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This document is a supplement to the paper "Domain-size
Aware Markov Logic Networks”. This contains the de-
tailed proofs of all the propositions and corollaries stated
in the main paper.

We first provide the proof for the counterexample for the
proposition O presented in the main paper. Again, as stated
in the main paper also, we assume all the weights of the
formulas are strictly positive.

Counterexample for Proposition 0: Consider an MLN
M consisting of one formula w : Q(z) v R(y) v P, where
|A;| = 1and |A,| = n. Then,

2n+16wn

PM(Q(l)) = (2”6”” + (1 + ew)n) + on+leuwn

Proof. We have

ZQ)=1 1
Q) = =t = 7o ()
Now
Zoy=o = (1 4+e")" +2"e"™ (2)
and
Zouy-r = 2" e 3)
Substituting eq (2) and eq (@) in eq (I)), we get
n+1 wn
PalQU)) = G5 (12+ ej)”) + 2n+lewn
Also, lim,,_,o Prr(Q(1)) = 2/3 O

Now we prove proposition 1 in the main paper. Before
proving proposition 1, we present a lemma, which will be
useful for the proof.

Lemma 1. Consider an MLN M with a single formula of
the form w : Ri(y1) v Ra(y2) v -+ v Ri(yx), and let
Ay, | = |Ay,| =+ = |Ay.| = n, then partition function

Zy < e 2n (1 4 (14 7))
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Proof. Proof follows from repeatedly applying binomial
rule [1]] on all the predicates. First applying binomial rule
on R;, we get

Zy = Z <?>ewnk_l(njl)ZMl

T J

where M has a single formula j1w : Ra(y2) v - v Ri(yx)

k n i k=1
Zy = evn Z( >6 wjin Z]ul

J1 J1

Now applying binomial rule on Ry, we get

Z]\/[ _ ewnk Z (jﬂi)e—wjlnk71 Z (j’f;)ewj17Lk72(7L—j2)Zsz
J1 J2
where M has a single formula jijow : Rs(ys) v -+ v

Rie(yr)
k n n s k=2
Tnr = et . e~ witj2n""%) 7
we e D)D)
J1 J2
Similarly, after applying binomial till Rj_;, we get

Iy =" Y (Z) JZ (Z)

Ji

—wn, —
. E ( )e J1J2---Jk 1ZJ»[k,1

Jk—1 Jk—1

where M}, has a single formula wjijo . . . jr—1 : Rk (yk)
Now Zp,,_, = (1 + ewj1j2"‘jk—1)” (By Decomposer [[1]),
so finally

S35 ()

J1 Jk—1

e_wn]1]2---]k—1 (1 + ew]1]2-~]k—1 )71

S22 00)

J1 Jk—1
(1 4 e—'wjle...jk,l )n

Now when any one of the ji, jo, ... jr—1 becomes 0, then
we get

Z;\/[ _ 6’Ll)’r7,]C (k, _ 1) * 2n(k71)
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On the other hand, if all of the j1, js, . . . jx—1 are non-zero,
then we get

z-er 5 () 5C)

j1=1 j2=1

i ( " )(1+ewj1j2--.jk1)n

Jk—1=1 Jk—1

< (L+e ) i (;i) pil (Z)

Jji=1

> (")

Jr—1=1
_ (1+7w)newnk (2n . 1)k71

< (1 + e—w)newnk <2n)k—1
Adding Z), and Z},, we get

Zng < (k—1) %271 4 (1 4 gw)mewn” (2n)h-1
_ ewnan(k—l)(k, —1+ (1 + e—w)n)
O

Proposition 1. Consider an MLN M with a single formula
of the form w : Q(x) v R1(y1) v ... v Ri(yx). Here
k> 1. Also |Ay1| = ... = |Ayg| = n, and |Az| = 7,
where r = 1 is some constant. lim,,_,o, Pyr(Q(1)) is 1.

