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Supplementary Material

The supplementary material is organized as follows. In Section A we recall all the notation needed for the proofs. In Section
B we restate the main statistical results from the paper and in Section C we provide proofs of these results. In Section D we
state the optimization results and give proofs in Section E.

A Notation and Preliminary Remarks

• LX(am) : negative log likelihood of complete data X given mth row am.

• L
(q)
X (am): degree-q Taylor series approximation of LX(am).

• LZ(am) : negative log likelihood of missing data Z given mth row am. Loss function is unbiased in the sense that
E[LZ(am)|X] = LX(am).

• L
(q)
Z (am) degree-q Taylor series approximation of LZ(am)

• R(q)(am) = LX(am)− L(q)
Z (am)

• B1,∞(1) = {A ∈ RM×M : ‖am‖1 ≤ 1 for all m}

• p: fraction of data which is observed

• ρ: maxm ‖a∗m‖0

Finally, we introduce additional notation which will be helpful in the proofs of Lemmas B.4 and B.5. First let Ud denote the
set of all monomials of degree d. We represent an element U ∈ Ud as a list containing d elements. An element in the list
corresponds to the index of a term in the monomial (the list can potentially have repeated elements). For an example, the
monomial x2

1x3 can be represented as the list (1, 1, 3).

For a polynomial function h we let cU,h denote the coefficient of the monomial U in h. Finally we define the order of a list
to denote the number of unique elements in the list, so |(1, 2)| = 2 whereas |(1, 1)| = 1.

Example Consider the function h(x1, x2) = x2
1 + 4x1x2. Using all the notation above, we can decompose h as

h(x1, x2) =
∑
U∈U2

cU,h
∏
u∈U

xu

where U2 = {(1, 1), (1, 2), (2, 2)} with corresponding coefficients c(1,1),h = 1, c(1,2),h = 4 and c(2,2),h = 0.

Remark 1. We next make several observations by applying the notation above to functions which appear in the likelihoods
LX and LZ . First, for a fixed t,m we decompose the following function as a sum of monomials:

h(am,1Xt,1, . . . , am,MXt,M ) :=(am,1Xt,1 + . . .+ at,MXt,M )d

=
∑
U∈Ud

cU,h

(∏
u∈U

am,u

)(∏
u∈U

Xt,u

)

and note that ∑
U∈Ud

cU,h
∏
u∈U

am,u = (am,1 + . . .+ am,M )d (A.1)

We also have

∇am,j
h =d ·Xt,j(am,1Xt,1 + . . .+ am,MXt,M )d−1

=
∑

U∈Ud−1

cU,∇am,j
hXt,j

(∏
u∈U

am,u

)(∏
u∈U

Xt,u

)
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and we similarly note that ∑
U∈Ud−1

cU,∇am,j
h

∏
u∈U

am,u = d · (am,1 + . . .+ am,M )d−1 (A.2)

Next consider the function g which appears in the missing data likelihood LZ .

g(am,1Zt,1, . . . , am,MZt,M ) :=
∑
U∈Ud

cU,g

(∏
u∈U

am,u

)(∏
u∈U

Zt,u

)

where cU,g = cU,h

p|U|
. This observation will be important for our analysis because it allows us to leverage Equation A.1.

Similarly we have

∇am,jg =
∑

U∈Ud−1

cU,∇gam,j
Zt,j

(∏
u∈U

am,u

)(∏
u∈U

Zt,u

)

where cU,∇am,j
g =

cU,∇am,j
h

p|U|
allowing us to use Equation A.2.

Remark 2. Using an identical argument to Lemma B.4 one can show that for am ∈ B1(1), |LZ,p(am) − L(q)
Z,p(am)| ≤

(pπ)−q. This implies that limq→∞ L
(q)
Z,p converges uniformly on B1(1) so that LZ,p(am) is well defined on this ball.

