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Supplementary Material

The supplementary material is organized as follows. In Section[A] we recall all the notation needed for the proofs. In Section
we restate the main statistical results from the paper and in Section [C]we provide proofs of these results. In Section D] we
state the optimization results and give proofs in Section [E]

A Notation and Preliminary Remarks

e Lx(an) : negative log likelihood of complete data X given mth row a,,.

° Lg?) (am): degree-q Taylor series approximation of Lx (a,y,).

e Lz(a,) : negative log likelihood of missing data Z given mth row a,,. Loss function is unbiased in the sense that
E[Lz(am”X] = Lx(am).

. L(Zq) (a.,) degree-q Taylor series approximation of Lz (a.,)

o R (ay) = Lx(am) ~ L (an)
e By oo(1) = {A e R™*M g, <1 forall m}
e p: fraction of data which is observed

e p:max,, ||ak,llo

Finally, we introduce additional notation which will be helpful in the proofs of Lemmas and[B.5] First let U/, denote the
set of all monomials of degree d. We represent an element U € U; as a list containing d elements. An element in the list
corresponds to the index of a term in the monomial (the list can potentially have repeated elements). For an example, the
monomial 2?3 can be represented as the list (1,1, 3).

For a polynomial function h we let ¢y ;, denote the coefficient of the monomial U in h. Finally we define the order of a list
to denote the number of unique elements in the list, so |(1,2)| = 2 whereas |(1,1)| = 1.

Example Consider the function h(x1,x2) = :c% + 4x1x2. Using all the notation above, we can decompose h as

h(xl,.%‘g) = Z CU,h H an

Uels uelU

where U = {(1,1),(1,2),(2,2)} with corresponding coefficients c(1,1),n = 1, ¢(1,2),, = 4 and c(2,2),, = 0.

Remark 1. We next make several observations by applying the notation above to functions which appear in the likelihoods
Lx and L. First, for a fixed t, m we decompose the following function as a sum of monomials:

R(m1Xi1, s @maXenr) i =(@m1 X1+ .o 4 ae X))

=Y cum (H am}u> <H Xt,u>

Uecly uelU uelU

and note that

Z CU,h H Um oy = (am,l +...+ am,]\l)d (Al)

UeUy uelU

We also have

Va, h=d-X; j(@ami1Xi1+ ...+ am,MXt,M)d_l

= Z CU,Vamwtht,j (H am,u) (H Xt,u)

Uelg—1 uelU uelU

am,j
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and we similarly note that

Z CUVam hHamu—d am1+ +amM) -1 (A2)
UcUg—1 uelU

Next consider the function g which appears in the missing data likelihood L.

g(am,IZt,h .. ~aam,]\/IZt,M) = Z CU,g (H am,u) (H Zt,u>

Uely uelU uelU
where cy 4 = C‘UU’T This observation will be important for our analysis because it allows us to leverage Equation
Similarly we have
Vans9= D 094, % (H am,u> (H Zm)
Uelyg—1 uelU uelU

where cy v, 4= wz‘;[}’l”’ allowing us to use Equation

Remark 2. Using an identical argument to Lemmaone can show that for a,,, € By(1), |Lzp(am) — L(Zq’)p(am)| <
(pm)~?. This implies that lim,_, L(qu) converges uniformly on B4 (1) so that Lz ,(a.,) is well defined on this ball.
Moreover, it implies that lim,_, o E [|L Zp (am) |’X ] converges and so

E[Lzp(am)|X] = lim E[LY) (a)|X] = Jim, L' (am) = Lx (am)

q—00

and Lz ,(a,) satisfies (3-1)

B Statistical Results

We assume A* € By oo (1) and p > 1. We take ¢ € NU {oo}.

_log(MT)
VT (pr—1) + (p‘“')q

Theorem B.1 (Accuracy of L(Zq)). Suppose A € arg min g, (1) L(Zq)(A) + A||Al|x where X < Then

slog?(MT) 48
T(rp—1)2  (pm)?"

1A =A% <

. - 1
for T Z p*log(MT) with probability at least 1 — #.

The proof of Theorem [B-T|relies on the following supplementary lemmas.

