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Abstract

We develop a new theoretical framework,
the envelope complexity, to analyze the min-
imax regret with logarithmic loss functions.
Within the framework, we derive a Bayesian
predictor that adaptively achieves the min-
imax regret over high-dimensional `1-balls
within a factor of two. The prior is newly
derived for achieving the minimax regret and
called the spike-and-tails (ST) prior as it
looks like. The resulting regret bound is so
simple that it is completely determined with
the smoothness of the loss function and the
radius of the balls except with logarithmic
factors, and it has a generalized form of ex-
isting regret/risk bounds.

1 Introduction

As a notion of complexity of predictive models (sets of
predictors), minimax regret has been considered in the
literature of online learning (Cesa-Bianchi and Lugosi,
2006) and the minimum description length (MDL)
principle (Rissanen, 1978; Grünwald, 2007). The min-
imax regret of a model H is given by

REG?(H) = inf
ĥ2Ĥ

sup
X2X

⇢
fX(ĥ) � inf

h2H

fX(h)

�
, (1)

where fX(h) denotes the loss of the prediction over
data X made by h, Ĥ denotes the feasible predictions
and X is the space of data. Here, the data may consist
of a sequence of datum, X = Xn = (X1, . . . , Xn), and
the loss maybe additive, fX(h) =

Pn
i=1 fXi(h), but we

keep them implicit for generality. The minimax regret
is a general complexity measure in the sense that it
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is defined without any assumptions on the generation
process of X. For instance, one can bound statisti-
cal risks with REG?(H) regardless of the distribution
of data (Littlestone, 1989; Cesa-Bianchi et al., 2004;
Cesa-Bianchi and Gentile, 2008). Therefore, bounding
the minimax regret and constructing the correspond-
ing predictor ĥ is important to make a good and robust
prediction.

We consider that H is parametrized by a real-valued
vector ✓ 2 Rd, H = {h✓ | �(✓)  B, ✓ 2 Rd

}, where
�(✓) denotes a radius function such as norms of ✓.
Thus, we may consider the luckiness minimax re-
gret (Grünwald, 2007),

LREG
?
(�) = inf

ĥ2Ĥ

sup
X2X

⇢
fX(ĥ)� inf

✓2Rd
[fX(✓) + �(✓)]

�
,

(2)

instead of the original minimax regret. Here, we abuse
the notation fX(✓) = fX(h✓). There are at least
three reasons for adopting this formulation. Firstly,
as we do not assume the underlying distribution of
X, it may be plausible to pose a soft restriction as
in (2) rather than the hard restriction in (1). Sec-
ondly, it is straightforwardly shown that the lucki-
ness minimax regret bounds above the minimax regret,
REG?(H)  LREG?(��) + �B for all � � 0. Thus,
it is often su�cient to bound LREG?(�) for bounding
REG?(H). Finally, the luckiness minimax regret is in-
cluding the original minimax regret as a special case
such that �(✓) = 0 if ✓ 2 H and �(✓) = 1 otherwise.
Therefore, we may avoid possible computational di�-
culties of the minimax regret by choosing the penalty
� carefully.

That being said, the closed-form expression of the ex-
act (luckiness) minimax regret is even intractable ex-
cept with few special cases (e.g., Shtar’kov (1987);
Koolen et al. (2014)).

However, if we focus on information-theoretic settings,
i.e., the model H is a set of probabilistic distribu-
tions, everything becomes explicit. Now, let predictors
be sub-probability distributions P (· | ✓) and adopt
the logarithmic loss function fX(✓) = � ln dP

d⌫ (X|✓)
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with respect to an appropriate base measure ⌫ such as
counting and Lebesgue measures. Note that a number
of important practical problems such as logistic regres-
sion and data compression can be handled with this
framework. With the logarithmic loss, the closed form
of the luckiness minimax regret is given by Shtar’kov
(1987); Grünwald (2007) as

LREG?(�) = ln

Z
e�m(fX+�)⌫(dX)

def
= S(�), (3)

where m denotes the minimum operator given by
m(f) = inf✓2Rd f(✓). We refer to the right-hand side
value as the Shtarkov complexity. Moreover, when all
the distributions in H are i.i.d. regular distributions of
n-sequences X = (X1, . . . , Xn), under some regularity
conditions, the celebrated asymptotic formula (Rissa-
nen, 1996; Grünwald, 2007) is given as

S(�) =
d

2
ln

n

2⇡
+

Z p
det I(✓)e��(✓)d✓ + o(1), (4)

where I(✓) is the Fisher information matrix and
o(1) ! 0 as n ! 1. More importantly, although
the exact minimax-regret predictor achieving S(�) is
still intractable, the asymptotic formula implies that
it is asymptotically achieved with the Bayesian predic-
tor associated with the tilted Je↵reys prior ⇡(d✓) /p

det I(✓)e��(✓)d✓.

