Adaptive Minimax Regret against High-Dimensional Logarithmic Losses

A Asymptotic Lower Bound of
Shtarkov Complexity for Standard
Normal Location Models

We show an asymptotic lower bound of the Shtarkov
complexity of standard normal location models.

Lemma 8 Consider the d-dimensional standard nor-

mal location model, given by fx(0) = 3| X 9|3 +

4 In2r, where X € X =R, Lety = X||0]|, for A > 0.
Then we have
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Proof By definition of S(v), we have
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where ®()\) denotes the standard normal distribution
function. Now, by Komatu (1955), ®()) is bounded
below with ®(A) > 1 — 2¢(\)/(V2 + 22 + ) for ¢(N)
being the standard normal density, which yields the
lower bound of interest after a few lines of elementary
calculation. ||

B Lower Bound on Minimax Regret
of Smooth Models

We describe how we adopt the minimax risk lower
bound as to show the minimax-regret lower bound.

The story of the proof is based on Donoho and John-
stone (1994). First, the so-called three-point prior is
constructed to approximate the least favorable prior.
Then, since the approximate prior violates the £;-
constraint, the degree of the violation is shown to be
appropriately bounded to derive a valid lower bound.

The goal of our proof is to establish a lower bound on
the minimax regret with respect to logarithmic losses,

whereas their proof is about the minimax risk with
respect to {,-loss. Therefore, below we present the
proof highlighting (i) an approximate least favorable
prior for logarithmic losses over £1-balls and (ii) the
way to bound regrets on the basis of risk bounds.

Let H = {#€R? | ||0]|, < B} be a f;-ball. Let
X ~ Nylf,14/L] be a d-dimensional normal random
variable with mean § € H and precision L > 0. We
denote the distribution just by X ~ ¢ where any con-
fusion is unlikely. Let A € H be a predictor associ-
ated with any sub-probability distribution P(-|h) €
M (R?). For notational simplicity, we may write
fx(0) = 511X =03+ §In 3 and fx(h) = In SEEH
where v is the Lebesgue measure over R
Consider the risk function
def

Ra(h,0) = Ex~g [fx(h) = fx(0)],

and the Bayes risk function

def
Rd(h, 71') = ngﬂ- [Rd(h, 9)] 5
where m € P(H) denotes prior distributions on H.
Then, the minimax Bayes risk bounds below the min-
imax regret,

REG*(H) = inf sup sup fx(h)— fx(0)
heH feH X cRrd

> inf sup EgorEx~o[fx(h) — fx(0)]
heH neP(H)

= inf sup Ry(h,).
heH meP(H)

The minimax theorem states that there exists a saddle
point (h*,7,) such that

Ry(h*,m) = inf sup Ry(h,)
heH neP(H)
= sup inf R4(h, ) def sup Rg(m),
reP(H) hetl rEP(H)

and m, is referred to as the least favorable prior. We
want to approximate m, to give an analytic approxi-
mation of Ry(m,), which is a lower bound of REG*(H).

Let F,, € P(R) be the three-point prior defined by
€
FGvH = (1 — 6)50 -|- 5 (5_H + 5M)

for €, 4 > 0. We show that the corresponding achiev-
able Bayes risk Ry (F¢ ) tends to be the entropy of the
prior F, , in some limit of small e.

Lemma 9 Take p = p(e) = V2L 11lne 1. Let H, =
H(F.,)=1-€¢In(l—¢)"'+eln2e! be the entropy
of the prior. Then we have

1
Ry(F.,) ~ He ~eln =

€
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as € = 0. Here, x ~ y denotes the asymptotic equality
such that x/y — 1.

Proof First, we show the famous inequality on the
entropy given by Ry(F.,) < H.. Let P(:|h) =
Egr, ,P(10) = (1=€)P(-[0)+5(P(:|=p)+P(|n)) be
the Bayes marginal distribution with respect to F¢ ,,.
Then we have

He — Ra(Fe )

= H. — Ri(h,F.,)

=H. —Eor, ,Ex~oln %

= He — (1 - €)Ep(xjo) In %
— Ep(xjm In %

= (1= €)Ep(x0) In (1 T - € dP(X“;()i;((;(PK();(' - “)>
t Erierin (1 Llc zdP(X\g)PJ(r)?ﬁgXl - u))

> 0.

Now, we show that, with the specific value of u = u(e),
the gap is negligible compared to the entropy itself.
Applying Jensen’s inequality, we have

He = Ri(Fep)

< —LpuX | 3 —2LuX
<e+ eEpixpIn (1+(1—e) (26 +€’e ))
<e(l+1In4+4 Ep(x|u) max {0, —2LuX})

max{(), 2V Lu(Z — \/Z/j,)})

(o —VL(X = p) =2)
<e (1 +1n4 + Q\FLue)

=€ <1+ln4+26\/21n1> = o(H.).
€

Thus we get He ~ Ry(F, ). [ |

=€ (1 +In4 + E
Z~N0,1]

Now we show that the d-th Kronecker product of F, ,,,
Fgw can be used to bound the Bayes minimax risk
R4(m,.) with an appropriate choice of € and pu. To
this end, let 7y = F? | H be the conditional prior

restricted over the ¢;1-ball H.

Lemma 10 Take e = (1 — ¢)B/d and p =
V2L=1Ine ! for 0 < ¢ < 1. Then, if ¢ — 0 and

de — 00, we have

1
Ry(m.) > Ry(my) ~ Rg(FY,) ~deln —.

€

Proof First of all, the inequality is trivial from the
definition of Ry4(7). Moreover, the second asymptotic
equality immediately follows from Lemma 9.

