
Appendix

Reducing training time by efficient localized kernel regression

A Preliminaries

We let Z = X × R denote the sample space, where the input space X is a standard Borel
space endowed with a fixed unknown probability measure ν. The kernel space H is assumed
to be separable, equipped with a measurable positive semi-definite kernel K, bounded by κ,
implying continuity of the inclusion map I : H −→ L2(ν). Moreover, we consider the covariance
operator T = κ−2I∗I = κ−2E[KX ⊗KX ], which can be shown to be positive self-adjoint trace
class (and hence is compact). Given a sample x = (x1, . . . , xn) ∈ Xn, we define the sampling
operator Sx : H −→ Rn by (Sxf)i = 〈f,Kxi〉H. The empirical covariance operator is given by
Tx = κ−2S∗xSx : H −→ H.

For a partition {X1, ...,Xm} of X, we denote by Ĥj the local RKHS with extended bounded
kernel K̂j , supported on Xj , with associated covariance operator Tj = κ−2j Eνj [K̂j(X, ·) ⊗
K̂j(X, ·)]. Given a sample xj = (xj,1, . . . , xj,nj ) ∈ X

nj
j , we define the sampling operator

Sxj : Ĥj −→ Rnj similarly by (Sxjf)i = 〈f, K̂j(xi, ·)〉Ĥj .
The global covariance operator acts as an operator on the direct sum H = Ĥ1 ⊕ ...⊕ Ĥm.

According to (8), it decomposes as

T =
m∑
j=1

p−1j Tj ,

which can be used to prove that the global effective dimension can be expressed as the sum of
the (rescaled) local ones.

Lemma 1 (Effective Dimension). For any λ ∈ [0, 1]

m∑
j=1

N(Tj , pjλ) = N(T, λ) .

Finally, our error decomposition relies on the the following standard decomposition

Lemma 2. Given j ∈ [m] let pj = ν(Xj) and νj(A) = ν(A|Xj), for a measurable A ⊂ X. One
has

L2(X, ν) =
m⊕
j=1

pjL
2(Xj , νj)

with

||f ||2L2(ν) =
m∑
j=1

pj ||fj ||2L2(νj)
,

where f = f1 + ...+ fm .

For proving our results we additionally need an appropriate Bernstein condition on the
noise.
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Assumption 1 (Distributions). 1. The sampling is random i.i.d., where each observation
point (Xi, Yi) follows the model Y = fρ(X) + ε , and the noise satisfies the following
Bernstein-type assumption: For any integer k ≥ 2 and some σ > 0 and M > 0:

E[ |Y − fρ(X)|k | X ] ≤ 1

2
k! σ2Mk−2 ν − a.s. . (Bern(M ,σ))

2. Given θ = (M,σ,R) ∈ R3
+, the class M := M(θ, r, b) consists of all distributions ρ with

X-marginal ν and conditional distribution of Y given X satisfying (Bern(M ,σ)) for the
deviations and (10) for the mean.

We remark that point 1 implies for any j ∈ [m]

E[ |Y − fj(X)|k | X ] ≤ 1

2
k! σ2Mk−2 νj − a.s., (1)

where σ and M are uniform with respect to m and k. This is what we actually need in our
proofs.

For ease of reading we make use of the following conventions:

• we are interested in a precise dependence of multiplicative constants on the parameter
σ,M,R, m, n

• the dependence of multiplicative constants on various other parameters, including the
kernel parameter κ, the parameters arising from the regularization method, b > 1, r > 0,
etc. will (generally) be omitted

• the value of C might change from line to line

• the expression “for n sufficiently large” means that the statement holds for n ≥ n0 , with
n0 potentially depending on all model parameters (including σ,M and R) .

B Proofs of Section 3

This section is devoted to proving the results of Section 3. Recall that by Assumption 2 the
regression function belongs to H, i.e. admits an unique representation f = f1 + ...+ fm , with
fj ∈ Ĥj . For proving our error bounds we shall use a classical bias-variance decomposition

fρ − f̂λD =
m∑
j=1

fj − f̂λDj =
m∑
j=1

rλ(Txj )fj +
m∑
j=1

gλ(Txj )(Txjfj − S∗xjyj) ,

where f̂λD is given in (9), with rλ(t) = 1 − gλ(t)t and with gλ(t) = (t + λ)−1. The final error
bound follows then from

E
[
E(fρ)− E(f̂λD)

]
= E

[
||fρ − f̂λD||2L2(ν)

]
≤ E

 || m∑
j=1

rλ(Txj )fj ||2L2(ν)

+ E

 || m∑
j=1

gλ(Txj )(Txjfj − S∗xjyj)||
2
L2(ν)

 .