Here, our research questions are as follows: First,
(Q1) How can we evaluate S(�) in modern high-
dimensional contexts? In particular, the asymp-
totic formula (4) does not withstand high-dimensional
learning problems where d increases as n ! 1. The
exact evaluation of the Shtarkov complexity (3), on
the other hand, is often intractable due to the mini-
mum operator inside the integral. Second, (Q2) How
can we achieve the minimax regret with computation-
ally feasible predictors? It is important to provide the
counterpart of the tilted Je↵reys prior in order to make
actual predictions.

Regarding the above questions, our contribution is
summarized as follows:

• We introduce the envelope complexity, a non-
asymptotic approximation of the Shtarkov com-
plexity S(�) that allows us systematic computa-
tion of its upper bounds and predictors achieving
these bounds. In particular, we show that the
regret of the predictor is characterized with the
smoothness.

• We demonstrate its usefulness by giving a
Bayesian predictor that adaptively achieves the
minimax regret within a factor of two over
any high-dimensional smooth models under `1-
constraints k✓k1  B.

The rest of the paper is organized as follows: In Sec-
tion 2, we introduce the notion of Bayesian mini-
max regret as an approximation of the minimax re-
gret within the ‘feasible’ set of predictors. We then
develop a complexity measure called envelope com-
plexity in Section 3 as a mathematical abstraction of
the Bayesian minimax regret. We also present a col-
lection of techniques for bounding the envelope com-
plexity that is useful to bound the Shtarkov com-
plexity and construct low-regret predictors. In Sec-
tion 4, we utilize the envelope complexity to con-
struct a near-minimax Bayesian predictor under `1-
penalization, namely the spike-and-tails (ST) prior.
We also show that it achieves the minimax rate over
H = {✓ 2 Rd

| k✓k1  B} under high-dimensional
asymptotics. In Section 5, we demonstrate numerical
experiments to visualize our theoretical results. The
discussion on these results in comparison to the exist-
ing studies is given in Section 6. Finally, we conclude
the paper in Section 7.

2 Bayesian Minimax Regret

The minimax regret with logarithmic loss is given by
the Shtarkov complexity S(�). The computation of the
Shtarkov complexity is often intractable if we consider
practical models such as deep neural networks. This
is because the landscapes of loss functions f 2 F are
complex as the models are, and hence their minimums
m(f) = inf✓ f(✓) and the complexity, which is an in-
tegral over the function of m(f), are not tractable.
Moreover, computations of the optimal predictor h?

are still often intractable even if S(�) are given. For
instance, the minimax-regret prediction for Bernoulli
models over n outcomes takes O(n2n) time. Of course
there exist some special cases for which closed forms
of ĥ are given. However, so far they are limited to
exponential families.

One cause of this issue is that we seek for the best
predictor ĥ among all the possible predictors Ĥ, i.e.,
all probability distributions. This is too general that
it maybe not possible to compute ĥ nor REG?(�).
To avoid this di�culty, we narrow the set of feasi-
ble predictors Ĥ to the Bayesian predictors. Let w 2

M+(Rd) be a positive measure over Rd, which we may
refer to as pre-prior, and let hw be the Bayesian pre-
dictor associated with the prior ⇡(d✓) / e��(✓)w(d✓).
Then we have

fX(hw) = ln
w [e�� ]

w [e�fX�� ]
def
= fX(w), (5)

where w [·] denotes the integral operation with respect
to w(d✓). Now, we consider the Bayesian (luckiness)
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minimax regret given by

LREGBayes(�)
def
= inf

w2M+(Rd)
LREG(w|�),

LREG(w|�)
def
= sup

X2X

{fX(w) � m (fX + �)} .

One advantage of considering the Bayesian minimax
regret is that, given a measure w, one can compute hw

analytically or numerically utilizing techniques devel-
oped in the literature of Bayesian inference. In par-
ticular, a number of sophisticated variants of Monte
Carlo Markov chain (MCMC) methods such as the
stochastic gradient Langevin Dynamics (Welling and
Teh, 2011) are developed for sampling ✓ from complex
posteriors.

Note that their does exist a case where the Bayesian
minimax regret strictly di↵ers from the minimax re-
gret. See Barron et al. (2014) for example. It implies
that narrowing the range of predictors to Bayesian may
worsen the achievable worst-case regret. However, as
we will show shortly, the gap between these minimax
regrets can be controlled in some cases.

3 Envelope Complexity

We have introduced the Bayesian minimax regret
LREGBayes(�). In this section, we present a set rep-
resentation of Bayesian minimax regret, namely the
envelope complexity C(�, F). Then, we show that
the Shtarkov complexity is bounded by the envelope
complexity and the envelope complexity can be easily
bounded even if the models are complex.