Lemma B.2. Ler f(x) = log(1 + exp(z)). Then |f(q) <

~ qﬂ—q

Lemma B.3 (Truncation error of VLx). Suppose |an||1 < 1. Then

IVLx (am) — VL (am)]lo S 779

Lemma B.4 (Truncation Error of VLz). Suppose ||an,||1 < 1. Then

IVLz(am) = VLY (@)oo S (pm) 0.

Lemma B.5. log(MT)
O, (e} O
sup_ VL (@) = VL e S 0

llamlli<1

log(T)?

with probability at least 1 — =774
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Lemma B.6.

log(MT 1
sup HVL<Zq>(am) _ VLX(am)H < _los(MT) -
lam 1 <1 oo~ VT(pr—1)  (p7)

. . log(T)?
with probability at least 1 — 27—

Lemma B.7. Let ||v]|% = % Zt(vTXt)2 and R = min(Rumin, 1 — Rmax). For any v € RM we have

R 3log(M)
ol > 5 ol -/ =5l
and
1 3log(M)
ol < 7ol + /=25 ol

with probability at least 1 — ﬁ

C Proofs of Statistical Results

C.1 Proof of Theorem[B.1|

log(MT) 1 o~k .
JT o1 + Gy and let A,,, = @,, — a;,. Note that the loss functions

are decomposable, i.e., Lz(A) = >, Lz(am). Since Acarg minep, (1) L(Zq) (A) we have

Part 1: Controlling the Remainder We set A <

LY @) < L9 (a2,)

and so
Lx(@m) < Lx(a},) + (B9 (@n) = R (a;,)) -

Define A, := Gy, — a,. By the mean value theorem, there exists some v € B (1) such that
RO (@) ~ RO (a3,) = (VRO (), &)
so by Lemma [B.6|
|R@ (@) — R (a;,)] < |2 1V (0) 0 < gllﬁmlll

with probability 1 — %. We condition on this event for the remainder of the proof.

Part 2: Setting Up the Standard Equations The next several steps follow standard techniques for ¢; regularization in
GLMs. Expanding L x and using the substitution

Xt-i—l,'m = ]E[Xt+1,m‘Xt] + €t,m = f/(ajy;rXt) + €t,m

gives

1 =N ~ " ~
Z f(aILXt) - (a;Xt)(f,(aant) + et,m) + )‘”am“l
t

el

1 * * * * A
<7 Zt: Flag) Xo) = (an Xo)(f (a3, Xo) + etm) + Mg 1 + 71 2mlh
Rearranging terms yields

S F@nXe) = flap Xi) = £ (ah XA X, (C.1)
t

1
T

1 . . A
<lz 2 ecemBnXel + Allan 1 = @) + 71 Am:
t
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Since f(z) = log(1 + exp(z)) is o-strongly convex on [Rpyin, Rmax] With o = (IR”% we can lower bound Equation

I by 2 3°,(AL,X,)% Also note

1

T Zet,mA;Xt < Aml,

t

%Z Et,th

t

o0

% Do €t7thHoo < % with probability at least 1 — ﬁ Applying these
observations to Equation (C.I)) gives

| >

T
ZATXt < S1Amll + Maglln = M@m|s-

Define S := {i : a;,, ; # 0} and py, := ||ay,[[o- Then
T
3\ A
Z (A0 X0? < [ Am sl = 5l Amsells €2

and so
T

1 3\
TZ(A;Xt)Q S?HA

t=1

3\/p 3\/Pm
< 2 = ”AM,S”? < T”AmH? (C.3)

Restriction of A, to Cone It remains to lower bound £ >, (A} X¢)? in terms of || A, ||3. In order to do this we will rely
heavily on the fact that A, is not an arbitrary vector. Instead we show that A,,, must lie in a cone with important properties.
In particular, returning to Equation (C.2) and observing that 0 < + 3, (A ] X;)? it follows that || Ay, ge [l1 < 3] A s
Thus

[Bmlly = 1Am,sll + [ Am,selly < 4 Am, €4

Restricted Eigenvalue Condition As mentioned in the previous section, our goal is to lower bound % Zthl (A X)2.
This is commonly referred to as a restricted eigenvalue condition in the literature, and it is closely related to the restricted
strong convexity condition proved in Lemma[D.2] In particular, Lemma [B.7] guarantees that there exist universal constants
c1 and cs such that