Proof. We have

Zo(1)- 1

Q=1

Py (Q(1)) = = 4)
(@) Zom=0t Zauy=1 1+ Z2u=

Now Zg(1)—o is the partition function of the MLN w :

Ri(y1) v Ra(y2) v -+ v Ri(yr);w : Q(x) v Ri(y1) v
RQ(:[/Q) VsV Rk(yk), and |A({E>| =r—1.
Applying binomial rule on Q(z), we get,

r—1

=1\ o kr_1_;

Zoy=0 = Z ( ; >e (r—1 J)Zég(l):o
j=0

where Z, ég(1):0 is the partition function of the MLN

(k+ Dw: Ri(y1) v Ra(y2) v -+ v Ri(yr)
Now using Lemmal[T] we get

r—1
r—1 k(i 1_
ZQ(I):O < Z < ] >6wn (r—1-j)

§=0
ew(j+1)71,k2n(k—1)(k — 1+ (1 + e—w(j+1))n)

Also, Zg(1)=1 = ewn” Zég(l):l’ where Z&)(l):l is the par-
tition function of the MLN w : Q(z) v R1(y1) v Ra(y2) v

eV Rk(yk), and |AI| =r—1.
Applying binomial rule on Q(z), we get,

r—1
/ _ r—1 nk(rflf‘) "
Zoay-1 = Z( i >@ PZg)-1
j=0

where Zg(l):l is the partition function of the MLN
jw : Rl(yl) Vv Rg(yz) VoV Rk(yk)

r—1
Zouy-1 = ), (r S 1) eunt gt 3 (n> 2

=0 ! J1 N J2
<n> Z (n >(1+€wjj1j2»--jk1)n
J2 ; Jk—1
Jk—1

Let’s evaluate Zg(1)—1 when j = 0. Let us denote that by
Zj

ZjD = ewnk(r_l)zkn
SO
ZQy=1 = Zj, = ewn” (r=1)gkn
r—1 L ‘
Z Y (50— 14+ (L ey
lim 2QMW=0  y;, I=0
n—o0 ZQ(I):l n—o0 2n
k — 1 1 —w\n 27,71
< fim B 1HA+ )Y
n—0o0 2n
k-1 1+ew\"
= 1 27“71
o ( 2 )
=0
Hence from eq @), lim,, .o, Py (Q(1)) = 1 O

Proposition 2. Consider an MLN M having single formula

of the form w : Q(z) v R(y) v Py v Py... v P, where

|Az| = 1 and |Ay| = n. Then lim,_,o Pr(Q(1)) =
2m

2mFI_1

Proof. We evaluate Zg(1)—o and Zg(1)—1 with the help of
Binomial and Decomposer rules.

ZQ(l):O = (2777, — ].) 2"V 4 (1 + Cw)n
Every grounding is satisfied when (1) = 1. Hence,
ZQ(1)=1 — 9mon wn

Thus,
Zom=o0 (2™ —1)2"e"" + (1 + )"
ZQ(l):l B 9mon gwn

=<1_1)+1(1+e“”)"

2m 2am —1 2ew

(R (5
2m 2am —1 2
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As lim,, o (%) =0, we get
Z0(1)= 1
i Zew=0 _ (1 _ >
=% ZQ)=1 2

2m
gm+l

Hence

lim Py (Q(1)) =

n—o0

O

Proposition 3. Consider an MLN M with single formula
of the form w : Q(z) v R(y), where |A;| = |Ay] = n.
Then lim,, o, Pr(Q(1)) = 2

Proof. Again we evaluate Zg(1)—¢ and Zg(1)— with the
help of Binomial and Decomposer rules. First Zg(1)—q

“EE0)
VR e

=0 7j=1
—1 n— n—1
et Z ") ZGh)
= - &)
e~ (k+1)(G+1) w>
Thus,
Zoy=o = e x 2" (©6)
Also, note
k+D)(+1)=k+5+1
From (@), we have
R n—1n—1 n—1
Zg=o < €" w<2n ' (Z > < )
k=0 j=0
n e—(k+j+1)w
j+1
< en’w (2”_1 +e v (1 + e_w)n
(N