3.1 Set Representation of Bayesian Minimax

Regret

The envelope complexity is a simple mathematical ab-
straction of Bayesian minimax regret and gives a fun-
damental basis for systematic computation of upper
bounds on the (Bayesian) minimax regret. Let F be
a set of continuous functions f : Rd

! R which is not
necessarily logarithmic. Define the Bayesian envelope
of F as

E(F)
def
=

n
w 2 M+(Rd

)

��� 8f 2 F , w

h
e
�f+m(f)

i
� 1

o
,

and define the envelope complexity as

C(�, F)
def
= inf

w2E(F)
ln w

⇥
e��

⇤
.

Then, the envelope complexity characterizes Bayesian
minimax regret.

Theorem 1 (Set representation) Let F =
{fX + � | X 2 X}. Then, all measures in the

envelope w 2 E(F) satisfies that

LREG(w|�)  ln w
⇥
e��

⇤
. (6)

Moreover, we have

LREGBayes(�) = C (�, F) .

Proof Let c(w) = inff2F w[e�f+m(f)]. Observe that

ln
w [e�� ]

c(w)
= sup

f2F

⇢
ln

w [e�� ]

w [e�f ]
� m(f)

�

= sup
X2X

⇢
ln

w [e�� ]

w [e�fX�� ]
� m(fX + �)

�

(f = fX + �)

= LREG(w|�).

(* (5))

Then, since c(w) � 1 for all w 2 E(F), we have the
first inequality.

Note that w̄ = w/c(w) 2 E(F) for any w 2 M+(Rd),
and w̄ [e�� ]  w [e�� ] whenever w 2 E(F). Then we
have

C(�, F) = inf
w2M+(Rd)

ln
w [e�� ]

c(w)

= inf
w2M+(Rd)

LREG(w|�)

= LREGBayes(�),

yielding the second equality. This completes the
proof.

Whereas the first inequality (6) is helpful in con-
struction of low-regret Bayesian predictors, the second
equality shows that the envelope complexity is equiv-
alent to the Bayesian minimax regret. Based on this
result, we also present upper bounds of the Shtarkov
complexity that are useful to estimate the complexity
of hypothesis classes.

Theorem 2 (Bounds on Shtarkov complexity)

Let F = {fX + � | X 2 X} where fX is logarithmic.
Then, for all w 2 E(F), we have

S(�)  C(�, F)  ln w
⇥
e��

⇤
.

Proof The first inequality follows from that the
envelope minimax regret is no less than the minimax
regret, as the range of infimum is shrunk from Ĥ to
the Bayes class

�
hw

 
. The second inequality is seen

by that the definition of the envelope complexity.
This completes the proof.
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3.2 Useful Lemmas for Evaluating Envelope

Complexity

Next, we show several lemmas that highlight the com-
putational advantage of the Bayesian envelope and the
envelope complexity. We start to show that the en-
velopes are easily evaluated with the surrogate rela-
tion. We say a function g is surrogate of another func-
tion f if and only if f � m(f)  g � m(g), which is
denoted by f � g. Moreover, if there is one-to-one
correspondence between g 2 G and f 2 F such that
f � g, then we may write F � G.

Lemma 3 (Monotonicity) Let F � G
0
⇢ G. Then

we have

E(F) � E(G)

and therefore

C(�, F)  C(�, G).

Proof Note that e�f+m(f)
� e�g+m(g) if f � g, which

means E(F) � E(G0). Also, as increasing the argument
from G

0 to G just strengthen the predicate of the en-
velope, we have E(G0) � E(G). Therefore, we have

C(�, F) = inf
w2E(F)

ln w
⇥
e��

⇤

 inf
w2E(G0)

ln w
⇥
e��

⇤
E(F) � E(G0)

 inf
w2E(G)

ln w
⇥
e��

⇤
E(G0) � E(G)

= C(�, G).

This is especially useful when the loss functions F are
complex but there exist simple surrogates G. Consider
any models such that the landscapes of the associated
loss functions f 2 F are not fully understood and the
evaluation of m(f) is expensive. It is impossible to
check if w is in the envelope, w 2 E(F), and therefore
neither Theorem 1 nor 2 can be used directly. How-
ever, even in such cases, one can possibly find a surro-
gate class G of F . If the surrogate G is simple enough
for checking if w 2 E(G), it is possible to bound the
regret and the complexity utilizing Lemma 3.

In what follows, we consider the specific instance of
the surrogate relation based on the smoothness. A
function f : Rd

! R is L-upper smooth if and only if,
for all ✓, ✓0 2 Rd, there exists g 2 Rd such that

f(✓)  f(✓0) + g>(✓ � ✓0) +
L

2
k✓ � ✓0k

2
2 . (7)

Note that the upper smoothness is weaker than Lips-
chitz smoothness. Now, if f is L-upper smooth and has

at least one minima ✓0 2 arg m(f), we can construct a
simple quadratic surrogate of f , ✓ 7!

L
2 k✓ � ✓0k

2
2 (⌫

f).

Motivated by the smoothness assumption, below we
present more specific bounds for quadratic functions.
Let Q be the set of all quadratic functions with curva-
ture one, defined as Q = {✓ 7!