Moreover, it implies that limq→∞ E
[
|L(q)
Z,p(am)|

∣∣∣X] converges and so

E[LZ,p(am)|X] = lim
q→∞

E[L(q)
Z,p(am)|X] = lim

q→∞
L

(q)
X (am) = LX(am)

and LZ,p(am) satisfies (3.1)

B Statistical Results

We assume A∗ ∈ B1,∞(1) and p ≥ 1
π . We take q ∈ N ∪ {∞}.

Theorem B.1 (Accuracy of L(q)
Z ). Suppose Â ∈ arg minA∈B1,∞(1) L

(q)
Z (A) + λ‖A‖1 where λ � log(MT )√

T (pπ−1) + 1
(pπ)q . Then

‖Â−A∗‖2
F .

s log2(MT )
T (πp− 1)2 + s

(pπ)2n

for T & ρ2 log(MT ) with probability at least 1− 1
T .

The proof of Theorem B.1 relies on the following supplementary lemmas.

Lemma B.2. Let f(x) = log(1 + exp(x)). Then | f
(q)(0)
q! | .

1
qπq .

Lemma B.3 (Truncation error of∇LX ). Suppose ‖am‖1 ≤ 1. Then

‖∇LX(am)−∇L(q)
X (am)‖∞ . π−q.

Lemma B.4 (Truncation Error of∇LZ). Suppose ‖am‖1 ≤ 1. Then

‖∇LZ(am)−∇L(q)
Z (am)‖∞ . (pπ)−q.

Lemma B.5.
sup

‖am‖1≤1

∥∥∥∇Llog(T )
Z (am)−∇Llog(T )

X (am)
∥∥∥
∞

.
log(MT )√
T (pπ − 1)

with probability at least 1− log(T )2

MT 2 .
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Lemma B.6.
sup

‖am‖1≤1

∥∥∥∇L(q)
Z (am)−∇LX(am)

∥∥∥
∞

.
log(MT )√
T (pπ − 1)

+ 1
(pπ)q

with probability at least 1− log(T )2

MT 2 .

Lemma B.7. Let ‖v‖2
T = 1

T

∑
t(v>Xt)2 and R̃ = min(Rmin, 1−Rmax). For any v ∈ RM we have

‖v‖2
T ≥

R̃

2 ‖v‖
2
2 −

√
3 log(M)

T
‖v‖2

1

and

‖v‖2
T ≤

1
4‖v‖

2
2 +

√
3 log(M)

T
‖v‖2

1

with probability at least 1− 1
M .

C Proofs of Statistical Results

C.1 Proof of Theorem B.1

Part 1: Controlling the Remainder We set λ � log(MT )√
T (pπ−1) + 1

(pπ)q and let4m = âm− a∗m. Note that the loss functions

are decomposable, i.e., LZ(A) =
∑
m LZ(am). Since Â ∈ arg minA∈B1,∞(1) L

(q)
Z (A) we have

L
(q)
Z (âm) ≤ L(q)

Z (a∗m)

and so
LX(âm) ≤ LX(a∗m) +

(
R(q)(âm)−R(q)(a∗m)

)
.

Define4m := âm − a∗m. By the mean value theorem, there exists some v ∈ B1(1) such that

R(q)(âm)−R(q)(a∗m) = 〈∇R(q)(v),4m〉

so by Lemma B.6

|R(q)(âm)−R(q)(a∗m)| ≤ ‖4m‖1‖∇R(q)(v)‖∞ ≤
λ

4 ‖4m‖1

with probability 1− log(T )2

MT 2 . We condition on this event for the remainder of the proof.