1 C1
T (ALK = D3 -
t

log(MT)

1 8m2

For arbitrary vectors this lower bound can be negative; however, by Equation (C.4)
HAm”% < 16”Am,5‘”% < IGPmHAM,SH% < 16PmHAm”§
and thus

lo
TZ (8107 2 L2~ 16ep| B 2,03

Hence if T' 2 p2, log(MT) it follows that

N

= Z D Xe)? = | Dol
t

for a universal constant c. Plugging this in to Equation (C3) gives that

”Am”2 me)‘

with probability 1 — ﬁ Taking a union bound we conclude that

M
14" — A3 = Z 18ml3 S D pmA? = X2
m=1

m=1

with probability 1 — . O
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C.2 Proof of Lemma[B.2]

A computation shows that
1 ym
m= 0
where the A(q, m) are the Eulerian numbers. The alternating sum of the Eulerian numbers for fixed ¢ can be given as

q—2

S (~1)%A(g - 1,m) =

m=0

24(21 — 1)B,
q

where B, is the gth Bernoulli number (see the derivation of Equation 4.8 in|Carlitz| (1959)). Thus

‘f(”’(o)‘ 2‘IIB 5

qlq
Using|Alzer| (2000) we have the bound |Bg| S 7. Thus
(a) !
[0 2% 1
q'q2iwe  qmi
O
C.3 Proof of Lemma|[B.3|
For any 7 we have
AU i
(VEx (am) = VI (am))s| =| 7 23 =y (0n X0 ™ X
t i=q
< ! 3 -t
S DI
t i=q
S
t
where the last two lines use Lemma|[B.2]along with the fact that ||a, ||; < 1. O

C.4 Proof of Lemma[B.4

Differentiating Lz (a,,) with respect to a,, ; gives

= (o c )
itston =3 (LS 5 U5 (Mo (T2

! Ul
d=1 t velda, T

We first bound

o) = LS 3 it () (T 20 )

t UclUg—1 uwelU uelU

which is the degree d — 1 term of V; Lz (a,,). All the terms other than the a,, ,, in g4(a.,) are always non-negative and

|U| < d, so
f(d)
|gd(am)| < d'pd T Z Z CUNv,f H |am u|
t Ueclg—1 uelU
By Equation[A.7]
Z CUV f H ‘am u| |am 1| +...+ ‘a7n,1M|)d71 S d.

UcUg—1 uelU
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‘We conclude that

1 F90 90
sl < 33 0 =
Using Lemma[B.7] f0(0)
0 1
<

(d—1)lp? ~ (pm)d

Overall, we have concluded that |g4(a,)| < (pﬂ)d We are ultimately interested in |V ; Lz (ar,) — VjL(Zq) (@yy)|- This is the
sum of the degree d terms of V; Lz(a,,) for all d > ¢. In other words,
oo o0 1
|VJLZ<am) - ij(Z (am | < Z |gd am < Z
d=q d=q

2/\

as claimed. O

C.5 Proof of Lemma[B.3

We begin by bounding individual monomials of HVngg(T)(am) - VLl)‘;g(T)(am) H . We then extend these individual

o0
bounds to bounds on the entire expression.

Bounding Individual Monomials Following the notation introduced in Section |A| a degree d — 1 monomial of
V; Ll)?g(T) (am,) with index U is of the form

d
my,x = fd!(;) ZCU,ij <H am,u) (H Xt,u) .

uelU uelU

log(T') (a

Meanwhile, the degree d — 1 monomial of V; L, m) with index U is of the form

my,z = d'Tp|U| Z UV, (H am u> (H Zt,u>.

uelU uelU

The difference of these monomials is given by
Imu,x —mu, z|

£40) .
it (X cs,s T oma TT X gy vy [Lama [T 20

uelU uelU uelU uelU
fd(O)CU,th HuEU |am,u|
= Td S %= T 2 )
t uweU t uweU
Observe that
|U| 1] Zuu < 0. |U|}
uclU
and
1
E| @ I %) = I] Xt
uelU uelU
We apply Hoeffding’s inequality to conclude that
log (MT)WT
( > p|U| I % = > I Xewl| = 01 < 2exp(—2log?(MT)). (C.5)
uelU t uelU