(1 ey - 1))
As1 << (1+e*)"* From eq (6) and (7)

A _ 1 —w\2\ "
1< —2W=0 (g 4 emw(] 4 e ) Ch
on 1677, w 2

Assume w > 1 and as (1 +e )2 < 2,

lim Zoy—o ~ 2" 1™V (8)

n—ao0

Similarly with help of binomial, we get Zg (1)1

(*2“ 22(2&)@1&

o (k1) G+ Dw

)

N———

Thus,

ZQ(l): > 3« en w 2n—1 (10)

Also, note

k+D(J+1)=2k+5+1

From (9), analogous to previous part, we have Zq1)=1

w [ g, 9n— 1 7742317721 n—1 e—(k+j+1)w
P kE+1 ]+1

e’ (1 + e*“’)n ((1 + e*w)nﬂ))
(11)

N

< W (3 x2n 1 4

Therefore from eq (I0) and

< <1 N e*“’(l;L e ™) <(1 +§w)2>">

ZQ(1)=1
S 3 on—lenw

Assume w > 1 and as (1 +e )2 < 2,
: n— 71,2 i
JEOZQ(U:l ~ 3w 2 en (12)
So from eq (8) and (12)
7 _ 2n—1 n2w
lim 290=0 gy =
n—oo ZQ(1)=1 n—ow 3 x Qn—len‘w
1
=3 (13)
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For0 < w < 1, we found the limit analytically, and it also
comes down to 3. Hence

lim Par(Q(1) = 1) =

n—ow 4
O

Proposition 4. Consider an MLN M with single formula
of the form w : Q(x) v P(x,y) v R(y). Here |Az| =
r, where v = 1 is some constant, and |Ay| = n. Then

lim,, 00 Par(Q(1)) is 1.

Proof. Again we evaluate Zg(1)—¢ and Zg(1)—; with the
help of Binomial and Decomposer rules.

r—1
r—1 n
Z _ :e’ﬂ’w 2777,](: 1+67’w k+1+2k+1
Q=0 k;)( ] > (( ) )

(14)

Also,

Zoay=1 = 2"e™ Z (T B 1) 9~k (1+ e M)k 4 Qk)n

15)

From eq (T4) and (T3)), we have lim,, o, w

Q=1

5 () (e 2
k=0

r—1
on Z (T;1)2—nk

k=0

= lim
n—o0

(14 e-w)k +2k)"

We could not evaluating above limit analytically, so we
computed it numerically : for different w, we calculated
the value in the limit of n — o0, and it comes out to be zero
for every w. Hence we get lim,, ., Py (Q(1)) =1. O

Proposition 5. Consider a DA-MLN D with a single for-
mula of the form w : Q(x) v R(y). Let |A,| = 1. Further,
let |A,| = n. Then, lim,, .o, Pp(Q(1)) = —=

14+e 2"

Proof. In order to compute Pp(Q(1)), we need to compute

Zaw)=0. We have
Zy=1"
lim 2QW=0 _ , (AFen)" e
n—o0 ZQ(1)=1 n—w eW x 2N
So hmn—»oo PD(Q(l)) = 1—“’ . O

1+e 2

Proposition 6. Consider a DA-MLN D having single for-
mula of the form w : Q(x) v R(y) v P v Py... v Py,
where |A;| = 1 and |Ay| = n. Then lim,,_ Pp(Q(1))
is a function of w.