Part 2: Setting Up the Standard Equations The next several steps follow standard techniques for `1 regularization in
GLMs. Expanding LX and using the substitution

Xt+1,m = E[Xt+1,m|Xt] + εt,m = f ′(a∗>m Xt) + εt,m

gives

1
T

∑
t

f(â>mXt)− (â>mXt)(f ′(a∗>m Xt) + εt,m) + λ‖âm‖1

≤ 1
T

∑
t

f(a∗>m Xt)− (a∗>m Xt)(f ′(a∗>m Xt) + εt,m) + λ‖a∗m‖1 + λ

4 ‖4m‖1

Rearranging terms yields

1
T

∑
t

f(â>mXt)− f(a∗>m Xt)− f ′(a∗>m Xt)4>mXt (C.1)

≤ | 1
T

∑
t

εt,m4>mXt|+ λ (‖a∗m‖1 − ‖âm‖1) + λ

4 ‖4m‖1
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Since f(x) = log(1 + exp(x)) is σ-strongly convex on [Rmin, Rmax] with σ = Rmin

(1+Rmin)2 we can lower bound Equation
(C.1) by σ

T

∑
t(4>mXt)2. Also note∣∣∣∣∣ 1

T

∑
t

εt,m4>mXt

∣∣∣∣∣ ≤ ‖4m‖1

∥∥∥∥∥ 1
T

∑
t

εt,mXt

∥∥∥∥∥
∞

.

Using Theorem 2.2 in Hall et al. (2016),
∥∥ 1
T

∑
t εt,mXt

∥∥
∞ ≤

λ
4 with probability at least 1 − 1

MT . Applying these
observations to Equation (C.1) gives

1
T

T∑
t=1

(4>mXt)2 ≤ λ

2 ‖4m‖1 + λ‖a∗m‖1 − λ‖âm‖1.

Define S := {i : a∗m,i 6= 0} and ρm := ‖a∗m‖0. Then

1
T

T∑
t=1

(4>mXt)2 ≤ 3λ
2 ‖4m,S‖1 −

λ

2 ‖4m,S
c‖1 (C.2)

and so

1
T

T∑
t=1

(4>mXt)2 ≤3λ
2 ‖4m,S‖1 ≤

3λ√ρm
2 ‖4m,S‖2 ≤

3λ√ρm
2 ‖4m‖2. (C.3)

Restriction of4m to Cone It remains to lower bound 1
T

∑
t(4>mXt)2 in terms of ‖4m‖2

2. In order to do this we will rely
heavily on the fact that4m is not an arbitrary vector. Instead we show that4m must lie in a cone with important properties.
In particular, returning to Equation (C.2) and observing that 0 ≤ 1

T

∑
t(4>mXt)2 it follows that ‖4m,Sc‖1 ≤ 3‖4m,S‖1.

Thus
‖4m‖1 = ‖4m,S‖1 + ‖4m,Sc‖1 ≤ 4‖4m,S‖1. (C.4)

Restricted Eigenvalue Condition As mentioned in the previous section, our goal is to lower bound 1
T

∑T
t=1(4>mXt)2.

This is commonly referred to as a restricted eigenvalue condition in the literature, and it is closely related to the restricted
strong convexity condition proved in Lemma D.2. In particular, Lemma B.7 guarantees that there exist universal constants
c1 and c2 such that

1
T

∑
t

(4>mXt)2 ≥ c1

2 ‖4m‖
2
2 − c2

√
log(MT )

T
‖4m‖2

1.

For arbitrary vectors this lower bound can be negative; however, by Equation (C.4)

‖4m‖2
1 ≤ 16‖4m,S‖2

1 ≤ 16ρm‖4m,S‖2
2 ≤ 16ρm‖4m‖2

2

and thus
1
T

∑
t

(4>mXt)2 ≥ c1

2 ‖4m‖
2
2 − 16c2ρm

√
log(MT )

T
‖4m‖2

2.

Hence if T & ρ2
m log(MT ) it follows that

1
T

∑
t

(4>mXt)2 ≥ c‖4m‖2
2

for a universal constant c. Plugging this in to Equation (C.3) gives that

‖4m‖2 .
√
ρmλ

with probability 1− 1
MT . Taking a union bound we conclude that

‖A∗ − Â‖2
F =

M∑
m=1
‖4m‖2

2 .
M∑
m=1

ρmλ
2 = sλ2

with probability 1− 1
T .
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C.2 Proof of Lemma B.2

A computation shows that

f (q)(0) = 1
2q

q−2∑
m=0

(−1)mA(q − 1,m)

where the A(q,m) are the Eulerian numbers. The alternating sum of the Eulerian numbers for fixed q can be given as

q−2∑
m=0

(−1)qA(q − 1,m) = 2q(2q − 1)Bq
q

where Bq is the qth Bernoulli number (see the derivation of Equation 4.8 in Carlitz (1959)). Thus∣∣∣∣f (q)(0)
q!