(2)

We proceed by bounding each term in the above decomposition separately.

2



Proposition 1 (Approximation Error). For any λ ∈ (0, 1], one has

E
[∥∥ m∑

j=1

rλ(Txj )fj
∥∥2
L2(ν)

]
≤ CR2

m∑
j=1

pjB
2
nj (Tj , λ)λ2(rj+

1
2
) ,

where B2
nj (Tj , λ) is defined in Proposition 9 and where C does not depend on (σ,M,R) ∈ R3

+ .

Proof of Proposition 1. Recall1 that ||
√
Tjf ||Ĥj = ||f ||L2(νj) for any f ∈ Ĥj . According to

Lemma 2, by Assumption 10 we have

E
[∥∥ m∑

j=1

rλ(Txj )fj
∥∥2
L2(ν)

]
=

m∑
j=1

pjE
[∥∥rλ(Txj )fj

∥∥2
L2(νj)

]
=

m∑
j=1

pjE
[∥∥√Tjrλ(Txj )fj

∥∥2
Ĥj

]
≤ CR2

m∑
j=1

pjE
[∥∥√Tjrλ(Txj )T

rj
j

∥∥2] . (3)

We bound for any j ∈ [m] the expectation by first deriving a probabilistic estimate. For
any η ∈ (0, 1], with probability at least 1− η

||
√
Tjrλ(Txj

)T
rj
j || ≤ C log2(2η−1)Bnj

(Tj , λ) ||T
1
2
j (Tj + λ)

1
2 || ||(Txj

+ λ)
1
2 rλ(Txj

)(Txj
+ λ)rj || ||(Tj + λ)rjT

rj
j ||

≤ C log2(2η−1)Bnj
(Tj , λ)λrj+

1
2 .

Here we have used that

||(Txj + λ)
1
2 rλ(Txj )(Txj + λ)r|| ≤ Cλrj+

1
2

and that for s ∈ [0, 12 ]
||(Tj + λ)sT sj || ≤ ||(Tj + λ)Tj ||s ≤ 1

by Proposition 10 and the spectral theorem. Also, from Proposition 10 and Proposition 9

||(Txj + λ)−
1
2 (Tj + λ)

1
2 || ≤ ||(Txj + λ)−1(Tj + λ)||

1
2 ≤
√

8 log(2η−1)B
1
2
nj (Tj , λ) .

From Lemma 7, by integration

E
[∥∥√Tjrλ(Txj )T

rj
j

∥∥2] ≤ CB2
nj (Tj , λ)λ2(rj+

1
2
) .

Combining this with (3) finishes the proof.

Proposition 2 (Sample Error). For any λ ∈ (0, 1], one has

E
[∥∥ m∑

j=1

gλ(Txj )(Txjfj − S∗xjyj)
∥∥2
L2(ν)

]
≤ C

m∑
j=1

pj B
2
nj (Tj , λ)λ

(
M

njλ
+ σ

√
N(Tj , λ)

njλ

)2

,

where B2
nj (Tj , λ) is defined in Proposition 9 and C does not depend on (σ,M,R) ∈ R3

+ .

1If Ij : Ĥj ↪→ L2(νj), then Tj = I∗j Ij and ||
√
Tjf ||2Ĥj

= 〈Tjf, f〉Ĥj
= 〈Ijf, Ijf〉L2(νj)

= ||f ||2L2(νj)
. Here, we

identify Ijf = f .
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Proof of Proposition 2. Using again ||
√
Tjf ||Ĥj = ||f ||L2(νj) we find with Lemma 2

E
[∥∥ m∑

j=1

gλ(Txj )(Txjfj − S∗xjyj)
∥∥2
L2(ν)

]
=

m∑
j=1

pjE
[∥∥gλ(Txj )(Txjfj − S∗xjyj)

