy Assumptions 2.1 and

2.2, and let T = 1
2
p

2

p
m2

M2
. For all ✓ > 0, let Q

✓

be

the transition kernel defined in Algorithm 2 with these
parameters.

Then there exists some ✓0 = ✓0(m2, M2, d, ✏) satisfying

✓0 = ⌦̃

✓
d� 1

2 ⇥ ✏ ⇥ (
M2

m2
)�4.5

◆

and some universal constant 0 < c < 1 so that, for
all 0 < ✓  ✓0, the following holds:

For all I � c M

2
2

m

2
2

log( M2
m2✏

) and all x satisfying kxk 
p

dp
m2

,

W1(Q
I
✓

(x, ·), ⇡)  ✏. (3.1)

Finally, if we choose ✓ = ⌦̃(✓0), then

Õ

✓
d

1
2 ⇥ ✏�1 ⇥ (

M2

m2
)6.5

◆

gradient evaluations are needed to compute the first

s = c M

2
2

m

2
2

log( M2
m2✏

) steps of the Markov chain.

Remark 3.1 (Starting Point). Under the assumption
that U is strongly log-concave, it is straightforward

to find a starting point x 2 Rd within distance
p

dp
m2

of the unique minimum of U using algorithms from
convex optimization.

Remark 3.2 (Trajectory Time). Theorem 1 is stated

for the largest-possible trajectory time T = 1
2
p

2

p
m2

M2
.

Note, however, that the constants m2 and M2 in the
statement of the theorem are merely bounds on the
Hessian of U ; they do not need to be the largest and
smallest singular values. In particular, Theorem 1 as
stated gives bounds on all trajectory times 0  T 

1
2
p

2

p
m2

M2
.

Remark 3.3 (Curvature Ratio). The ratio M2
m2

that
appears prominently in the conclusions of Theorem 1
can be made much smaller for realistic examples by the
use of appropriate preconditioning steps. See Section
6.1 for details.

Remark 3.4 (Ergodicity, Volume-Preservation and
Optimality). Our proofs simply view Algorithm 2 as a

first-order approximation of the “ideal” Algorithm 1,
and do not greatly rely on the details of this approx-
imation. As a consequence, we don’t rely on, or cap-
ture, several features of HMC that are widely-believed
to be important. Most blatantly, we do not prove
that the chain Q

✓

appearing in Theorem 1 is ergodic,
and we don’t need this for the result to hold1. Sim-
ilarly, one oft-mentioned motivation for the leapfrog
algorithm is that it preserves both volume and energy
much more accurately than “generic” integrators, but
we don’t use this property in our proof.

This “blunt” viewpoint is su�cient to obtain the
p

d
dependence on dimension that we wished to find in this
paper, but we suspect that a more detailed analysis of
the leapfrog integrator could be useful for obtaining
very precise bounds.

4 Further Related Literature

There is a large literature on obtaining quantitative
bounds on the convergence rates of Markov chains (see
[27] for an introduction to the statistical literature on
the topic, and [12] for connections in other fields, in-
cluding computer science). In general, it is di�cult
to obtain good quantitative bounds for large classes of
chains. As such, the literature focuses on either find-
ing very tight bounds for specific chains (see e.g. [13])
or on quantitative bounds on the running time of the
algorithm as a function of the problem complexity (see
e.g. [4] or essentially any paper in the large computer
science literature on the subject). Our work falls in
the latter category.

Although there are many papers that obtain quanti-
tative bounds on the convergence of Markov chains,
there are few quantitative bounds on the convergence
of HMC. To our knowledge, [47] is the only previous
work that focuses on obtaining quantitative bounds
on the convergence rates of HMC, and it served as
an inspiration for this work. A number of other pa-
pers, most prominently [2], had also worked on the
problem of calculating the computational complexity
of HMC algorithms by computing the rate at which
certain proxies for the mixing or relaxation time of
HMC increase with the dimension of the target dis-
tribution under reasonable conditions (see [44] for a
general discussion relating results similar to [2] to the
usual notions of complexity). Several other papers
give calculations that imply or suggest quantitative
bounds, though we are not aware of any that are close
to tight (see e.g. the discussion in Section 7.5 of [30]).