∣∣∣∣ ≤ 2q|Bq|
q!q .

Using Alzer (2000) we have the bound |Bq| . q!
(2π)q . Thus∣∣∣∣f (q)(0)
q!

∣∣∣∣ . 2qq!
q!q2qπq = 1

qπq
.

C.3 Proof of Lemma B.3

For any j we have

∣∣∣(∇LX(am)−∇L(q)
X (am))j

∣∣∣ =

∣∣∣∣∣∣ 1
T

∑
t

∞∑
i=q

f (i)(0)
(i− 1)! (a

T
mXt)i−1Xt,j

∣∣∣∣∣∣
≤ 1
T

∑
t

∞∑
i=q

π−i

.
1
T

∑
t

π−q = π−q,

where the last two lines use Lemma B.2 along with the fact that ‖am‖1 ≤ 1.

C.4 Proof of Lemma B.4

Differentiating LZ(am) with respect to am,j gives

∇jLZ(am) =
∞∑
d=1

f (d)(0)
d!T

∑
t

∑
U∈Ud−1

cU,∇jf

p|U |

(∏
u∈U

am,u

)(∏
u∈U

Zt,u

)
We first bound

gd(am) := f (d)(0)
d!T

∑
t

∑
U∈Ud−1

cU,∇jf

p|U |

(∏
u∈U

am,u

)(∏
u∈U

Zt,u

)
which is the degree d− 1 term of ∇jLZ(am). All the terms other than the am,u in gd(am) are always non-negative and
|U | ≤ d, so

|gd(am)| ≤ f (d)(0)
d!pd

1
T

∑
t

∑
U∈Ud−1

cU,∇jf

∏
u∈U
|am,u|.

By Equation A.2 ∑
U∈Ud−1

cU,∇jf

∏
u∈U
|am,u| = d(|am,1|+ . . .+ |am,M |)d−1 ≤ d.
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We conclude that

|gd(am)| ≤ 1
T

∑
t

f (d)(0)
(d− 1)!pd = f (d)(0)

(d− 1)!pd .

Using Lemma B.2
f (d)(0)

(d− 1)!pd .
1

(pπ)d .

Overall, we have concluded that |gd(am)| ≤ 1
(pπ)d . We are ultimately interested in |∇jLZ(am)−∇jL(q)

Z (am)|. This is the
sum of the degree d terms of ∇jLZ(am) for all d ≥ q. In other words,

|∇jLZ(am)−∇jL(q)
Z (am)| ≤

∞∑
d=q
|gd(am)| ≤

∞∑
d=q

1
(pπ)d .

1
(pπ)q

as claimed.

C.5 Proof of Lemma B.5

We begin by bounding individual monomials of
∥∥∥∇Llog(T )

Z (am)−∇Llog(T )
X (am)

∥∥∥
∞

. We then extend these individual
bounds to bounds on the entire expression.

Bounding Individual Monomials Following the notation introduced in Section A a degree d − 1 monomial of
∇jLlog(T )

X (am) with index U is of the form

mU,X := fd(0)
d!T

∑
t

cU,∇jf

(∏
u∈U

am,u

)(∏
u∈U

Xt,u

)
.

Meanwhile, the degree d− 1 monomial of∇jLlog(T )
Z (am) with index U is of the form

mU,Z := fd(0)
d!Tp|U |

∑
t

cU,∇jf

(∏
u∈U

am,u

)(∏
u∈U

Zt,u

)
.

