Appendix
Reducing training time by efficient localized kernel regression

A Preliminaries

We let Z = X x R denote the sample space, where the input space X is a standard Borel
space endowed with a fixed unknown probability measure v. The kernel space H is assumed
to be separable, equipped with a measurable positive semi-definite kernel K, bounded by x,
implying continuity of the inclusion map I : H — L?(v). Moreover, we consider the covariance
operator T = k21" = k?E[K x ® Kx]|, which can be shown to be positive self-adjoint trace
class (and hence is compact). Given a sample x = (x1,...,z,) € X", we define the sampling
operator Sx : H — R" by (Sxf)i = (f, Kz,)5c. The empirical covariance operator is given by
Ty = Kk 28:Sy : H — .

For a partition {X1, ..., X,,} of X, we denote by J:Cj the local RKHS with extended bounded
kernel Kj, supported on X;, with associated covariance operator T; = H]-_QEV]. [Kj(X,-) ®
R'j(X, )]. Given a sample x; = (2j1,...,%jn;) € f)C 7. we define the sampling operator
Sx,; + Hj — R™ similarly by (Sx, f)i = (f, Kj (=, )>g{]

The global covariance operator acts as an operator on the direct sum H = Hi ... ® Hon.
According to , it decomposes as

m
=20 T
j=1

which can be used to prove that the global effective dimension can be expressed as the sum of
the (rescaled) local ones.

Lemma 1 (Effective Dimension). For any A € [0, 1]

m

> ON(Ty,piA) = N(T, A) -
j=1

Finally, our error decomposition relies on the the following standard decomposition

Lemma 2. Given j € [m] let p; = v(X;) and vj(A) = v(A|X;), for a measurable A C X. One

has
@pj (X5, v5)
with
’fHLQ ZPJ ’f]HLQ(V]) ;

where f=f14+ ...+ fin .

For proving our results we additionally need an appropriate Bernstein condition on the
noise.



Assumption 1 (Distributions). 1. The sampling is random i.i.d., where each observation
point (X;,Y;) follows the model Y = f,(X) + €, and the noise satisfies the following
Bernstein-type assumption: For any integer k > 2 and some o > 0 and M > 0:

E[Y - f,(X)F | X < %k! M2y as. . (Bern(M,0)

2. Given = (M,o0,R) € Ri, the class M := M(0,7,b) consists of all distributions p with

X-marginal v and conditional distribution of Y given X satisfying (Bern(M o)) for the
deviations and for the mean.

We remark that point 1 implies for any j € [m]
1 _
ElY - f;(X)|F | X] < k! o?MF2 oy —as., (1)

where ¢ and M are uniform with respect to m and k. This is what we actually need in our
proofs.

For ease of reading we make use of the following conventions:

e we are interested in a precise dependence of multiplicative constants on the parameter
o, M,R, m,n

e the dependence of multiplicative constants on various other parameters, including the
kernel parameter k, the parameters arising from the regularization method, b > 1, r > 0,
etc. will (generally) be omitted

e the value of C' might change from line to line

e the expression “for n sufficiently large” means that the statement holds for n > ng, with
no potentially depending on all model parameters (including o, M and R).

B Proofs of Section [3

This section is devoted to proving the results of Section [3] Recall that by Assumption 2] the
regression function belongs to I, i.e. admits an unique representation f = fi + ... + fm , with
fj € H;. For proving our error bounds we shall use a classical bias-variance decomposition

m

fp - f% = Zf] - f%] = ZT)\(TXj)fj + ZQX(TXj)(TXjfj - S;Jyj) )

j=1 j=1 j=1

where f% is given in (9)), with 7\(¢) = 1 — gx(¢)t and with gj(¢t) = (¢t + A\)~'. The final error
bound follows then from

E[e(f) -3 | =E[lfy - Bl ]

m

<SE | ma@) filliae | +E | 11D 0n(T) (T, fi = Se,yi)ll720)
=1 =1

(2)

We proceed by bounding each term in the above decomposition separately.



Proposition 1 (Approximation Error). For any A € (0, 1], one has

m

E[H ZT,\(ij)fjHig(y)} < CR? ij.Bij (Tj7>\))\2(rj+%) 7

=1 j=1
where B%j (T}, A) is defined in Proposition@ and where C' does not depend on (o, M, R) € R3. .

