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A Proof of the SIVI Lower Bound for
Semi-Implicit Posteriors

Theorem 1. Consider L and LqK defined as in
Eq. (2) and (6). Then LqK converges to L from be-
low as K → ∞, satisfying LqK ≤ L

q
K+1 ≤ L, and

LqK = Eψ0..K∼qφ(ψ)EqKφ (z |ψ0..K) log
p(x | z)p(z)
qKφ (z |ψ0..K)

,

(29)

where qKφ (z |ψ0..K) =
1

K + 1

K∑
k=0

qφ(z |ψk). (30)

Proof. For brevity, we denote Eψ0..K∼qφ(ψ) as Eψ0..K

and Ez∼qKφ (z |ψ0..K) as Ez |ψ0..K . First, notice that due

to the symmetry in the indices, the regularized lower
bound LqK does not depend on the index in the condi-
tional qφ(z |ψi):

LqK = Eψ0..KEz |ψ0 log
p(x, z)

qKφ (z |ψ0..K)
= (31)

= Eψ0..KEz |ψi log
p(x, z)

qKφ (z |ψ0..K)
. (32)

Therefore, we can rewrite LqK as follows:

LqK =
1

K + 1

K∑
i=0

LqK = (33)

=
1

K + 1

K∑
i=0

Eψ0..KEz |ψi log
p(x, z)

qKφ (z |ψ0..K)
= (34)

= Eψ0..KEz |ψ0..K log
p(x, z)

qKφ (z |ψ0..K)
. (35)

Note that it is just the value of the evidence lower
bound with the approximate posterior qKφ (z |ψ0..K),

averaged over all values of ψ0..K . We can also use that
Eψ0..K qKφ (z |ψ0..K) = qφ(z) to rewrite the true ELBO
in the same expectations:

L = Eqφ(z) log
p(x, z)

qφ(z)
= (36)

= Eψ0..KEz |ψ0..K log
p(x, z)

qφ(z)
. (37)

We want to prove that L ≥ LqK . Consider their differ-
ence L − LqK :

L − LqK = (38)

= Eψ0..KEz |ψ0..K log
qKφ (z |ψ0..K)

qφ(z)
= (39)

= Eψ0..KKL
(
qKφ (z |ψ0..K) ‖ qφ(z)

)
≥ 0. (40)

We can use the same trick to prove that this bound is
non-decreasing in K. First, let’s use the symmetry in
the indices once again, and rewrite LqK and LqK+1 in
the same expectations:

LqK = Eψ0..KEz |ψ0..K log
p(x, z)

qKφ (z |ψ0..K)
= (41)

= Eψ0..K+1Ez |ψ0..K log
p(x, z)

qKφ (z |ψ0..K)
, (42)

LqK+1 = Eψ0..K+1Ez |ψ0 log
p(x, z)

qK+1
φ (z |ψ0..K+1)

= (43)

= Eψ0..K+1Ez |ψ0..K log
p(x, z)

qK+1
φ (z |ψ0..K+1)

. (44)

Then their difference would be equal to the expected
KL-divergence, hence being non-negative:

LqK+1 − L
q
K = (45)

= Eψ0..K+1Ez |ψ0..K log
qKφ (z |ψ0..K)

qK+1
φ (z |ψ0..K+1)

= (46)

= Eψ0..K+1KL
(
qKφ (z |ψ0..K) ‖ qK+1

φ (z |ψ0..K+1))
)

≥ 0.

B Importance Weighted Doubly
Semi-Implicit VAE

The standard importance-weighted lower bound for
VAE is defined as follows:

log p(x) ≥ LS = Ez1..S∼qφ(z) log
1

S

S∑
i=1

p(x | zi)p(zi)
qφ(zi |x)

(47)
We propose IW-DSIVAE, a new lower bound on the
IWAE objective, that is suitable for VAEs with semi-
implicit priors and posteriors:

Lq,p,S
K1,K2

= Eψ1..K1∼qφ(ψ)Eζ1..K2∼pθ(ζ)

[
E(z1,ψ̂1),...,(zS ,ψ̂S)∼qφ(z,ψ)

[
log

1

S

S∑
i=1

p(x | zi) 1
K2

∑K2

k=1 pθ(z
i | ζk)

1
K1+1 (qφ(zi | ψ̂i) +

∑K1

k=1 qφ(zi |ψk))

]]
.