The difference of these monomials is given by

|mU,X −mU,Z |

=

∣∣∣∣∣fd(0)
Td!

(∑
t

cU,∇jf

∏
u∈U

am,u
∏
u∈U

Xt,u −
1
p|U |

∑
t

cU,∇jf

∏
u∈U

am,u
∏
u∈U

Zt,u

)∣∣∣∣∣
=
fd(0)cU,∇jh

∏
u∈U |am,u|

Td!

∣∣∣∣∣
(∑

t

∏
u∈U

Xt,u −
1
p|U |

∑
t

∏
u∈U

Zt,u

)∣∣∣∣∣ .
Observe that

1
p|U |

∏
u∈U

Zt,u ∈ {0,
1
p|U |
}

and

E

[
1
p|U |

∏
u∈U

Zt,u

]
=
∏
u∈U

Xt,u.

We apply Hoeffding’s inequality to conclude that

P

(∣∣∣∣∣∑
t

1
p|U |

∏
u∈U

Zt,u −
∑
t

∏
u∈U

Xt,u

∣∣∣∣∣ ≥ log(MT )
√
T

p|U |

)
≤ 2 exp(−2 log2(MT )). (C.5)

Thus

|mU,X −mU,Z | ≤
fd(0) log(MT )cU,∇jh

∏
u∈U |am,u|

d!
√
Tp|U |

(C.6)

with probability at least 1− 2 exp(−2 log2(MT )).
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Extension to Entire Expression We need to take a union bound so that this holds for all monomials of degree at most
log(T ). However, since Zt,u and Xt,u are binary random variables∑

t

∏
u∈U

Zt,u −
∑
t

∏
u∈U

Xt,u =
∑
t

Zt,v
∏
u∈U

Zt,u −
∑
t

Xt,v

∏
u∈U

Xt,u

whenever v ∈ U .

Suppose we have shown that Equation (C.5) holds for all monomials of degree < d. Now to show it holds for all monomials
of degree d we only need to show that (C.5) holds for all monomials of degree d that have d distinct terms. The remaining
concentrations are already covered by the degree d− 1 monomials. There are

(
M
d

)
≤Md monomials of degree d with d

distinct terms. Hence we need to take a union bound over at most
log(T )∑
d=1

Md ≤ log(T )M log(T )

monomials of degree ≤ log(T ) and so

P

(∣∣∣∑
t

1
p|U |

∏
u∈U

Zt,u −
∑
t

∏
u∈U

Xt,u

∣∣∣ ≥ log(MT )
√
T

p|U |
for ≥ 1 monomial of degree ≤ log(T )

)

≤ 2 log(T ) exp
(
log(M) log(T )− 2 log2(MT )

)
≤ 1
M2T 2 .

We condition on this event and recall that Ud−1 denotes the set of all monomials of degree d− 1. Using Equation (C.6), the
difference between the degree d− 1 terms of ∇jLlog(T )

X (am) and ∇jLlog(T )
Z (am) can be bounded by∑

U∈Ud−1

|mU,X −mU,Z | ≤
fd(0) log(MT )

d!
√
T

∑
U∈Ud−1

cU,∇jf

p|U |

∏
u∈U
|am,u|.

Using Lemma B.2 and Equation A.2 along with the fact that |U | ≤ d,

fd(0) log(MT )
d!
√
T

∑
U∈Ud−1

cU,∇jf

p|U |

∏
u∈U
|am,u| ≤

fd(0) log(MT )
(d− 1)!pd

√
T

≤ log(MT )√
T (pπ)d

where the final inequality uses Lemma B.2. Thus we have the bound∣∣∣∇jLlog(T )
X (am)−∇jLlog(T )

Z (am)
∣∣∣ ≤ log(T )∑

d=1

log(MT )√
T (pπ)d

.
log(MT )√
T (pπ − 1)

with probability at least 1− log(T )2

MT 2 .