Now we consider the first asymptotic equality. Let h
be the Bayesian predictor with respect to the prior
F., and b be the one with respect to the conditional
prior 4. Then we have

Rq(F?,)
= Rq(h, F?,)
=Egopa, [Ra(h,0)]
= F2,(H)Ra(h,my) +Egpa [Ra(h,0) - 1{0 ¢ H}]
> F2L(H) - Ra(my)
and
Ry(F?,) < Rg(h*,F2 )
=Egpopa, [Ra(h*,0)]
= FZ,(H) - Ra(my )+
Egorpa, [Ra(h*,0)-1{0 ¢ H}].

Let N be the number of nonzero elements in 6 ~
F¢ . Then N is subjects to the Binomial distribu-

€t
tion Bin(d,¢). On the other hand, the event 6 € H
is equal to {||0||; < B} = {N < B/p=EN/(1—c¢)}.

Therefore, applying the Chebyshev’s inequality, we get
N —-EN c }

EN ~ 1—c
_-ep
c2de

Similarly, we have E|N — EN| /EN — 0. Now observe
that

Egra, [Ra(h*,0) - 1{0 ¢ H}]
< Egopa Epn, [Ralip,0) - 1{0 & H}].
< 2By Egmr, [(Iol3+ 1013) - 10 ¢ H)]
<2LpE[Py;N + N -1{N > B/u}]
(1015 = #*N)

Py FL (HE) = Pr {

— 0.

E|N —EN
< 2Lu*EN <2Pd + |>

EN
1 E|N —EN
= o(Ra(FZ,))-
Thus, combining all above, we get
(1+ o(1)) Ralr+)
= (1 = Py)Ra(my)
< Ra(F?,)
< (11— Pa)- Ra(my)+
By [Ra(h*,0) 110 ¢ H}).

= (1 - o(1))Ra(m.) + o(Ra(FL,)),
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which implies the desired asymptotic equality
Rd(Fe,;,L) ~ Rd(7T+). |

Summing these up, we have an asymptotic lower
bound on the minimax regret which is the same as
the upper bound given by the ST prior within a factor
of two (see Theorem 7). This implies that both the
regret of the ST prior and the Bayes risk of the prior
w4 are tight with respect to the minimax-regret rate
except with a factor of two.

Theorem 11 (Minimax lower bound) Suppose
that w(1) = In(d/vL) = o(L). Then we have

oLl

B
REG*(H) 2 = ;

where x = y means that there exists y' ~ y such that
x>y

Proof The assumptions of Lemma 10 are satisfied for
all 0 < ¢ < 1 since

1 1—c /L
< In= = -
€Nq/n6 ] \/2—>O,
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Thus, we have

1
REG*(H) > Ry(my) Z deln = ~ (1 —¢)

€

B

B lapm-L
2 VL
for all 0 < ¢ < 1. Slowly moving ¢ toward zero
completes the theorem. [ ]

C Existence of Gap between LREG*
and LREGP%* under /,-Penalty

Below we show that, under standard normal lo-
cation models, the Bayesian luckiness minimax re-
gret is strictly larger than the non-Bayesian lucki-
ness minimax regret if + is nontrivial and has a non-
differentiable point. Here we refer to v as trivial when
there exists 0y such that () = oo for all § # 6.

Lemma 12 Let fx(0) = 1 (X — 0)2+%ln27r for X €
R and 0 € R. Then, for all nontrivial, conver and
non-differentiable penalties v: R — R,

LREG*(y) < LREGP®% (),

Proof Let F = {fx | X € R} and recall that
LREGB® () = infy,ce(x ) Inw[e™] by Theorem 1.
Let |||, be the metric of pre-priors w € My(R)
given by [lw|, = we”7]. Owing to the continuity
of w — Inwle™7] and the completeness of £(F,) C
M (R), it suffices to show that there exists no pre-
prior w € &£(Fy) such that Inw[e ] = S(v). Let
us prove this by contradiction. Now, assume that
Inw[e~7] = S(y). Observe that

0=wle "] —expS(v)
=w {/ efXVV(dX)} — /e*m(fXJ”)l/(dX)
_ / {w [e=Fx—] - e—m(fx-i-’Y)} V(dX),

which means w [e_fx_'y] = e~Ux+7) for almost ev-
ery X since w € £(F,). Note that fx(6) is continuous
with respect to X, and then we have w [e*fX*V] =
e~ X+ for all X. After some rearrangement and
differentiation, we have

_ 4

T ax”
de—fx—v+m(fx+7)

- |

0 {(;fx —y+m(fx +7)}

dX
= wp {(9 —0%) e_fx_"""m(f’(%’)} , (13)

where 6% = argm(fx + 7). Here we exploited Dan-
skin’s theorem at the last equality. One more differen-
tiation gives us

d

- _ 0t o fx—v+m(fx+7)
0 de9 |:(0 0X)6 :| ’

= wy H(@ - 9})2 _ 4% } e_fx_'”m(f"“’)}

dX
for all X € R.

Note that we have %| x=t = 0 for any non-
differentiable points ¢ of . Then it implies that
w = cdgr where J, denotes the Kronecker delta mea-
sure. Then, according to (13), we have

0=wg |(6—0%) e—fx—7+m(fx+v)] )

= (07 — 0%) e X OO0 +m(Fx+7)

which means that 6% = 6] is a constant independent
of X. However, this contradicts to the assumption
that ~ is nontrivial. |

As a remark, we note that this lemma is easily ex-
tended to multidimensional exponential family of dis-
tributions.