1
2 k✓ � uk

2
| u 2 Rd

}.
Moreover, for all sets of loss functions F and penalty
functions � : R ! R, we write F� = F + � =
{f + � | f 2 F}. Then, the envelope of F� is eval-
uated with that of Q� .

Lemma 4 (Smoothness-based bounds) Suppose

that all f 2 F are L-upper smooth. Let '(✓) =
p

L
�1

✓
be the scaling function. Then we have

E(Q��') � '�1
⇢ E(F�),

and moreover,

C(�, F�)  C(� � ', Q��').

Proof Note that F� � (LQ)� = (Q � '�1)� since F

is a set of L-upper smooth functions. Observe that,
for all F ,

E(F � ') =
n

w
��� w
h
e�f�'�m(f�')

i
� 1, 8f 2 F

o

=
n

w
��� w � '�1

h
e�f�m(f)

i
� 1, 8f 2 F

o

=
n

w̃ � '
��� w̃
h
e�f�m(f)

i
� 1, 8f 2 F

o

= E(F) � ',

where w and w̃ range over M+(Rd). Thus, by
Lemma 3, we have E(F�) � E((Q�'�1)�) = E(Q��')�
'�1. This proves the inclusion. Now we also have

C(�, F�) = inf
w2E(F�)

ln w
⇥
e��

⇤

 inf
w2E(Q��')�'�1

ln w
⇥
e��

⇤

= inf
w2E(Q��')

ln w � '�1
⇥
e��

⇤

= inf
w2E(Q��')

ln w
⇥
e���'

⇤

= C(� � ', Q��'),

which yields the inequality.

This lemma shows that, as long as we consider the
envelopes of upper smooth functions F , it su�ces for
bounding them to evaluate the envelopes of penalized
quadratic functions Q� .

Further, according to the lemma below, we can re-
strict ourselves to one-dimensional parametric models
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w.l.o.g. if the penalty functions � is separable. Here, �
is said to be separable if and only if it can be written
in the form of �(✓) =

Pd
j=1 �j(✓j).

Lemma 5 (Separability) Suppose that � is separa-
ble. Then, the envelope complexity of Q� is bounded
by a separable function, i.e.,

C(�, Q�) 

dX

j=1

C(�j , Q
1
�j

),

where Q
1 is the set of normalized one-dimensional

quadratic functions with curvature one, Q
1 =

{x(2 R) 7!
1
2 (x � u)2 | u 2 R}.

Proof Note that all f 2 Q� is separable, i.e., f(✓) =Pd
j=1 fj(✓j) where fj 2 Q

1
�j

and �(✓) =
Pd

j=1 �j(✓j).

Let E
d = E(Q1

�1
) ⌦ · · · ⌦ E(Q1

�d
). Then we have

C(�, Q�) = inf
w2E(Q�)

ln w[e�� ]

 inf
w2Ed

ln w[e�� ] E
d

⇢ E(Q�)

=
dX

j=1

inf
wj2E(Q1

�j
)
ln wj [e

��j ]

=
dX

j=1

C(�j , Q
1
�j

).

Summary We have defined the Bayesian envelope
and envelope complexity. The envelope complexity
C(�, F) is equal to the Bayesian minimax regret if
F is the set of penalized logarithmic loss functions.
We have shown that the worst-case regrets associ-
ated with any w in the Bayesian envelope E(F) are
handily bounded and that the Shtarkov complexity
is bounded accordingly through the envelope com-
plexity. Most importantly, the envelope complexity
satisfies some useful properties such as monotonicity,
parametrization invariance and separability. Specif-
ically, the monotonicity di↵erentiates the envelope
complexity from the Shtarkov complexity.

4 The Spike-and-Tails Prior for

High-Dimensional Prediction

We leverage the results of Section 3 to give
a Bayesian predictor closely achieving LREG?(�)
where �(✓) = � k✓k1, namely, the spike-and-tails
prior. Moreover, the resulting predictor also approx-
imately achieves minimax regret without luckiness
REG?({✓ : �(✓)  B}) where both n and d tend to in-
finity.

4.1 Envelope Complexity for `1-Penalties

Let � be the weighted `1-norm given by

�(✓) = � k✓k1 , (8)

where � > 0. Let ⇡� be the spike-and-tails (ST) prior
over Rd given by

⇡ST
� (d✓) / e��k✓k1

dY

j=1

wST
� (d✓j), (9)

wST
� (dx) = �0(dx) +

e�
2/2

�2e
1 {|x| � �} dx, (10)

where �t denotes Kronecker’s delta measure at t. We
call it the spike-and-tails prior because it consists of
a delta measure (spike) and two exponential distribu-
tions (tails) as shown in Figure 1.

Then, envelope complexities for quadratic loss func-
tions can be bounded as follows.