Thus
F4H0) log(MT)eu,v,n [Tuey [am,ul

NG (C.6)

|mu,x —my,z| <

with probability at least 1 — 2 exp(—21log?(MT)).
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Extension to Entire Expression We need to take a union bound so that this holds for all monomials of degree at most
log(T'). However, since Z; ,, and X, ,, are binary random variables

ST 2= 30 T e = 00 T 2= 00 I

t uweU t ueU uelU uelU

whenever v € U.

Suppose we have shown that Equation (C.3) holds for all monomials of degree < d. Now to show it holds for all monomials
of degree d we only need to show that (C.3)) holds for all monomials of degree d that have d distinct terms. The remaining
concentrations are already covered by the degree d — 1 monomials. There are (1‘; ) < M monomials of degree d with d
distinct terms. Hence we need to take a union bound over at most
log(T')
> M%< log(T)M'E™
d=1

monomials of degree < log(7") and so

log(MT)\T .
<‘ E IU\ H Zi — E H Xieu| > ngl) for > 1 monomial of degree < 1og(T)>
uel t uel
1
< 2log(T) exp (log(M) log(T) — 2log? (MT)) < ik

We condition on this event and recall that U{;_; denotes the set of all monomials of degree d — 1. Using Equation (C.6), the
difference between the degree d — 1 terms of V; Llog )( m) and V; Llog(T) (am) can be bounded by

> mux —mozl < JH(0) Log(MT) > N 1T lam.ul.

’ ! U]
Uelg_1 d\/T Uelq—1 p

Using Lemma[B.2]and Equation [A.2]along with the fact that |U| < d,

74(0)log(MT) Z CUY, f H| ol < )log(MT)

U
d'\/T UclUg—1 p| | uelU )'pdf
log(M T)
Si
VT (pr)?
where the final inequality uses Lemma[B.2] Thus we have the bound
log(T) log(T) (, e
VLT () = V5L (0| <
3 o
< log(MT)
VT (pm — 1)
with probability at least 1 — &1 0

C.6 Proof of Lemma B.6
By the triangle inequality we have

'(VLgl)(am) - VLX(am)) |<

J
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By Lemmas and the first two terms can be bounded by max ((pw)_ log(T) | (pw)_q) while by Lemma the final
term can be bounded is

< log(MT)
~ VT (pr - 1)
with probability at least 1 — 1051(;2 ® . We conclude that
log(MT) 1

@D (q
IVRD an)lle $ 205+ Gy

with probability at least 1 — lo}\g/l(fg ®as claimed. O

C.7 Proof of Lemma[B.7]

We have
1
ol = 7 "0 BICKX) Xl v — 2 0T (XX ~ XX X)) o (€7)
T
t

By Theorem 2.1 in|Hall et al.| (2016)),

1 R
COCCE R ©8)
Now we define the matrix G € RM*M a5 follows:

1
G=7 ;(thj —E[X, X, | X,_1]).

Note that each entry of G is a martingale and

)

(th E[X, X/ |X,- 1]> 0 < ol max |G|
Applying the Azuma-Hoeffding inequality we conclude that for any m, m’

P (|G| > v/3log(M)T) <

and therefore
P (max/ |G| > 310g(M)T) <

Overall we have concluded

> T (XX - EBX X, X)) v < [|v]|? (C.9)

with probability at least 1 — 7. Combining Equations (C-7),(C-8) and (C9) give the desired result. O

Nl
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D Optimization Results

The main result of this section is the following Theorem.

M

Theorem D.1. Suppose A* € By (1) and ||a;,|lo > O for at least Z

A € By oo (1) be any stationary point ofL(Zq)(A) + M| A|ly where X <

rows of A* where C' is a universal constant. Let

log(MT) 1
VT (1) + COIE Then

~ log(MT) 1
. * (12 <

with probability at least 1 — %.

