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A Appendix

A.1 Proof of Proposition 8

We establish a monotonicity property of the proposed
coupling for PIMH. Monotonicity properties of IMH
samplers were exploited in an exact simulation context
in [8] without this explicit construction.
Proposition 10. Under the proposed coupling scheme
the sequence of likelihood estimates (p

(n+1)
N )n≥0

stochastically dominates (p̃
(n)
N )n≥0 in the sense that for

any n ≥ 1, s ≥ 0

p
(n)
N ≥ p̃(n−1)

N ⇒ p
(n+s)
N ≥ p̃(n+s−1)

N a.s.

Proof. The coupling procedure in Algorithm 3 uses a
single proposal p∗N and samples u ∼ U [0, 1], with pro-
posals being accepted according to:

if u ≤ 1 ∧ p∗N
p

(n)
N

then p(n+1)
N = p∗N , else p(n+1)

N = p
(n)
N ,

if u ≤ 1 ∧ p∗N
p̃

(n−1)
N

then p̃(n)
N = p∗N , else p̃(n)

N = p̃
(n−1)
N .

We see that if p(n)
N ≥ p̃(n−1)

N then either

1. p(n+1)
N = p∗N in which case

u ≤ 1 ∧ p∗N
p

(n)
N

=⇒ u ≤ 1 ∧ p∗N
p̃

(n−1)
N

as p(n)
N ≥ p̃

(n−1)
N so that p(n+1)

N = p̃
(n)
N = p∗N (i.e.

the chains meet).
2. p(n+1)

N = p
(n)
N and so p∗N ≤ p

(n)
N . In this case,

either p̃(n)
N = p∗N , and so p(n+1)

N ≥ p̃
(n)
N , or p̃(n)

N =

p̃
(n−1)
N in which case both chains have rejected p∗N

and the ordering is preserved.

Finally, from the initialization of the procedure, we
have p(1)

N ≥ p̃
(0)
N because the initial state of the second

chain is used as a proposal in the first iteration of the
first chain.

From the above reasoning we see that the chains meet
when the first chain accepts its proposal for the first
time, as the second chain then necessarily accepts the
same proposal.

From the initial state with likelihood estimate p(0)
N ,

the acceptance probability of the first chain is
∫

1 ∧
(pN/p

(0)
N )ḡ(pN )dpN , with ḡ denoting the density of the

PF likelihood estimator pN . Thus, the time to the
first acceptance follows a Geometric distribution with
success probability

∫
1 ∧ (pN/p

(0)
N )ḡ(pN )dpN . The re-

sult stated in Proposition 8 follows when rewriting the
problem using the error of the log-likelihood estimator
log{pN (y1:T )/p(y1:T )}.

A.2 Integrated autocorrelation time for
various test functions

We show here experimentally that IF(h) is approxi-
mately proportional to IF(σ) for various test functions:
h1 : x1:T 7→ x1, h2 : x1:T 7→ xT , h3 : x1:T 7→

∑
t xt

and h4 : x1:T 7→
∑
t x

2
t . This is illustrated in Figure

7 where IF(h) is displayed for a range of N against
IF(σ) over the corresponding range of σ.
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Figure 7: Inefficiency IF[hi] versus IF[σ], with markers
indicating the test functions h1, h2, h3, h4. The verti-
cal axis scale is relative, depending on the test func-
tion.

A.3 Rao-Blackwellisation for stochastic
kinetic model

We demonstrate here the gains arising from the use
of a Rao-Blackwellized estimator detailed in Section
2.2. We display in Figure 8 the variance of the two
unbiased estimators of E(X1,∆t|y1:T ) for t = ∆, ..., T∆
and T = 100 for the latent Markov jump process and
two different values of N , 200 and 3, 000. In both cases
we set k = m = 0. As expected H̄0:0 outperforms
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Figure 8: Empirical variance of unbiased estimators of
E(X1,∆t|y1:T ): H0:0 and Rao-Blackwellised (RB) esti-
mator H̄0:0 for stochastic kinetic model.



Unbiased Smoothing using Particle Independent Metropolis–Hastings
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(a) Daily returns of S&P 500 data
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(b) Particle estimates of the log-likelihood function

Figure 9: Data and parameter estimation for Lévy-
driven stochastic volatility model.

H0:0 but the benefits are much higher for t close to T
than when t is close to 1. For example, we see that
for N = 200 the estimators H0:0 and H̄0:0 coincide
for t ≤ 35. This is an expected consequence of the
particle path degeneracy problem [13, 23, 25], with
many particles (Xi

1:T )i∈[N ] obtained by the PF at time
T sharing common ancestors for t close to 1 when N
is too small; see [23] for results on the corresponding
coalescent time.

A.4 Data and parameter estimation

The data used comprised of T = 500 log-returns of
the S&P 500, starting from the 3rd January 2005,
with the scaled data taken from the stochastic volatil-
ity example used to demonstrate SMC2 in [6]. We
plot the raw data in Figure 9a. Parameters were esti-
mated using a two-stage procedure, with SMC2 used
to find a region of high marginal likelihood under the
model. Further refinement was performed to com-
pute the maximum likelihood estimator (MLE) θ̂ of
θ = (µ, β, ξ, ω2, λ) using a grid search around values
close to the optimum using N = 10, 000 particles. We
obtained θ̂ = (0.24,−0.28, 0.82, 0.09, 0.05). Likelihood

curves around the optimal values are shown in Fig-
ure 9b, where for each parameter component the log-
likelihood was varied while keeping the other parame-
ters fixed at θ̂.