1We do use the fact that the ideal chain is ergodic; this
is an immediate consequence of the main contraction in-
equality in the companion paper [33].
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In our opinion, the earlier work that most closely
resembles our main result is [16], which studies the
non-asymptotic mixing properties of the Langevin al-
gorithm on strongly log-concave distributions. Their
main results hold under essentially the same condi-
tions as our Theorem 1, except that they require the
additional assumption of a Lipschitz Hessian. See
also [11], which studies very similar conditions to [16].
More recent independent work [9] also gives quanti-
tative bounds for an “underdamped” version of the
Langevin algorithm that matches our dimension de-
pendence d

1
2 ; the authors explain that this under-

damped version of the Langevin algorithm is closely
related to HMC. The underdamped Langevin di↵u-
sion, the continuous-time process on which the under-
damped Langevin algorithm is based, has been previ-
ously studied in [19, 6, 49, 25, 15, 50, 8, 14, 38].

In recent independent work [28], the authors have ob-
tained quantitative bounds for a di↵erent version of
HMC, called Riemannian HMC. Their bounds apply
to a class of target distributions that include distribu-
tions that are not log-concave, although like [47] their
bounds only apply to trajectories with very short step
sizes and consequently do not imply the results in this
paper. Since writing our first version of this paper,
the paper [5] has used a refined coupling approach to
obtain useful quantitative bounds on the convergence
of the usual leapfrog HMC algorithm. [36] use many
of the tools developed in our paper to obtain further
improvements on the running time bounds for leapfrog
HMC in special cases of strongly logconcave distribu-
tions with bounded higher-order derivatives. Some ex-
amples of these distributions include distributions used
in logistic regression as well as other non-separable
emperical distributions (see also the ArXiv version of
our paper [34] for related improvements in the special
case where these distributions are separable). Finally,
our recent work [31, 32] quantitatively compares the
convergence rates of HMC and RWM in a di↵erent,
“highly-multimodal,” regime.

We also mention some papers that are on di↵erent top-
ics, but have technical similarities. First, we remark
that our arguments are based on viewing the leapfrog
algorithm as a small perturbation of the “ideal” HMC
algorithm. As such, they are closely related to bounds
in the “approximate MCMC” literature, including e.g.
[20, 46, 1, 26, 43, 40].

We also note that our arguments are based on com-
puting the contraction rate of explicit couplings. Sim-
ilar couplings have been used to study processes that
are closely related to HMC (see e.g. [3, 19] and of
course [5] for contractions of closely-related processes)
and more generally for analyzing processes related to
MCMC (see e.g. the analysis in [22], and e.g. [7, 41] for

more generic discussion of contraction in the MCMC
literature).

5 Application to Bayesian logistic
regression

As an application, we consider Bayesian logistic regres-
sion with Gaussian priors, also called “ridge” regres-
sion. This example was previously considered in [16] as
an application of the unadjusted Langevin algorithm,
and we can bound the running time of HMC using the
same strong convexity and Lipschitz gradient bounds
that were used in [16] to bound the running time of
ULA.

Recall that the “ridge” regression posterior is of the
form

U(✓) =
1

2
✓>⌃�1✓ � P

r

i=1Yi

log(F (✓>X
i

)) (5.1)

+ (1 � Y
i

) log(F (�✓>X
i

)),

where the data vectors X1, . . .Xr

2 Rd are thought of
as independent variables, the binary data Y1, . . . ,Yr

2
{0, 1} are the dependent variables, and F (s) := (e�s +
1)�1 is the logistic function. The positive definite ma-
trix ⌃ is the covariance matrix of the Gaussian prior.

The Hessian H
x

of U is

H
x

= ⌃�1 +
rX

k=1

F 0(x>X
k

)X
k

X>
k

.

Therefore U satisfies Assumption 2.1 with strong con-
vexity constant m2 = �min(⌃�1), since this choice of
m2 gives a lower bound on the eigenvalues of H

x

.
Moreover, Assumption 2.2 is satisfied with Lipschitz
gradient constant M2 = �max(⌃�1 +

P
r

k=1 Xk

X>
k

),
since this choice of M2 gives an upper bound on the
eigenvalues of H

x

. Applying Theorem 1 with these
bounds on m2 and M2 then gives running time bounds
for generating samples from this class of targets using
HMC.