Proof of Proposition [1} Recal that ||\/T. fH}c = |[fllz2,) for any f € J—f According to
Lemma [2] by Assumption [I10] we have

m

E[H ZTA(TXJ')JEJ‘H;(V)}

j=1

'MS

P ||| (B) i 724,

<
Il
-

I
Ms

P [V (T %

[
Il

< CR? ijE[H@m(Txﬂ? 7] - 3)
j=1

We bound for any j € [m] the expectation by first deriving a probabilistic estimate. For
any 7 € (0, 1], with probability at least 1 —n

/T (T YT 1| < Clog?(20™ B, (T3, A) [T (T + M)A (T, + AV Era (T ) (T, + AL 1Ty + N7 T |
< CIOg2(2n_l)an(Tja)‘))‘ "

(S

Here we have used that

mH

(T, + A)2ra(To))(Tx, +A)|| < OX'7+3

and that for s € [0, %]
(T3 + N TF|| < (T + NP < 1

by Proposition [I0] and the spectral theorem. Also, from Proposition [I0] and Proposition [J]
_1 1 1\
(T, +X) 72 (L) + V2| < [[(Ty, +2) 7T + V|2 < VBlog(2n)BA (T3, A) -

From Lemma [7] by integration

E (| VIra(T3)T7|[*] < OB (1, A2+
Combining this with finishes the proof. O
Proposition 2 (Sample Error). For any A € (0,1], one has
m m 2
. 2 M N(Tj, )
E[}lZgA(TXJ)(TXJf]_SnyJ)HL2(V):| < Czp] Bi](]},)\))\ <)\+O- 7j)\ )
= = 1 1

where B2 (T], A) is defined in Propositz'on@ and C' does not depend on (o, M,R) € R} .

U1y 5 < L), then Ty = L1y and /T3 A1, = (T3] Plae, = (L1 5P, = 1122, - Here, we
identify I;f = f.




Proof of Proposition[3 Using again H\/TT]JCH%J = ||fllz2(;) we find with Lemma
E[| BACICHE S, 720)] = ;ij[HMx»(ijfj = 853220,
j= j=

= 3 B[ IVTor T T s - S5, v)ll% | - @
j=1

We bound the expectation for each separate subsample of size n; by first deriving a probabilistic
estimate and then by integration. For this reason, we use and Proposition 10| and write
for any f; € H;, j € [m]

VT3 fillse, < VT + 27T+ 22 (T, + 272 T, + 22 illg,,
< TG + N2 TG + NI, +2) Y2 T, + 22 il
< Clog(dn™")Bi/ X (T3, A) (T, + 2 fillge, (5)

holding with probability at least 1 — 3.
We proceed by splitting

(ij + )\)SQA(ij)(ij fo— S;ij) = Hg) ’ H’g) ’ h;\j ) (6)
with
1 1
Hz(c? = (TXj + )‘)QQA(TX]')(TX]‘ + )‘)2’
HE = (T, + N 72T+ M),
1
Wy = (TN f, - SLy))

The first term is bounded. The second term is now estimated using once more. One has
with probability at least 1 — 7

N

2 _
HP < VBlog(8n™)B x (I, \)? .

n
m

Finally, héj is estimated using Proposition

M N(T;, A\
héjsmog(snl)( oy 2L ’>,

+
nj\[\ Uz
holding with probability at least 1 — 2. Thus, combining the estimates following @ with
gives for any j € [m]

X _ M N(Tj, A
VT30 (T, (T p — S, < Clog® ("B, (T3, VA <M +o W) ,
J J
with probability at least 1 —n. By integration using Lemma [7] one obtains
1
N 2 12 M N(T;, A
<[ it 50 | < 03 1 (2 4y M)
1 U

Combining this with implies

2
S . 2 o M N(Tj, \)
E[H ;QA(ij)(ijfj - ijyj')HLz(,,)} < C;Pj B (Tj, M)A <nj/\ +o nj/\) :

where C' does not depend on (o, M, R) € Ri. O



We are now ready to prove Theorem

Proof of Theorem [l Let the regularization parameter A, be chosen as

. o2 \ T
Ap, =min | 1, <R2n> , (7)

with 7 = min(ry,...,7,) and assume that n; = |[*|. Note that by Lemma |5 we have

23%(Tj,)\n) < 2 for any j € [m], provided n > ng, with ng given by (L7)). Since A<
for any j € [m], the approximation error bound becomes by Proposition