∥∥2
L2(νj)

]
=

m∑
j=1

pjE
[∥∥√Tjgλ(Txj )(Txjfj − S∗xjyj)

∥∥2
Ĥj

]
. (4)

We bound the expectation for each separate subsample of size nj by first deriving a probabilistic
estimate and then by integration. For this reason, we use (16) and Proposition 10 and write
for any fj ∈ Ĥj , j ∈ [m]

||
√
Tjfj ||Ĥj ≤ ||

√
Tj(Tj + λ)−1/2|| ||(Tj + λ)1/2(Txj + λ)−1/2|| ||(Txj + λ)1/2fj ||Ĥj

≤ ||Tj(Tj + λ)−1||1/2 ||(Tj + λ)(Txj + λ)−1||1/2 ||(Txj + λ)1/2fj ||Ĥj
≤ C log(4η−1)B1/2

nj (Tj , λ) ||(Txj + λ)1/2fj ||Ĥj , (5)

holding with probability at least 1− η
2 .

We proceed by splitting

(Txj + λ)sgλ(Txj )(Txjfρ − S∗xjyj) = H
(1)
xj ·H

(2)
xj · hλzj , (6)

with

H
(1)
xj := (Txj + λ)

1
2 gλ(Txj )(Txj + λ)

1
2 ,

H
(2)
xj := (Txj + λ)−

1
2 (T + λ)

1
2 ,

hλzj := (T + λ)−
1
2 (Txjfρ − S∗xjyj) .

The first term is bounded. The second term is now estimated using (16) once more. One has
with probability at least 1− η

4

H
(2)
xj ≤

√
8 log(8η−1)B n

m
(Tj , λ)

1
2 .

Finally, hλzj is estimated using Proposition 8:

hλzj ≤ 2 log(8η−1)

(
M

nj
√
λ

+ σ

√
N(Tj , λ)

nj

)
,

holding with probability at least 1 − η
4 . Thus, combining the estimates following (6) with (5)

gives for any j ∈ [m]

||
√
Tjgλ(Txj )(Txjfρ − S∗xjyj)||Ĥj ≤ C log3(8η−1)Bnj (Tj , λ)

√
λ

(
M

njλ
+ σ

√
N(Tj , λ)

njλ

)
,

with probability at least 1− η. By integration using Lemma 7 one obtains

E
[∥∥√Tjgλ(Bxj )(Txjfρ − S∗xjyj)

∥∥2
Ĥj

] 1
2 ≤ CBnj (Tj , λ)

√
λ

(
M

njλ
+ σ

√
N(Tj , λ)

njλ

)
.

Combining this with (4) implies

E
[∥∥ m∑

j=1

gλ(Txj )(Txjfj − S∗xjyj)
∥∥2
L2(ν)

]
≤ C

m∑
j=1

pj B
2
nj (Tj , λ)λ

(
M

njλ
+ σ

√
N(Tj , λ)

njλ

)2

,

where C does not depend on (σ,M,R) ∈ R3
+.
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We are now ready to prove Theorem 1.

Proof of Theorem 1. Let the regularization parameter λn be chosen as

λn = min

(
1,

(
σ2

R2n

) 1
2r+1+γ

)
, (7)

with r = min(r1, ..., rm) and assume that nj = b nmc. Note that by Lemma 5 we have
B n
m

(Tj , λn) ≤ 2 for any j ∈ [m], provided n > n0, with n0 given by (17). Since λ
rj
n ≤ λrn

for any j ∈ [m], the approximation error bound becomes by Proposition 1

E
[∥∥ m∑

j=1

rλn(Txj )fj
∥∥2
L2(ν)

]
≤ CR2

m∑
j=1

pjλ
2(rj+

1
2
)

n

≤ CR2 λ
2(r+ 1

2
)

n , (8)

where we also used that
∑

j pj = 1.
For estimating the sample error firstly observe that

Mm

nλn
≤ Rλrn

if

n >

(
m
M

R

) 2r+1+γ
r+γ

(
R

σ

) 2(r+1)
r+γ

=: n1 .