�� 0 �

D
en

si
ty

exp(�y2/2)/(�e)

Spike-and-tails prior

Figure 1: Density of the spike-and-tails (ST) prior

Lemma 6 (Sharp bound for `1-penalties) Take
� as given by (8). Then, we have wST

� 2 E(Q�) and

d ln

 
1 +

e��2/2

�3(c + o(1))

!
 C(�, Q�)  ln wST

�

⇥
e��

⇤

= d ln

 
1 +

2e��2/2

�2e

!

for some constant c, where o(1) ! 0 as � ! 1.

Proof Consider the logarithmic loss functions of the
d-dimensional standard normal location model, given
by fX(✓) = 1

2 kX � ✓k2
2 + d

2 ln 2⇡, X 2 X = Rd and
let F = {fX | X 2 Rd

}. Note that F � Q. Then, the
lower bound follows from Lemma 8 in Section A, which
is based on Komatu (1955). with S(�)  C(�, F�) 

C(�, Q�).

Since � is separable, Lemma 4 allows us to restrict
ourselves to the case of d = 1. Let fu(✓) = 1

2 (✓ � u)2+
� |✓| (u 2 R) be the penalized loss functions in Q� .
Note that m(fu) = 1

2u2 if |u|  �, and m(fu) = � |u|�
1
2�2 otherwise.
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Let c and t be positive real numbers. Let w = � + cU
be a measure over the real line, where � denotes the
delta measure and U denotes the Lebesgue measures
restricted to [��, �]c = R \ [�t, t]. That is, we have
w(E) = 102E + c |E \ [�t, t]| for measurable sets E ⇢

R. Then we have

ln w
⇥
e��

⇤
= ln

✓
1 +

2c

�
e�t�

◆
. (11)

We want to minimize (11) with respect to w 2 E(Q�).
Recall that, to have w 2 E(Q�), it su�ces for c and
t to satisfy w

⇥
e�fu

⇤
� e�m(fu) for all u 2 R. Be-

low, we only care about the case u � � since it is
symmetric with respect to u and trivially we have
w
⇥
e�fu

⇤
� �

⇥
e�fu

⇤
� e�m(fu) for all u 2 [��, �].

Thus, we assume x
def
= u � � � 0.

Now, observe that

w
⇥
e�fu

⇤
= e�

1
2u

2

+ ce�t�

✓Z
�t

�1

+

Z
1

t

◆
e�

1
2 (✓�u)2d✓

� e�
1
2u

2

+ ce�t�

Z
1

t
e�

1
2 (✓�u)2d✓

= e�m(fu)

✓
e�

1
2x

2

+ c

Z
1

t�x
e�

1
2y

2

dy

◆

def
= A(x)e�m(fu).

Thus, a su�cient condition for w 2 E(Q�) is that

A0(x) = ce�
1
2 (t�x)2

� xe�
1
2x

2

� 0, which is satisfied
with c = 1

t exp
�

1
2 t2 � 1

�
. Evaluating (11) at t = �

yields the ST pre-prior w = wST
� .

Therefore, we have wST
� 2 E(Q�) and the upper bound

is shown. The equality is a result of straightforward
calculation of ln w [e�� ].

According to Lemma 6, the ST prior bounds the en-
velope complexity in a quadratic rate as � ! 1. The
exponent, �

1
2�2/2, is optimally sharp since the lower

bound C(�, Q�) = ⌦(d exp
⇥
�

1
2�2
⇤
/�3) has the same

exponent.

Finally, we give similar inequalities for general smooth
loss functions based on Lemma 4. Let ⇡ST

�,L and wST
�,L

be the scale-corrected ST (pre-) prior given by

⇡ST
�,L(d✓) = ⇡ST

�/
p
L
(
p

Ld✓),

wST
�,L(d✓) = wST

�/
p
L
(
p

Ld✓).

The following is a direct corollary of Lemma 4, 5, 6
and 3.

Corollary 1 If all f 2 F is L-upper smooth with re-
spect to ✓, and if � is given by (8), then wST

�,L 2 E(F�)
and therefore

C(�, F�)  ln wST
�,L

⇥
e��

⇤
= d ln

✓
1 +

2L

e�2
e�

1
2L�2

◆
.

4.2 Regret Bound with the ST Prior

Now, we utilize Corollary 1 for bounding actual predic-
tion performance of the ST prior. Below, we consider
the scenario of the online-learning under `1-constraint.

Setup Let Xn = (X1, . . . , Xn) 2 X
n be a sequence

of outcomes. Let fX be a logarithmic loss function
such that

R
e�fX(✓)d⌫(X)  1. Then, the conditional

Bayesian pre-posterior with respect to w 2 M+(Rd)
given Xt (0  t  n) is given by

w(d✓|Xt) = w(d✓)
tY

i=1

exp {�fXi(✓)} .

The online worst-case regret of the predictor is defined
as

REGn(w|H)
def
=

sup
Xn2Xn,✓⇤2H

nX

t=1

�
fXt(w(·|Xt�1)) � fXt(✓

⇤)
 

. (12)

The following theorem shows that the online regret of
the ST prior is adaptively1 minimax.