[HZUn X;j fJHL%u)} <CR2Z A (rj+3)
7j=1

< CR® )2 (” ) (8)

where we also used that >, p; = 1.
For estimating the sample error firstly observe that

Mm
ni,

if

2r+1+~y 2(r+1)

M\ 7 (R

Thus, from Proposition [2| we obtain (recalling again that B (T}, A,) < 2)

2
Y N(T%, A\
21300, B B 5 = S50 ] < O Doy R+ ) g

j=1 7=1

We proceed by applying (a + b)? < 2(a? 4 b?). Observe that by our Assumption , 2.

mN(Tj, An)
ij 2 n}\J ij Tj’)\
j=1 "

o2
<C’—NT An
~ T nl, (T, mAn)

o2
<Cm™ 7T——\)7
nAn

< CRN, (10)

by definition of A,. Finally, combining with , @D and proves the theorem, provided

+'Y+1

n > max(no,n1) > CuroRyr M

(11)

for some (explicitly given) Cig R, < 00. O



Proof of Theorem[2 Assume that n; = | |. Let the regularization parameter \, be given by
(15) . As above, Lemmaylelds B (T, An) < 2 provided n > ng, with ng satisfying (with

r replaced by ry). From Proposmon I we immediately obtain for the approximation error

E[HZT)\"(ij)fjHig(y)} <C (Rl2 (ij) A2 2(ri+% )+R2 (Z pj) i(rh+§))
=

JjeE jeE*
<C1R2 2(7"h+ )

Here we have used that by Assumption [4]

2
ij < ( ) Ai(”ﬁ”) and Z pj | <1
JjeE jeE*

The bound for the sample error follows exactly as in the proof of Theorem (I, Finally, the error

bound is obtained by using again . O

C Proofs of Section 4

For proving Theorem [3| we use the non-asymptotic error decomposition given in Theorem 2 of
M], somewhat reformulated and streamlined using our estimate (16). We adopt the notation
and idea of [4] and write £, = gx(Tx)Ssy, with gy (Tx) = V(V*IV+A)"1V* and VV* = B,
the projection operator onto H;, [ < n. Consider
INT (£ = fo)llsc < Ty + Ty
with
T1 = [|9x(T) (Szy = Tafo)ll22() = [IVT9r1(Ti) (Szy — Tcf)lsc

and

T, = ||\F9>\l( ) (Tx fo— fp)H?C )

which we bound in Proposition [3] and Proposition [ .

Proposition 3 (Expectation Sample Error KRLS-Nystrom).

1
: Ik M N
sllnirotss -l <0 vinmn (2 o/ 50)
where C' does not depend on (o, M, R) € ]R?J’r,

Proof of Proposition[3 For estimating 77 we use Proposition |§| and obtain for any A € (0,1]
with probability at least 1 —n

T < Clog(2y " )Ba(TA) [[(Tx + N2 91(T) (Siy = Ty lse
< Clog?(dn™")BL(T, V) [(Tx + A)2gr0(T3) (T + 1)
1T+ 2)~2(S5y — T fo)llo

From Proposition 6 in [4] and from the spectral Theorem we obtain
(T + N2 g0 a(T) (T + )2 < 1.
Thus, applying Proposition [7] one has with probability at least 1 —n

M T
T < Clog3(877_1) \f)\B%(T, A | —+o N(T ) ,
nA n

where C' does not depend on (o, M, R) € Ri. Integration using Lemma E gives the result. [
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Before we proceed we introduce the computational error: For u € |0, %], A € (0,1] define
Cu(l,N) :=||(Td = VV*)(T + N .
The proof of the following Lemma can be found in [4], Proof of Theorem 2.
1

Lemma 3. For any u € [0, 5]

Cu(l, ) < G%(Z,A)Q“ :
Lemma 4. If A\, is defined by and if

v+1

L >nf =
n="n B>27‘—|—1+W

one has with probability at least 1 —n

C1(ln, M) < Clog(2n7 )V A,

1
2
provided n is sufficiently large.