Thus, from Proposition 2 we obtain (recalling again that B n
m

(Tj , λn) ≤ 2)

E
[∥∥ m∑

j=1

gλn(Txj )(Txjfj − S∗xjyj)
∥∥2
L2(ν)

]
≤ Cλn

m∑
j=1

pj

Rλrn + σ

√
mN(Tj , λn)

nλn

2

. (9)

We proceed by applying (a+ b)2 ≤ 2(a2 + b2). Observe that by our Assumption 3 , 2.

m∑
j=1

pjσ
2mN(Tj , λn)

nλn
= σ2

m

nλn

m∑
j=1

pj N(Tj , λn)

≤ C σ2

nλn
N(T,mλn)

≤ Cm−γ σ
2

nλn
λ−γn

≤ CRλrn , (10)

by definition of λn. Finally, combining (2) with (10), (9) and (8) proves the theorem, provided

n > max(n0, n1) ≥ CM,σ,R,γ,r m
1+ γ+1

2r , (11)

for some (explicitly given) CM,σ,R,γ,r <∞.
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Proof of Theorem 2. Assume that nj = b nmc. Let the regularization parameter λn be given by
(15) . As above, Lemma 5 yields B n

m
(Tj , λn) ≤ 2 provided n > n0, with n0 satisfying (17) (with

r replaced by rh). From Proposition 1 we immediately obtain for the approximation error

E
[∥∥ m∑

j=1

rλn(Txj )fj
∥∥2
L2(ν)

]
≤ C

R2
l

∑
j∈E

pj

λ
2(rl+

1
2 )

n +R2
h

∑
j∈Ec

pj

λ
2(rh+

1
2 )

n


≤ CR2

hλ
2(rh+

1
2 )

n .

Here we have used that by Assumption 4∑
j∈E

pj

 ≤ (Rh
Rl

)2

λ2(rh−rl)n and

∑
j∈Ec

pj

 ≤ 1 .

The bound for the sample error follows exactly as in the proof of Theorem 1. Finally, the error
bound (17) is obtained by using again (2).

C Proofs of Section 4

For proving Theorem 3 we use the non-asymptotic error decomposition given in Theorem 2 of
[4], somewhat reformulated and streamlined using our estimate (16). We adopt the notation
and idea of [4] and write f̂λn,l = gλ,l(Tx)S∗xy, with gλ,l(Tx) = V (V ∗TxV +λ)−1V ∗ and V V ∗ = Pl,
the projection operator onto Hl, l ≤ n. Consider

||
√
T (f̂λn,l − fρ)||H ≤ T1 + T2

with
T1 = ||gλ,l(Tx)(S∗xy − Txfρ)||L2(ν) = ||

√
Tgλ,l(Tx)(S∗xy − Txfρ)||H

and
T2 = ||

√
Tgλ,l(Tx)(Txfρ − fρ)||H ,

which we bound in Proposition 3 and Proposition 4 .

Proposition 3 (Expectation Sample Error KRLS-Nyström).

E
[∥∥gλ,l(Tx)(S∗xy − Txfρ)

∥∥2
L2(ν)

] 1
2 ≤ C

√
λBn(T, λ)

(
M

nλ
+ σ

√
N(T, λ)

nλ

)
where C does not depend on (σ,M,R) ∈ R3

+.

Proof of Proposition 3. For estimating T1 we use Proposition 9 and obtain for any λ ∈ (0, 1]
with probability at least 1− η

T1 ≤ C log(2η−1)Bn(T, λ) ||(Tx + λ)1/2gλ,l(Tx)(S∗xy − Txfρ)||H
≤ C log2(4η−1)B2

n(T, λ) ||(Tx + λ)1/2gλ,l(Tx)(Tx + λ)1/2||
||(T + λ)−1/2(S∗xy − Txfρ)||H .

From Proposition 6 in [4] and from the spectral Theorem we obtain

||(Tx + λ)1/2gλ,l(Tx)(Tx + λ)1/2|| ≤ 1 .

Thus, applying Proposition 7 one has with probability at least 1− η

T1 ≤ C log3(8η−1)
√
λ B2

n(T, λ)

(
M

nλ
+ σ

√
N(T, λ)

nλ

)
,

where C does not depend on (σ,M,R) ∈ R3
+. Integration using Lemma 7 gives the result.
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Before we proceed we introduce the computational error: For u ∈ [0, 12 ], λ ∈ (0, 1] define

Cu(l, λ) := ||(Id− V V ∗)(T + λ)u|| .