C.6 Proof of Lemma B.6

By the triangle inequality we have∣∣∣∣(∇L(q)
Z (am)−∇LX(am)

)
j

∣∣∣∣ ≤∣∣∣∣(∇L(q)
Z (am)−∇Llog(T )

Z (am)
)
j

∣∣∣∣
+
∣∣∣∣(∇Llog(T )

X (am)−∇LX(am)
)
j

∣∣∣∣
+
∣∣∣∣(∇Llog(T )

Z (am)−∇Llog(T )
X (am)

)
j

∣∣∣∣ .
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By Lemmas B.3 and B.4 the first two terms can be bounded by max
(
(pπ)− log(T ), (pπ)−q

)
while by Lemma B.5 the final

term can be bounded is

.
log(MT )√
T (pπ − 1)

with probability at least 1− log(T )2

MT 2 . We conclude that

‖∇R(q)(am)‖∞ .
log(MT )√
T (pπ − 1)

+ 1
(pπ)−q

with probability at least 1− log(T )2

MT 2 as claimed.

C.7 Proof of Lemma B.7

We have

‖v‖2
T = 1

T

∑
t

v>
(
E[(XtX

>
t )|Xt−1]

)
v − 1

T

∑
t

v>
(
XtX

>
t − E[XtX

>
t |Xt−1]

)
v (C.7)

By Theorem 2.1 in Hall et al. (2016),

1
T

∑
t

v>
(
E[(XtX

>
t )|Xt−1]

)
v ≥ R̃

2 ‖v‖
2
2 (C.8)

Now we define the matrix G ∈ RM×M as follows:

G := 1
T

∑
t∈T

(XtX
>
t − E[XtX

>
t |Xt−1]).

Note that each entry of G is a martingale and

v>

(∑
t

XtX
>
t − E[XtX

>
t |Xt−1]

)
v ≤ ‖v‖2

1 max
m,m′

|Gm,m′ |.

Applying the Azuma-Hoeffding inequality we conclude that for any m,m′

P
(
|Gm,m′ | ≥

√
3 log(M)T

)
≤ 1
M3

and therefore

P
(

max
m,m′

|Gm,m′ | ≥
√

3 log(M)T
)
≤ 1
M
.

Overall we have concluded

1
T

∑
t

v>
(
XtX

>
t − E[XtX

>
t |Xt−1]

)
v ≤

√
3 log(M)√

T
‖v‖2

1 (C.9)

with probability at least 1− 1
M . Combining Equations (C.7),(C.8) and (C.9) give the desired result.
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D Optimization Results

The main result of this section is the following Theorem.

Theorem D.1. Suppose A∗ ∈ B1,∞(1) and ‖a∗m‖0 > 0 for at least MC rows of A∗ where C is a universal constant. Let
Ã ∈ B1,∞(1) be any stationary point of L(q)

Z (A) + λ‖A‖1 where λ � log(MT )√
T (pπ−1) + 1

(pπ)q . Then

‖Ã−A∗‖2
F . s

(√
log(MT )

T
+ 1

(pπ)q

)

with probability at least 1− log(T )
T 2 .

In order to prove Theorem D.1 we need to introduce notions of Restricted Strong Convexity (RSC) and Restricted Smoothness
(RSM) from Agarwal et al. (2012). To do this we first define the first order Taylor expansion to a function L:

TL(v, w) = L(v)− L(w)− 〈∇L(w), v − w〉.

Definition 3 (Restricted Strong Convexity). A loss function L satisfies the RSC condition with parameters α, τ if

TL(v, w) ≥ α

2 ‖v − w‖
2
2 − τ‖v − w‖2

1

for all v, w ∈ B1(1).

Definition 4 (Restricted Smoothness). A loss function L satisfies the RSM condition with parameters α, τ if

TL(v, w) ≥ α

2 ‖v − w‖
2
2 + τ‖v − w‖2

1

for all v, w ∈ B1(1).

Lemma D.2. The RSC and RSM conditions are satisfied for L(q)
Z with constants α = c1 and τ = c2

(√
log(MT )

T + 1
(pπ)q

)
with probability at least 1− log(T )

T 2 where c1 and c2 are universal constants.