In order to prove Theorem[D.T|we need to introduce notions of Restricted Strong Convexity (RSC) and Restricted Smoothness
(RSM) from |Agarwal et al.| (2012). To do this we first define the first order Taylor expansion to a function L:

Tr(v,w) = L(v) — L(w) — (VL(w),v — w).
Definition 3 (Restricted Strong Convexity). A loss function L satisfies the RSC condition with parameters «, 7 if

(0%
Ti(v,w) = Sllv = w3 = rllv - wl}

for all v, w € By (1).

Definition 4 (Restricted Smoothness). A loss function L satisfies the RSM condition with parameters «, 7 if
«
L(v,w) > —||lv—wl3+T|v—w|j
T > 5 2 2

for all v, w € By(1).

Lemma D.2. The RSC and RSM conditions are satisfied for L(ZQ) with constants o = ¢y and T = co ( 10g(¥ D4 (p}r)q)

with probability at least 1 — logT# where ¢ and co are universal constants.

Combining Lemma [D.2] with Theorem 2 in|Agarwal et al.| (2012) gives the following corollary.

Corollary D.3. Under the conditions of Theorem|[B.1] let a3, denote the s’th iteration of projected gradient descent using
the loss function ¢(an,) = L(Zq) (am) — A||am]|1. There exists some S such that for all s > S we have

#(ay,) — ¢(@m) S Tpm.
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E Proofs of Optimization Results

E.1 Proof of Lemma[D.2]

We begin by computing the first order Taylor approximation:
TL ;1 ) (’U7 w )
= L (v) = LY (w) = (VLY (w),v — w)

= Lx(v) — Lx(w) — (VLx(w),v — w) + R (v) — R (w) — (VRO (w),v — w) .

We first handle term (1), which is the first order Taylor error for Lx. A computation shows that this is equal to
1
T Z FTXy) = fw" X)) = f(w" Xo) (v —w, Xy)
T

where again f(x) = log(1 + exp(z)). Since f is o-strongly convex on [Rumin, Rmax] With o = (132%)2‘ we can lower
bound term (1):

72 —w, X;)? < Lx(v) — Lx(w) — (VLx(w),v — w).

Using Lemma[B.7] term (1) can be bounded below by

and can be bounded above by

o 3log(M)
7l =l + o/ —=—lv - v} (E.1)
and below by
oR 3log( )
v —wl3 -0 lv = wlf3. (E2)

It remains to handle term (2) which is Tr(o) (v, w). By the mean Value theorem there exists some v € B1(1) such that
R (v) — R (w) = (VR (u),v — w). Thus we can bound term (2) by

(IVRD (@)oo + [VRD (@) ) ll0 = ]l

By Lemma [B.6]
< log(MT) 1

o S +
VT (pm)
2log(T)

with probability 1 — %5+, Combining this with our bounds on term 1 in Equations (E.T) and (E.2) gives the final
result. O

IVR (1) oo + VR (w)]|

E.2 Proof of Theorem [D.I|

By Corollary [D.3] we have
(£5(@5) = 29 @) + Nldml = Allag, 1) < 7om.

Since @, is a stationary point it satisfies

(VLD (@) = N, af, — ) > 0.

m

Using this, along with the fact that a® , @,,, € B;(1) we get that

m?

TL(<1> (afmam) < Tpm + 3N
zZ

Using the RSC condition from Lemma[D.2] we conclude

log(MT) 1
_ < <
||CLm am||2 TPm + 7+ A (,Dm + 1) ( T + (pﬂ')q .
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Finally we apply the statistical error bound on ||a@,,, — a, |3 from Theorem along with the triangle inequality to conclude

that
. log(MT) 1
s 12 < 1 )
Ham am||2 ~ (pm + ) ( T + (pﬂ)q

Summing over all m and assuming ||, ||o > 0 for at least % values of m allows us to conclude that

log(MT) 1
A — A* 2 < .
|| ||F ~ S ( T + (p’lT)q

To get the final form of the result, we recall that A® is the sth iteration of projected gradient descent run with an arbitrary
initialization within By »(1). In particular, if we initialize A° at a stationary point then A* = AY which gives the final form
of the Theorem.