6 Discussion

In this paper, we provide useful bounds on the con-
vergence rate of HMC under rather strong assump-
tions of strong log-concavity. These bounds improve
on several earlier results, and in particular give mixing
bounds with near-optimal dependence on dimension
for certain implementable variants of HMC, but we
leave many important questions open. In this section,
we mention some that seem most interesting.
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6.1 Preconditioning and Optimization

Our main results are stated in terms of the ratio M2
m2

of
upper and lower bounds m2, M2 on the Hessian of the
potential U . This ratio can be quite large for many
target distributions, such as the posterior distribution
of a regression problem in which di↵erent coe�cients
have very di↵erent sizes. In this section, we show that
simple preprocessing steps can make this ratio much
smaller, thus making our bounds much better in prac-
tice than they might first appear. We note that this
preprocessing is common in other “geometric” Markov
chain applications (see e.g. the survey [48]). The basic
idea is to find a linear transformation of the potential
for which this ratio is small on the bulk of the target
distribution. Fix a probability distribution ⇡ given by
⇡(x) = 1R

Rd e

�U(x)dx

e�U(x) for some potential function

U . We consider the assumption:

Definition 6.1 (Rounding Matrix). Fix a constant
✏ > 0. Define the bulk level set S

✏

of ⇡ by the pair of
equations

L
✏

= inf{C : ⇡({x : ⇡(x) � C})  1 � ✏},

S
✏

= {x : ⇡(x) � L
✏

}.

Call a matrix A a rounding matrix for ⇡ with constants
✏, m2, M2 if the eigenvalues of the Hessian of Û(x) :=
U(A�1x) are bounded below and above by m2 and M2,
respectively, at every point x 2 AS

✏

.

For every x 2 Rd, define H
x

to be the Hessian of U
evaluated at x. The following theorem says that, if
there exists a linear transformation with associated
ratio M2

m2
, then it is easy to find a linear transformation

with associated ratio M

2
2

m

2
2
:

Theorem 2. Fix a probability distribution ⇡(x) =
1R

Rd e

�U(x)dx

e�U(x). Suppose that there exists a round-

ing matrix A for ⇡ with constants ✏, m2, M2 > 0.

Define Ũ(z) := U(
p

H
x

�1
z) for z 2 Rd. For every

⇣ 2 Rd, let H̃
⇣

be the Hessian of Ũ evaluated at the
point z =

p
H

x

⇣. Then for every y 2 S
✏

, H̃
y

has
all its eigenvalues bounded below and above by m2

M2
and

M2
m2

, respectively.

Proof. As in Definition 6.1, let Û(z) := U(A�1z) for
every z 2 Rd

For every ⇣ 2 Rd, let Ĥ
⇣

be the Hessian of Û(z) eval-
uated at the point z = A⇣. By Definition 6.1,

m2u
>u  u>Ĥ

⇣

u  M2u
>u, (6.1)

for all ⇣ 2 S
✏

and all u 2 Rd . Fixing x 2 S
✏

and
applying Inequality (6.1) twice gives

m2

M2
u>Ĥ

x

u  m2u
>u (6.2)

 u>Ĥ
y

u

 M2u
>u

 M2

m2
u>Ĥ

x

u.

Since
p

H
z

= A
p

Ĥ
z

for every z 2 Rd, applying Equa-
tion (6.2) with v = Au gives

m2

M2
v>H

x

v  v>H
y

v  M2

m2
v>H

x

v (6.3)

for any u 2 Rd (and hence for any v 2 Rd, since A is
invertible).

Now
p

H̃
z

=
p

H
x

�1p
H

z

for every z 2 Rd. Therefore,
Equation (6.3) implies that:

m2

M2
v>v  v>H̃

y

v  M2

m2
v>v (6.4)

for every y 2 S
✏

and every v 2 Rd. Therefore, by
the minimax theorem for eigenvalues, H̃

y

has all its
eigenvalues bounded between m2

M2
and M2

m2
for all y 2

S
✏

.