(48)

This objective is a lower bound on the IWAE objective
(Lq,p,S

K1,K2
≤ LS), is non-decreasing in both K1 and K2,

and is asymptotically exact (Lq,p,S∞,∞ = LS).
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C Variational inference with
hierarchical priors

Theorem 2. Consider two different variational objec-
tives Ljoint and Lmarginal. Then

Ljoint(φ) = Eqφ(w,α) log
p(t |x,w)p(w |α)p(α)

qφ(w,α)
(49)

Lmarginal(φ) = Eqφ(w) log
p(t |x,w)p(w)

qφ(w)
(50)

Let φj and φm maximize Ljoint and Lmarginal cor-
respondingly. Then qφm(w) is a better fit for the
marginal posterior that qφj (w) in terms of the KL-
divergence:

KL(qφm(w) ‖ p(w |Xtr, Ttr)) ≤
KL( qφj (w) ‖ p(w |Xtr, Ttr)) (51)

Proof. Note that maximizing Lmarginal(φ) di-
rectly minimizes KL(qφ(w) ‖ p(w |Xtr, Ttr)), as
Lmarginal(φ) + KL(qφ(w) ‖ p(w |Xtr, Ttr)) = const.
The sought-for inequality (51) then immediately
follows from Lmarginal(φm) ≥ Lmarginal(φj).

To see the cause of this inequality more clearly, con-
sider Ljoint(φ):

Ljoint(φ) = Eqφ(w,α) log
p(t |x,w)p(w |α)p(α)

qφ(w,α)
=

(52)

= Eqφ(w) log p(t |x,w)−KL(qφ(w,α) ‖ p(w,α)) =

(53)

= Eqφ(w) log p(t |x,w)−KL(qφ(w) ‖ p(w))− (54)

− Eqφ(w)KL(qφ(α |w) ‖ p(α |w)) = (55)

= Lmarginal(φ)− Eqφ(w)KL(qφ(α |w) ‖ p(α |w))

(56)

If Ljoint and Lmarginal coincide, the inequality (51)
becomes an equality. However, Ljoint and Lmarginal
only coincide if the reverse posterior qφ(α |w) is an
exact match for the reverse prior p(α |w). Due to the
limitations of the approximation family of the joint
posterior, this is not the case in many practical ap-
plications. In many cases [7, 18] the joint approxi-
mate posterior is modeled as a factorized distribution
qφ(w,α) = qφ(w)qφ(α). Therefore in the case of the
joint variational inference, we optimize a lower bound
on the marginal ELBO and therefore obtain a sub-
optimal approximation.

Table 2: The values of the marginal ELBO, the train
negative log-likelihood, the KL-divergence between the
marginal posterior qφ(w) and the marginal prior pφ(w),
and the test-set accuracy and negative log-likelihood for
different inference procedures for a model with a standard
Student’s prior. The predictive distribution during test-
time was estimated using 200 samples from the marginal
posterior qφ(w)

Train Test
Method ELBO NLL KL Acc. NLL
Marginal −1.42× 105 7.2× 103 1.35× 105 97.80 855
Joint −1.48× 105 6.7× 103 1.42× 105 97.74 831
DSIVI(K=2) −1.47× 105 7.0× 103 1.41× 105 97.75 846
DSIVI(K=10) −1.42× 105 7.2× 103 1.35× 105 97.76 843

D Toy data for sequential
approximation

For sequential approximation toy task, we fol-
low [40] and use the following target distribu-
tions. For one-dimensional Gaussian mixture, p(z) =
0.3N (z | −2, 1) + 0.7N (z | 2, 1). For the “banana” dis-
tribution, p(z1, z2) = N (z1 | z22/4, 1)N (z2 | 0, 4).

For both target distributions, we optimize the objec-
tive using Adam optimizer with initial learning rate
10−2 and decaying it by 0.5 every 500 steps. On
each iteration of sequential approximation, we train
for 5000 steps. We reinitialize all trainable parameters
and optimizer statistics before each iteration. Before
each update of the parameters, we average 200 Monte
Carlo samples of the gradients. During evaluation, we
used 105 Monte Carlo samples to estimate the expec-
tations involved in the lower and upper bounds on KL
divergence.

Figure 5: Sequential approximation. Area is shaded be-
tween lower and upper bounds of KL(qφi(z) ‖ p(z)) for dif-
ferent training values of K1 = K2 = K, and the solid lines
represent the corresponding upper bounds. During eval-
uation, K = 104 is used. Here p(z) is a two-dimensional
“banana“. Lower is better.
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Figure 6: Learned distributions after each iteration for Gaussian mixture target distribution, K = 100 during training.
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Figure 7: Learned distributions after each iteration for Gaussian mixture target distribution, K = 1000 during training.
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Figure 8: Learned distributions after each iteration for “banana” target distribution, K = 100 during training.
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Figure 9: Learned distributions after each iteration for “banana” target distribution, K = 1000 during training.