Combining Lemma D.2 with Theorem 2 in Agarwal et al. (2012) gives the following corollary.

Corollary D.3. Under the conditions of Theorem B.1, let asm denote the s’th iteration of projected gradient descent using
the loss function φ(am) = L

(q)
Z (am)− λ‖am‖1. There exists some S such that for all s > S we have

φ(asm)− φ(âm) . τρm.
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E Proofs of Optimization Results

E.1 Proof of Lemma D.2

We begin by computing the first order Taylor approximation:

T
L

(q)
Z

(v, w)

= L
(q)
Z (v)− L(q)

Z (w)− 〈∇L(q)
Z (w), v − w〉

= LX(v)− LX(w)− 〈∇LX(w), v − w〉︸ ︷︷ ︸
1

+R(q)(v)−R(q)(w)− 〈∇R(q)(w), v − w〉︸ ︷︷ ︸
2

.

We first handle term (1), which is the first order Taylor error for LX . A computation shows that this is equal to

1
T

∑
T

f(v>Xt)− f(w>Xt)− f ′(w>Xt)〈v − w,Xt〉

where again f(x) = log(1 + exp(x)). Since f is σ-strongly convex on [Rmin, Rmax] with σ = Rmin
(1+Rmin)2 we can lower

bound term (1):
σ

T

∑
T

〈v − w,Xt〉2 ≤ LX(v)− LX(w)− 〈∇LX(w), v − w〉.

Using Lemma B.7, term (1) can be bounded below by

and can be bounded above by
σ

4 ‖v − w‖
2
2 + σ

√
3 log(M)

T
‖v − w‖2

1 (E.1)

and below by
σR̃

2 ‖v − w‖
2
2 − σ

√
3 log(M)

T
‖v − w‖2

1. (E.2)

It remains to handle term (2) which is TR(q)(v, w). By the mean value theorem there exists some u ∈ B1(1) such that
R(q)(v)−R(q)(w) = 〈∇R(q)(u), v − w〉. Thus we can bound term (2) by(

‖∇R(q)(u)‖∞ + ‖∇R(q)(w)‖∞
)
‖v − w‖1.

By Lemma B.6

‖∇R(q)(u)‖∞ + ‖∇R(q)(w)‖∞ .
log(MT )√

T
+ 1

(pπ)q

with probability 1 − 2 log(T )
MT 2 . Combining this with our bounds on term 1 in Equations (E.1) and (E.2) gives the final

result.

E.2 Proof of Theorem D.1

By Corollary D.3 we have (
L

(q)
Z (asm)− L(q)

Z (âm
)

+ (λ‖âm‖1 − λ‖asm‖1) ≤ τρm.

Since âm is a stationary point it satisfies

〈∇L(q)
Z (âm)− λâm, asm − âm〉 ≥ 0.

Using this, along with the fact that asm, âm ∈ B1(1) we get that

T
L

(q)
Z

(asm, âm) ≤ τρm + 3λ.

Using the RSC condition from Lemma D.2 we conclude

‖âm − asm‖2
2 . τρm + τ + λ . (ρm + 1)

(√
log(MT )

T
+ 1

(pπ)q

)
.
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Finally we apply the statistical error bound on ‖âm−a∗m‖2
2 from Theorem B.1 along with the triangle inequality to conclude

that

‖asm − a∗m‖2
2 . (ρm + 1)

(√
log(MT )

T
+ 1

(pπ)q

)
.

Summing over all m and assuming ‖a∗m‖0 > 0 for at least MC values of m allows us to conclude that

‖As −A∗‖2
F . s

(√
log(MT )

T
+ 1

(pπ)q

)
.

To get the final form of the result, we recall that As is the sth iteration of projected gradient descent run with an arbitrary
initialization within B1,∞(1). In particular, if we initialize A0 at a stationary point then As = A0 which gives the final form
of the Theorem.