6.2 Riemannian HMC

This paper analyzes one of the simplest possible HMC
algorithms. However, many other variants exist. Rie-
mannian HMC, introduced in [21], is one of the most
popular. This approach seems to obviate the need for
the preconditioning step discussed in Section 6.1. Al-
though the authors of [28] analyze the Riemannian
HMC algorithm for very short trajectory times on
the order of the step-size of the Langevin algorithm,
it would be interesting to analyze Riemannian HMC
for longer trajectory times. It is widely believed that
longer trajectory times result in more e�cient algo-
rithms, but we are not aware of any work (besides the
bounds of the present paper, for “standard” HMC)
that provides quantitative bounds in support of this
belief.

6.3 De-biasing with Coupling for Parallel
Processing

In [24], a coupling similar to the one described in Sec-
tion 2.1.3 is used to provide unbiased samples of the
target density from HMC Markov chains that are nu-
merically implemented in parallel. As the authors of
[24] ask in their discussion section, it would be inter-
esting to see if the quantitative bounds obtained in
our paper with this coupling could be used to provide
stronger convergence guarantees for their algorithm.
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[38] Stéphane Mischler and Clément Mouhot. Expo-
nential stability of slowly decaying solutions to
the kinetic Fokker-Planck equation. Archive for
rational mechanics and analysis, 221(2):677–723,
2016.

[39] Radford M Neal. MCMC using Hamiltonian dy-
namics. Handbook of Markov Chain Monte Carlo,
2:113–162, 2011.

[40] Je↵rey Negrea and Je↵rey S Rosenthal. Er-
ror bounds for approximations of geometri-
cally ergodic Markov chains. arXiv preprint
arXiv:1702.07441, 2017.

[41] Yann Ollivier. Ricci curvature of Markov chains
on metric spaces. Journal of Functional Analysis,
256(3):810–864, 2009.

[42] Michela Ottobre, Natesh S Pillai, Frank J Pinski,
and Andrew M Stuart. A function space HMC
algorithm with second order Langevin di↵usion
limit. Bernoulli, 22(1):60–106, 2016.

[43] Natesh S Pillai and Aaron Smith. Ergodicity of
approximate MCMC chains with applications to
large data sets. arXiv preprint arXiv:1405.0182,
2014.

[44] Gareth O Roberts and Je↵rey S Rosenthal. Com-
plexity bounds for Markov chain Monte Carlo
algorithms via di↵usion limits. J. Appl. Prob,
53(2):1–11, 2016.

[45] Mark Rudelson and Roman Vershynin. Hanson-
wright inequality and sub-Gaussian concentra-
tion. Electron. Commun. Probab, 18(82):1–9,
2013.

[46] Daniel Rudolf and Nikolaus Schweizer. Pertur-
bation theory for Markov chains via Wasserstein
distance. Bernoulli, 24(4A):2610–2639, 2018.

[47] Christof Seiler, Simon Rubinstein-Salzedo, and
Susan Holmes. Positive curvature and Hamilto-
nian Monte Carlo. In Advances in Neural Infor-
mation Processing Systems, pages 586–594, 2014.

[48] Santosh Vempala. Geometric random walks: a
survey. Combinatorial and computational geome-
try, 52(573-612):2, 2005.

[49] Cédric Villani. Hypocoercive di↵usion operators.
In International Congress of Mathematicians, vol-
ume 3, pages 473–498, 2006.



Mixing of Hamiltonian Monte Carlo on strongly log-concave distributions 2: Numerical integrators

[50] Raphael Zimmer. Explicit contraction rates for a
class of degenerate and infinite-dimensional di↵u-
sions. Stochastics and Partial Di↵erential Equa-
tions: Analysis and Computations, 5(3):368–399,
2017.


	Introduction
	Updates on Recent Work
	Guide to the Paper

	Assumptions and Algorithms
	Preliminary Notation
	Distributions and Mixing
	Big-O Notation
	Ideal HMC Dynamics

	Approximate HMC Dynamics and unadjusted leapfrog HMC Algorithm

	Main Result
	Further Related Literature
	Application to Bayesian logistic regression
	Discussion
	Preconditioning and Optimization
	Riemannian HMC
	De-biasing with Coupling for Parallel Processing

	Previous Results
	Leapfrog Integrator
	Mixing of Approximate HMC
	Perturbation Bounds for Markov Chains
	Bounds on unadjusted HMC Algorithm