Theorem 7 (Minimaxity of the ST priors)

Suppose that fXi are L-upper smooth and log-
arithmic. Let HB = {✓ 2 Rd

| k✓k1  B}

and take � =
q

2Ln ln(d/
p

Ln). Then, with

!(1) = ln(d/
p

n) = o(n), we have

REGn(wST
�,Ln|HB)  B

s

2Ln ln
d

p
Ln

(1 + o(1))

for all B > 0. Moreover, this is adaptive minimax rate
and not improvable more than a factor of two even if
B is fixed and non-Bayesian predictors are involved.

Proof Let fXn be the cumulative loss, fXn =Pn
i=1 fXi , and observe that fXn is Ln-upper smooth

and logarithmic. Let F = {fXn | Xn
2 X

n
} and

�(✓) = � k✓k1. Also, let �0 be the indicator penalty
of the set HB such that �0(✓) = 0 if and only if
✓ 2 HB and otherwise �0(✓) = 1. Then, we have
REGn(w|HB) = LREG(w|�0) where LREG is taken
with respect to fXn . Now, observe that

LREG(wST
�,Ln|�0)  LREG(wST

�,Ln|� � �B)

(* �0 � � � �B)

 ln wST
�,Ln

⇥
e��+�B

⇤
,

(* Theorem 1)

= �B + ln wST
�,Ln

⇥
e��

⇤
,

1
The term ‘adaptive’ here refers to the fact that the ST

prior with a fixed parameter � achieves the minimax rate

for any radius B of the `1-ball.
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which, combined with Corollary 1 where

� =
q

2Ln ln(d/
p

Ln), yields the asymptotic
equality. The proof of the lower bound is adopted
from the existing analysis on the minimax risk (see
Section B for the rigorous proof and Section 6.5 for
detailed discussions).

5 Visual Comparison of the ST Prior

and the Tilted Je↵reys Prior

Now, we verify the results on the `1-regularization ob-
tained above. In particular, we compare the worst-case
regrets achievable with Bayesian predictors to the min-
imax regret, i.e., the Shtarkov complexity.

Setting We adopted the one-dimensional quadratic
loss functions with curvature one, q 2 Q

1, and the `1-
penalty function, �(✓) = � |✓|. We varied the penalty
weight � from 10�1 to 101 and observed how the worst-
case regret of each Bayesian predictor changes. Specif-
ically, we employed the spike-and-tails (ST) prior (10)
and the tilted Je↵reys prior for the predictors. Note
that, in this case, the tilted Je↵reys prior is noth-
ing more than the double exponential prior given by
⇡Je↵0

� (d✓) = �
2 e��|✓|d✓.

Results In Figure 2, the worst-case regrets of the
ST prior and the tilted Je↵reys prior are shown along
with the minimax regret (Optimal). While the regret
of the tilted Je↵reys prior is almost same as the opti-
mal regret where � is small, it performs poorly where �
is large. On the other hand, the ST prior performs ro-
bustly well in the entire range of �. Specifically, it con-
verges to zero quadratically where � is large. There-
fore, since one must take � su�ciently large if d is
large, it is implied that the ST prior is a better choice
than the tilted Je↵reys prior in high-dimensional set-
tings.

6 Implications and Discussions

In this section, we discuss interpretations of the results
and present solutions to some technical di�culties.

6.1 Gap between LREG?
and LREGBayes

One may wonder if there exists a prior that achieves
the lower bound LREG?(�) where �(✓) = � k✓k1 , � >
0. Unfortunately, the answer is negative. With a
similar technique of higher-order di↵erentiations used
by Hedayati and Bartlett (2012), we can show that, if �
is convex and not di↵erentiable like the `1-norm, then

10�1 100 101

Normalized penalty weight �/
p

L

10�15

10�13

10�11

10�9

10�7

10�5

10�3

10�1

101

W
or

st
-c

as
e

re
gr

et

Optimal (non-Bayesian)

Spike-and-tails prior

Tilted Je�reys prior

Figure 2: Worst-case regrets of the spike-and-
tails (ST) prior and the tilted Je↵reys prior

the gap is nonzero, i.e., LREG?(�) < LREGBayes(�).
The detailed statement and the proof is in Section C.

6.2 Infinite-dimensional Models

If the dimensionality d of the parameter space is count-
ably infinite, the minimax regret REG?(HB) with any
nonzero radius B diverges. In this case, one may apply
di↵erent penalty weights to di↵erent dimensions. For
instance, taking the penalty as �(✓) =

P
j=1 �j |✓j |

for �j =
p

2L Ln{j Ln j} and Ln x = ln max {e, x},
the separability of the envelope complexity guar-

antees that C(�, F�) 
P

1

j=1

�
j Ln2 j

��1
< +1.

Then, the corresponding countably-infinite tensor
product of the one-dimensional ST prior ⇡ST

{�j}
(d✓) =

Q
1

j=1 ⇡ST
�j

(d✓j) gives a finite regret with respect the

infinite-dimensional models H = {✓ 2 RN
| �(✓)  B}.