The proof of the following Lemma can be found in [4], Proof of Theorem 2.

Lemma 3. For any u ∈ [0, 12 ]
Cu(l, λ) ≤ C 1

2
(l, λ)2u .

Lemma 4. If λn is defined by (12) and if

ln ≥ nβ β >
γ + 1

2r + 1 + γ

one has with probability at least 1− η

C 1
2
(ln, λn) ≤ C log(2η−1)

√
λn ,

provided n is sufficiently large.

Proof of Lemma 4. Using Proposition 3 in [4] one has with probability at least 1− η

C 1
2
(l, λn) ≤

√
λn ||(Txl + λn)−1(T + λn)||

1
2

≤ C log(2η−1)
√
λn B

1
2
l (T, λn) .

Recall that N(T, λ) ≤ Cbλ−
1
b , implying

Bl(T, λn) ≤ C

1 +

 2

lλn
+

√
λ−γn
lλn

2 .

Straightforward calculation shows that

2

lnλn
= o(1) , if ln ≥ nβ , β >

1

2r + 1 + γ

and √
λ−γn
lnλn

= o(1) , if ln ≥ nβ , β >
γ + 1

2r + 1 + γ
.

Thus, C 1
2
(ln, λn) ≤ C log(2η−1)

√
λn, with probability at least 1− η.

Proposition 4 (Expectation Approximation- and Computational Error KRLS-Nyström). As-
sume that

ln ≥ nβ , β >
γ + 1

2r + 1 + γ

and (λn)n is chosen according to (12). If n is sufficiently large

E
[∥∥√Tgλn,ln(Tx)(Txfρ − fρ)

∥∥2
L2(ν)

] 1
2 ≤ C an ,

where C does not depend on (σ,M,R) ∈ R3
+.
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Proof of Proposition 4. Using that ||T−rfρ||H ≤ R one has for any λ ∈ (0, 1]

T2 ≤ CR ( (a) + (b) + (c) ) , (12)

with
(a) = ||

√
T (Id− V V ∗)T r|| , (b) = λ||

√
Tgλ,l(Tx)T r||

and
(c) = ||

√
Tgλ,l(Tx)(Tx + λ)(Id− V V ∗)T r|| .

Since (Id− V V ∗)2 = (Id− V V ∗) we obtain by Lemma 3

(a) ≤ C 1
2
(l, λ) Cr(l, λ) ≤ C 1

2
(l, λ)2r+1 .

Furthermore, using (16) , with probability at least 1− η
2

(b) ≤ C log2(8η−1)λB
1
2
+r

n (T, λ) ||(Tx + λ)1/2gλ,l(Tx)(Tx + λ)r||

≤ C log2(8η−1)λ
1
2
+rB

1
2
+r

n (T, λ) ,

by again using Proposition 6 in [4].
The last term gives with probability at least 1− η

2

(c) ≤ C log(8η−1)||(Tx + λ)1/2gλ,l(Tx)(Tx + λ)|| Cr(l, λ)

≤ C log(8η−1)
√
λ C 1

2
(l, λ)2r .

Combining the estimates for (a), (b) and (c) gives

T2 ≤ CR log2(8η−1)

(
C 1

2
(l, λ)2r+1 + λ

1
2
+rB

1
2
+r

n (T, λ) +
√
λ C 1

2
(l, λ)2r

)
.

We now choose λn according to (12) . Notice that by Lemma 6 one has Bn(T, λn) ≤ C for any
n sufficiently large. Applying Lemma 4 we obtain, with probability at least 1− η

T2 ≤ C log2(8η−1)Rλ
r+ 1

2
n ,

provided n is sufficiently large and

ln ≥ nβ , β >
γ + 1

2r + 1 + γ
.

The result follows from integration by applying Lemma 7 and recalling that an = Rλ
r+ 1

2
n .

With these preparations we can now prove the main result of Section 4.