B Application of unbiased estimation
to SMC samplers

SMC samplers are a class of SMC algorithms that can
be used in Bayesian inference to approximate expecta-
tions w.r.t. complex posteriors for static models [10].
We show here how we can directly use the methodology
proposed in this paper to obtain unbiased estimators
of these expectations.

B.1 Bayesian computation using SMC
samplers

Assume one is interested in sampling from the pos-
terior density π(x) ∝ ν(x)L(x) where ν(x) the prior
density w.r.t. a suitable dominating measure and L(x)
is the likelihood. We also assume that one can sample
from ν. To approximate π, a specific version of SMC
samplers introduces a sequence of T − 1 intermediate
densities πt for t = 2, ..., T bridging ν to π using

γt(x) = ν(x)Lβt(x), πt(x) =
γt(x)

Zt
,

where β1 = 0 < β2 < ... < βT = 1. The choice of the
sequence {βt : t = 2, ..., T − 1} can be guided using
a preliminary adaptive SMC scheme, as in [33], which
should subsequently be fixed to preserve unbiasedness
of the normalizing constant estimate and validity of
the resulting PIMH. In SMC samplers, particles are
initialized at time t = 1 by sampling from the prior
ensuring w1(x1) = 1. At time t ≥ 2, particles are
sampled according to an MCMC kernel leaving πt−1

invariant and are then weighted according to

wt(xt−1, xt) =
γt(xt−1)

γt−1(xt−1)
= Lβt−βt−1(xt−1).

Particles are resampled according to these weights and
we set

Zt,N = Zt−1,N ·
1

N

N∑

i=1

wt(X
Ait−1

t−1 , Xi
t),

with Z1,N = 1. At time T , πN (dxT ) :=∑N
i=1W

i
T δXiT (dxT ) provides a Monte Carlo approxi-

mation of the distribution π and ZT,N plays the role
of pN (y1:T ), approximating the normalizing constant
ZT of π = πT . If no resampling is used, this specific
version of SMC samplers coincides with AIS [30] in
which case ZT,N is given by the average of the prod-
uct of the incremental weights from time t = 1 to



Lawrence Middleton, George Deligiannidis, Arnaud Doucet, Pierre E. Jacob

t = T instead of the product of the averaged incremen-
tal weights. We can use this SMC sampler algorithm or
AIS directly within the coupled PIMH scheme, replac-
ing pN (y1:T ) by ZT,N in the acceptance probabilities.
We see that sup(x,x′)∈X2 wt(x, x

′) < ∞ provided that
supx∈X L(x) < ∞. Under this condition, if Assump-
tion 5 is satisfied then the estimator H̄k:m of π(h) is
unbiased and has finite variance and finite expected
cost.

B.2 Numerical example

We use here coupled PIMH to debias expectations
w.r.t. the posterior distribution for a Bayesian mix-
ture model discussed in [28]. We have

L(x) =

M∏

n=1

(
1

D

D∑

i=1

N (yn;xi, σ2)

)

with x := (x1, ..., xD) ∈ RD constituting the unknown
mean components. We consider here D = 4 mixture
components and M = 100 observations. A uniform
prior distribution is placed on x over the hypercube
[−10, 10]D. The resulting posterior distribution is mul-
timodal. We set σ = 1 and simulate observations
from the model with true values x∗ = (−3, 0, 3, 6). We
adopt a symmetric random walk for the Metropolis–
Hastings proposals with identity covariance and pick

βt =
(
t−1
T−1

)2

for T = 200.

We simulate 10, 000 estimators with m = 64 and
N = 100, after which we are able to estimate vari-
ance of test functions for a range of values of k and
m noting that there will be some correlation intro-
duced between estimators. The results are shown in
Figure 10 where we plot the meeting times of the un-
biased estimators in Figure 10a and the variance of
the estimators for a range of values of m in Figure
10b using h : x 7→ x1 + x2 + (x1)2 + (x2)2. Un-
certainty in the estimated values of V[H̄k:m(h)] was
obtained using 1, 000 bootstrap samples, resampling
10, 000 of the 10, 000 unbiased estimators with replace-
ment. The figure shows the variance of these estima-
tors for a range of values of m ∈ {4, 8, ..., 64} while
varying k ∈ {0, ...,m − 1}. We see, firstly, as ex-
pected that as m increases the variance of the esti-
mators reduces. Secondly, for each value of m we see
that there exists an optimal value of k, however, as
m increases the optimum becomes less pronounced,
suggesting that as m increases there is a degree of in-
sensitivity to the choice of k. Finally, for the range
of m considered, the optimal values of k appear in a
comparatively small interval close to the origin, sug-
gesting that it is not necessary to use large values of
k to reduce the variance contribution arising from the
bias correction.
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(a) Empirical distribution of meeting times for SMC
sampler with N = 100 over 10,000 independent runs.
The estimated 95th and 99th percentiles were 6 and
13 respectively.
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(b) V[H̄k:m] of Rao-Blackwellised unbiased estima-
tors of π(h) for SMC sampler as a function of k for
a range of values of m. The shaded regions corre-
spond to the 1st and 99th percentiles of the variance
estimator.

Figure 10: SMC sampler unbiased estimators