6.3 Comparison to the Titled Je↵reys Priors

and Others

There have been previous studies on the minimax re-
gret with Bayesian predictors (Takeuchi and Barron,
1998, 2013; Watanabe and Roos, 2015; Xie and Bar-
ron, 2000). In these studies, the Bayesian predic-
tor based on the Je↵reys prior (namely Je↵reys pre-
dictor) is proved to attain minimax-regret asymptot-
ically under some regularity conditions. The tilted
Je↵reys prior, which takes the e↵ect of penalization
� into consideration, is given by Grünwald (2007) as
⇡Je↵0(d✓) / d✓

p
det I(✓)e��(✓), where I(✓) denotes

the Fisher information matrix. In the case of quadratic
loss functions Q, as the Fisher information is equal to
identity, we have ⇡Je↵0(d✓) / e��(✓)d✓. Therefore, it
implies that taking the uniform pre-prior w(d✓) / d✓ is
good for smooth models under the conventional large-
sample limit. This is in very strong contrast with
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our result, where completely nonuniform pre-prior wST
�

performs better with high-dimensional models.

6.4 Comparison to Online Convex

Optimization

So far, we have considered the luckiness minimax re-
gret, which leads to the adaptive minimax regret. Per-
haps surprizingly, our minimax regret bound coincides
with the results given in the literature of online con-
vex optimization, where di↵erent assumptions on the
loss functions and predictors are made. Specifically,
with � =

p
2L ln d, the regret bound is reduced to

p
2L ln d + 1/e. This coincides with the standard no-

regret rates of online learning such as Hedge algo-
rithm (Freund and Schapire, 1997), online mirror de-
scent (Nemirovski et al., 2009) and high-dimensional
online regression (Gerchinovitz and Yu, 2014), where
L is referred to as the number of trials T and d is
referred to as the number of experts or dimensions
n. Moreover, with � = 1, the regret bound is re-
duced to O(d ln L). This is equal to the minimax-
regret rate achieved under large-sample asymptotics
such as in Hazan et al. (2007); Cover (2011).

Note that, the conditions assumed in those two regimes
are somewhat di↵erent. In our setting, loss functions
are assumed to be upper smooth and satisfy some nor-
malizing condition to be logarithmic losses, while the
boundedness and convexity of loss functions is often
assumed in online learning. Moreover, we have em-
ployed Bayesian predictors, whereas more simple on-
line predictors are typically used in the context of the
online learning.

6.5 Comparison to Minimax Risk over

`1-balls

In the literature of high-dimensional statistics, the
minimax rate of statistical risk is also achieved with
`1-regularization (Donoho and Johnstone, 1994), when
the true parameter ✓ is in the unit `1-ball. Although
both risk and regret are performance measures of pre-
diction, there are two notable di↵erence. One is that
risks are calculated under some assumptions on true
statistical distribution, whereas regrets are defined
without any assumptions on data. The other is that
risks are typically considered with in-model predictor,
i.e., predictors are restricted to a given model, whereas
regrets are often considered with out-model predic-
tors such as Bayesian predictors and online predictors.
Therefore, the minimax regret can be regarded as a
more agnostic complexity measure than the minimax
risk.

If we assume Gaussian noise models and adopt the log-
arithmic loss functions, the minimax rate of the risk is

given as
q

2L ln d/
p

L according to Donoho and John-

stone (1994). Interestingly, this is same with the rate
of the regret bound given by Theorem 7 where L = Ln.
Moreover, the minimax-risk optimal penalty weights �
is also minimax-regret optimal in this case. Therefore,
if the dimensionality d is large enough compared to
L (n in case of online-learning), making no distribu-
tional assumption on data costs nothing in terms of
the minimax rate.

7 Conclusion

In this study, we presented a novel characterization
of the minimax regret for logarithmic loss functions,
called the envelope complexity, with `1-regularization
problems. The virtue of the envelope complexity is
that it is much easier to evaluate than the minimax
regret itself and able to produce upper bounds sys-
tematically. Then, using the envelope complexity, we
have proposed the spike-and-tails (ST) prior, which
almost achieves the luckiness minimax regret against
smooth loss functions under `1-penalization. We also
show that the ST prior actually adaptively achieves the
2-approximate minimax regret under high-dimensional
asymptotics !(1) = ln d/

p
n = o(n). In the experi-

ment, we have confirmed our theoretical results: The
ST prior outperforms the tilted Je↵reys prior where
the dimensionality d is high, whereas the tilted Jef-
freys prior is optimal if n � d.