Proof of Theorem 3. The proof easily follows by combining Proposition 3 and Proposition 4 .
In particular, the estimate for the sample error by choosing λ = λn follows by recalling that
N(T, λn) ≤ Cγλ−γn , by definition of (an)n in Theorem 3 , by Lemma 6 and by

M

nλn
= o

σ
√
λ−γn
nλn

 .
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D Proofs of Section 5

Following the lines in the previous sections we divide the error analysis in bounding the Sample
error, Approximation error and Computational error.

Proposition 5 (Sample Error). Let λn be defined as in (12). We have

E
[∥∥ m∑

j=1

gλn,l(Txj )(Txj f̂j − S∗xjyj)
∥∥2
L2(ν)

]
≤ CR2

(
σ2

R2n

) 2(r+1
2 )

2r+1+γ

,

where n has to be chosen sufficiently large, i.e.

n > Cσ,R,γ,r m
1+ γ+1

2r+1+γ ,

for some Cσ,R,γ,r <∞. Moreover, C does not depend on the model parameter σ,M,R ∈ R3
+.

Proof of Proposition 5. Applying Proposition 3 we obtain

E
[∥∥ m∑

j=1

gλ,l(Txj
)(Txj

f̂j − S∗xj
yj)
∥∥2
L2(ν)

]
=

m∑
j=1

pjE
[∥∥gλ,l(Txj

)(Txj
f̂j − S∗xj

yj)
∥∥2
L2(νj)

]

≤ C
m∑
j=1

pj B
2
n
m

(Tj , λ)λ

(
Mm

nλ
+ σ

√
mN(Tj , λ)

nλ

)2

.

Arguing as in the proof of Theorem 1, using Lemma 5, implies the result.

Proposition 6 (Approximation and Computational Error). Let λn be defined by (12). Assume
the number of subsampled points satisfies ln ≥ nβ with

β >
γ + 1

2r + γ + 1
.

Then

E
[∥∥ m∑

j=1

gλn,ln(Txj )(Txjfj − fj)
∥∥2
L2(ν)

]
≤ CR2

(
σ2

R2n

) 2(r+1
2 )

2r+γ+1

,

where C does not depend on the model parameter σ,M,R.

Proof of Proposition 6. For proving this Proposition we combine techniques from both the
partitioning and subsampling approach. More precisely:

E
[∥∥ m∑

j=1

gλn,ln(Txj )(Txjfj − fj)
∥∥2
L2(ν)

]
=

m∑
j=1

pjE
[∥∥gλn,ll(Txj )(Txjfj − fj)

∥∥2
L2(νj)

]
=

m∑
j=1

pjE
[∥∥√Tjgλn,ln(Txj

)(Txj
fj − fj)

∥∥2
Ĥj

]
.

We shall decompose as in (12), with T replaced by Tj and Tx replaced by Txj ,

||
√
T̄jgλn,ln(Txj )(Txj f̂j − fj)||Ĥj ≤ CR ( (a) + (b) + (c) ) = (∗) .

Following the lines of the proof of Proposition 4 leads to an upper bound (with probability at
least 1− η) for the rhs of the last inequality, which is

(∗) ≤ CR log2(8η−1)

(
C 1

2
(l, λn)2r+1 + λ

1
2
+r

n B
1
2
+r
n
m

(Tj , λn) +
√
λn C 1

2
(l, λn)2r

)
≤ CR log2(8η−1)λ

r+ 1
2

n

(
B2r+1
l (Tj , λn) + B

r+ 1
2

n
m

(Tj , λn) + B2r
l (Tj , λn)

)
.
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Thus, by integration and since r ≤ 1
2

E
[∥∥ m∑

j=1

gλn,ln(Txj
)(Txj

fj − fj)
∥∥2
L2(ν)

]
≤ CR2λ

2(r+ 1
2 )

n

m∑
j=1

pj

(
B4
l (Tj , λn) + B2

n
m

(Tj , λn) + B2
l (Tj , λn)

)
.

Note that by Lemma 5, if

n ≥ Cσ,R,γ,rm1+ γ+1
2r (13)

we have

B n
m

(Tj , λn) =

1 +

(
2m

nλn
+

√
mnN(Tj , λn)

nλ

)2


≤ C
[
1 +

(
2m

nλn

)
+

(
mN(Tj , λn)

nλ

)]
≤ C .