Proof. We evaluate Zg(1)—o and Zg(1)—; with the help of
Binomial and Decomposer rules.
Zauy=o = (2" = 1) 2w 4 (L+e¥)"

Every grounding of theory is satisfied when Q(1) = 1.
Hence,

Zgy=1 = 2"2"en"

Thus,
Zoy=1 2mnen

:(1_1>+ 1 (Hei})n

om oam — 1\ 2%

(=) ()
om om _q 2

—w n
As hmnﬁoo (1+62 = ) =e 2,

Zo1)— 1 -5
limQ(l)Oz(1>+< ¢’ )
n—o0 ZQ(l):l 2m 2m — 1

Hence,

lim Pp(Q(1) = 1) =

n—o0

1+ (1—25) + giqe™ 2

Clearly the marginal probability of Q(1) is dependent on
w. [

Proposition 7. Consider a DA-MLN D with single formula
of the form w : Q(z) v R(y), where |Ax| = |Ay| =
Then lim,,_,o, Pp(Q(1)) = f(w), where f(w) is a (non
constant) function of w.

Proof. We evaluate Zg(1)—o and Zg(1)— with the help of
Binomial and Decomposer rules. First Zg(1)—o

— oW Z_: (n—l) Z": ( > Gt

7=0

(S (S0
= Jj=
n—1 n—
_ en*f(w) <2n1+ <n—1> (n )
Par AN R VA
(k+1)(J+1)w>
— e’ f(w) [gn-1 | 22(711) n)
=0 j=0 J+1
(k+1)(3+1>w)

(16)
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Similarly, we get Zg(1)—1

g ) B

n—1
n —(k+D)G+Dw
j=o M

— i ( 32" 1+”ZMZI(Z:)<J+1)

k=0 j=0 (17)

<k+1)<j+1>w>
e n

Evaluating the limit for Eq (T6) and analytically in this
case is difficult, so again, we evaluated that numerically.
For different values of w, we numerically computed the
value of the probability in the limit (the limit does exist).
These values are plotted in Figure[ll Unlike Proposition
there is a clear dependence of the limiting probability on w

in this case. O
1
0.8 | |
= 06 W
<]
& 04t
0.2
0 L L L L L L L L L
0 05 1 15 2 25 3 35 4 45 5

Weight

Figure 1: Query Marginal vs Weight (Proposition

Proposition 8. Consider a DA-MLN D with single formula
of the form w : Q(z) v P(z,y) v R(y). Here |Az| = r,
where r = 1 is some constant, and |Ay| = n. Then
lim, o Pp(Q(1)) = f(w), where f(w) is a (non con-
stant) function of w.

Proof. We proceed same as proposition and thus

ZQw=o0

z becomes
Q=1

lim,,— e

r—1
I G e (e R A

. k=0
lim
n—o0 r=1

20 ¥ (T2

k=0

((1 + e—win)k 4 2k)"

Again we evaluated the limit numerically, and the probabil-
ity values are plotted in the figure [2] which clearly shows

the dependence of the marginal on the weight w. O
1
08 r 1
~ 06 W
S
o 04 |
0.2
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Figure 2: Query Marginal vs Weight (Proposition

Proposition 9. Consider an MLN M with single formula of
the form w : Q(z) v P(y). =n. Let |Az| = 1.
Suppose P is evidence predicate, i.e., all its groundings
are given to be true or false. If the ratio of true and false
groundings of P remains constant with respect to n, then

limy o Par(Q(1)) = 1.

Proof. Let the ratio of true and false groundings of P is
some constant . Then We have

ZQ(I):O ~ lim ernw

n—o enw

— e(’l“fl)n’u) (18)

lim
N0 LQ(1)=1

Eq (I8) evaluates to 0, and hence lim,, o, Py (Q(1)) =
1. O

Proposition 10. Consider a DA-MLN D with single for-
mula of the form w : Q(z) v P(y). Here |Ay| = n. Let
|Az| = 1. Suppose P is evidence predicate. If the ratio
of true and false groundings (denoted by r) of P remains
constant with respect to n, then lim, o Pp(Q(1)) =

1
1+e(r—1)w .

Proof. Let the ratio of true and false groundings of P is
some constant r. Then we have

Tw

Zo(1)=
lim 22W=0 _ jyy & _ oD
o Zgay=1 noe el
Hence limn_,oo PD(Q(l)) = He(ﬁ' O
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