Limitation and future work The present work is
relying on the assumption of the smoothness and log-
arithmic property on the loss functions. The smooth-
ness assumption may be removed by considering the
smoothing e↵ect of stochastic algorithms like stochas-
tic gradient descent as in Kleinberg et al. (2018). As
for the logarithmic assumption, it will be generalized
to non-logarithmic loss functions with the help of tools
that have been developed in the literature of infor-
mation theory such as in Yamanishi (1998). Finally,
since our regret bound with the ST prior is quite sim-
ple (there are only the smoothness L and the radius B
except with the logarithmic term), applying these re-
sults to concrete models such as deep learning models
would be interesting future work as well as the com-
parison to the existing generalization error bounds.

Acknowledgements

This work is partially supported by JST, CREST and
MEXT KAKENHI 23240019.

References

Barron, A., Roos, T., and Watanabe, K. (2014).
Bayesian properties of normalized maximum like-



Kohei Miyaguchi, Kenji Yamanishi

lihood and its fast computation. In IEEE Inter-
national Symposium on Information Theory - Pro-
ceedings.

Cesa-Bianchi, N., Conconi, A., and Gentile, C. (2004).
On the generalization ability of on-line learning algo-
rithms. IEEE Transactions on Information Theory,
50(9):2050–2057.

Cesa-Bianchi, N. and Gentile, C. (2008). Improved risk
tail bounds for on-line algorithms. IEEE Transac-
tions on Information Theory, 54(1):386–390.

Cesa-Bianchi, N. and Lugosi, G. (2006). Prediction,
learning, and games. Cambridge university press.

Cover, T. M. (2011). Universal portfolios. In The
Kelly Capital Growth Investment Criterion: Theory
and Practice, pages 181–209. World Scientific.

Donoho, D. L. and Johnstone, I. M. (1994). Minimax
risk overl p-balls forl p-error. Probability Theory and
Related Fields, 99(2):277–303.

Freund, Y. and Schapire, R. E. (1997). A decision-
theoretic generalization of on-line learning and an
application to boosting. Journal of computer and
system sciences, 55(1):119–139.

Gerchinovitz, S. and Yu, J. Y. (2014). Adaptive and
optimal online linear regression on 1-balls. Theoret-
ical Computer Science, 519:4–28.

Grünwald, P. D. (2007). The minimum description
length principle. MIT press.

Hazan, E., Agarwal, A., and Kale, S. (2007). Log-
arithmic regret algorithms for online convex opti-
mization. Machine Learning, 69(2-3):169–192.

Hedayati, F. and Bartlett, P. L. (2012). The optimal-
ity of je↵reys prior for online density estimation and
the asymptotic normality of maximum likelihood es-
timators. In Conference on Learning Theory, pages
7–1.

Kleinberg, R., Li, Y., and Yuan, Y. (2018). An alter-
native view: When does sgd escape local minima?
arXiv preprint arXiv:1802.06175.

Komatu, Y. (1955). Elementary inequalities for mills
ratio. Rep. Statist. Appl. Res. Un. Jap. Sci. Engrs,
4:69–70.

Koolen, W. M., Malek, A., and Bartlett, P. L. (2014).
E�cient minimax strategies for square loss games.
In Advances in Neural Information Processing Sys-
tems, pages 3230–3238.

Littlestone, N. (1989). From on-line to batch learn-
ing. In Proceedings of the second annual workshop
on Computational learning theory, pages 269–284.

Nemirovski, A., Juditsky, A., Lan, G., and Shapiro, A.
(2009). Robust stochastic approximation approach

to stochastic programming. SIAM Journal on Op-
timization, 19(4):1574–1609.

Rissanen, J. (1978). Modeling by shortest data de-
scription. Automatica, 14(5):465–471.

Rissanen, J. J. (1996). Fisher information and stochas-
tic complexity. IEEE transactions on information
theory, 42(1):40–47.

Shtar’kov, Y. M. (1987). Universal sequential coding
of single messages. Problemy Peredachi Informatsii,
23(3):3–17.

Takeuchi, J. and Barron, A. R. (1998). Asymptoti-
cally minimax regret by bayes mixtures. In IEEE
International Symposium on Information Theory -
Proceedings.

Takeuchi, J. and Barron, A. R. (2013). Asymptot-
ically minimax regret by bayes mixtures for non-
exponential families. In Information Theory Work-
shop (ITW), 2013 IEEE, pages 1–5. IEEE.

Watanabe, K. and Roos, T. (2015). Achievability of
asymptotic minimax regret by horizon-dependent
and horizon-independent strategies. The Journal of
Machine Learning Research, 16(1):2357–2375.

Welling, M. and Teh, Y. W. (2011). Bayesian learn-
ing via stochastic gradient langevin dynamics. In
Proceedings of the 28th International Conference on
Machine Learning (ICML-11), pages 681–688.

Xie, Q. and Barron, A. R. (2000). Asymptotic mini-
max regret for data compression, gambling, and pre-
diction. IEEE Transactions on Information Theory,
46(2):431–445.

Yamanishi, K. (1998). A decision-theoretic exten-
sion of stochastic complexity and its applications to
learning. IEEE Transactions on Information The-
ory, 44(4):1424–1439.