Moreover, since N(Tj , λn) ≤ N(T, λn/pj), by Assumption 3, 2. and since pj ≤ 1

Bln(Tj , λn) ≤ 1 +

 2

lnλn
+ σ

√
λ−γn
lnλn

2

.

Straightforward calculation shows that

2

lnλn
= o(1) , if ln ≥ nβ

′
, β′ >

1

2r + γ + 1

and √
λ−γn
lnλn

= O(1) , if ln ≥ nβ
′
, β′ ≥ γ + 1

2r + γ + 1
. (14)

Thus, (14) ensures Bln(Tj , λn) = O(1). Finally, on each local set we have the requirement
ln . n

mn
, which is implied by

ln . n1−α ∼ n
γ+1

2r+γ+1 .

Together with (14) we get a sharp bound

ln ∼ n
γ+1

2r+γ+1 .

E Probabilistic Inequalities

In this section we recall some well-known probabilistic inequalities.

Proposition 7 ([2]). For n ∈ N, λ ∈ (0, 1] and η ∈ (0, 1], one has with probability at least
1− η : ∥∥(T + λ)−

1
2 (Txfρ − S∗xy)

∥∥
H
≤ 2 log(2η−1)

(
M

n
√
λ

+ σ

√
N(T, λ)

n

)
.

Proposition 8 ([2], Proposition 5.3). For any λ ∈ (0, 1] and η ∈ (0, 1) one has with probability
at least 1− η :

∥∥(T + λ)−1(T − Tx)
∥∥
HS
≤ 2 log(2η−1)

(
2

nλ
+

√
N(T, λ)

nλ

)
.
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Proposition 9 ([3]). Define

Bn(T, λ) :=

1 +

(
2

nλ
+

√
N(T, λ)

nλ

)2
 (15)

For any λ > 0, η ∈ (0, 1], with probability at least 1− η one has∥∥(Tx + λ)−1(T + λ)
∥∥ ≤ 8 log2(2η−1)Bn(T, λ) . (16)

Lemma 5. Let m ∈ N and λn be defined by (12). Then for any j ∈ [m] and n > n0

B n
m

(Tj , λn) ≤ 2 .

Here, n0 depends on the number m of subsets and the model parameter R, σ, γ, r and is explicitly
given in (17).

Proof of Lemma 5. Recall that we assume N(T, λ) ≤ Cγλ
−γ , for some b ≥ 1, Cγ < ∞. Thus,

by Lemma 1 we have for any j ∈ [m]

N(Tj , λ) ≤ N(T, λ/pj) ≤ Cγ p
γ
j λ
−γ

and thus
mN(Tj , λn)

nλn
≤ Cγpj

m

n
λ−(1+γ)n <

1

2
,

provided

n > (2Cγpjm)
2r+γ+1

2r

(
R

σ

) 2(γ+1)
2r

.

Moreover,
2m

nλn
<

1

2
,

provided

n > (4m)
2r+γ+1
2r+1

(
R

σ

) 2
2r+γ

.

Finally, setting pmax = max(p1, ..., pm), if

n > n0 := (4m)
2r+γ+1

2r max
(

(R/σ)
2

2r+γ , (pmax Cγ)
2r+γ+1

2r (R/σ)
2(γ+1)

2r

)
(17)

we have

B n
m

(Tj , λn) ≤ 1 +

(
1

2
+

1

2

)2

= 2 ,

uniformly for any j ∈ [m].

Lemma 6. If λn is defined by (12)

Bn(T, λn) ≤ 2 ,

provided n is sufficiently large.

Proof of Lemma 6. The proof is a straightforward calculation using Definition (12) and recall-
ing that N(T, λ) ≤ Cγλ−γ .
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F Miscellanea

Proposition 10 (Cordes Inequality,[1], Theorem IX.2.1-2). Let A,B be two bounded, self-
adjoint and positive operators on a Hilbert space. Then for any s ∈ [0, 1]:

‖AsBs‖ ≤ ‖AB‖s . (18)

Lemma 7. Let X be a non-negative random variable with P[X > C logu(kη−1)] < η for any
η ∈ (0, 1]. Then E[X] ≤ C

k uΓ(u).

Proof. Apply E[X] =
∫∞
0 P[X > t]dt.
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