Proof of Lemmaljl Using Proposition 3 in [4] one has with probability at least 1 — 7
_ 1
€1 (L An) < VA (T + Xa) N T+ )12
1
< Clog(2n~ ")V An BE(T, An) -

Recall that N(T,\) < CyA~b, implying

2
2 An
< R -
BT, \p) <C |1+ I +4 I

Straightforward calculation shows that

2 1
=o(1 if 1, >n? _
LA o), i =" 75>27’—i—1—i—”y
and
AT y+1
=o(1 if 1, > n” —_—
LA o), i =" ’ﬂ>2r—|—1—|—'y
Thus, G%(ln, An) < Clog(2n~1)v/A,, with probability at least 1 — 7. O

Proposition 4 (Expectation Approximation- and Computational Error KRLS-Nystrom). As-

sume that
v+1

2r4+ 1+«
and (A\p)n is chosen according to . If n is sufficiently large

L, >n", B>

1
E{“ﬁg/\n,ln(Tx)(Txfp - fﬂ)Hiﬁ(V)} < Cay,

where C' does not depend on (o, M, R) € R3.



Proof of Proposition[f. Using that ||T7" f,||s < R one has for any A € (0, 1]
Ty <CR((a)+ () +(0)), (12)

with
(a) = [VTId=VVIT||,  (b) = A|VTgru(T)T"||

and
(¢) = |[VTgr(Tx)(Tx + \)(Id — VVT"|| .

Since (Id — VV*)? = (Id — VV*) we obtain by Lemma
(@) < CL(LA) Br(1,A) < €1, )L
Furthermore, using , with probability at least 1 — g
2 1 %-H" 1/2 r
(b) < Clog™(8n~ )ABi (T, A) [[(Tx + A)"“gaa (L) (Tx + A)"|
1 '
< Clog?(8n A28 (T, ),

by again using Proposition 6 in [4].
The last term gives with probability at least 1 — Z

() < Clog(8n™M||(Tx + X 2ga(T) (T + M| (1, )
< Clog(8n~)VA CL(l, N>

Combining the estimates for (a), (b) and (c) gives

1 T
Ty < CRlog*(8n™ 1) (e @, N A2 BT ) + VA e (l, A)2T> .

NG

We now choose \,, according to . Notice that by Lemma@ one has B, (T, \,) < C for any
n sufficiently large. Applying Lemma [4] we obtain, with probability at least 1 —n

2/ —1y p\ "3
Ty < Clog”(8n " )RA\p 2,

provided n is sufficiently large and

7+1

Z>B, > —
n="n p 2r+ 1+~

1
The result follows from integration by applying Lemma |7| and recalling that a, = R)\,Z+2 . O
With these preparations we can now prove the main result of Section [4]

Proof of Theorem[3 The proof easily follows by combining Proposition [3] and Proposition [].
In particular, the estimate for the sample error by choosing A = A, follows by recalling that
N(T, \n) < CyAn™, by definition of (a),, in Theorem [3], by Lemma [ and by

M An !
= ol o2
n\p nAp



D Proofs of Section [5

Following the lines in the previous sections we divide the error analysis in bounding the Sample
error, Approximation error and Computational error.

Proposition 5 (Sample Error). Let A, be defined as in . We have

2(r+3)

m . 2\ 2riity
B S i) By = Syl < O ()
j=1

where n has to be chosen sufficiently large, i.e.

1+ y+1
n> CO-7R7’77T m ity ?

for some Cy R~ < 00. Moreover, C does not depend on the model parameter o, M, R € Ri.

Proof of Proposition[5 Applying Proposition [3| we obtain

]E“‘Zg/\,l(ij)(ijfj—S,thj)Hiz(l,)} ij [Hg)\l X; (ijf] Yj)Hiz(l,j)}
j=1

2
Mm mN(T;, \
gczpj B (T, M)A <M +o ;Aﬂ )>

Jj=1

Arguing as in the proof of Theorem [I] using Lemma [5] implies the result. O

Proposition 6 (Approximation and Computational Error). Let A\, be defined by . Assume
the number of subsampled points satisfies l,, > nP with

v+1
> — .
g 2r4+~v+1

Then

2(r+ )
m 2 2rf~+1
E[H ZgAn,ln(TXj)(TXjfj - fj)H;(y)} < CR2 <];2n> ’
Jj=1

where C' does not depend on the model parameter o, M, R.

Proof of Proposition[f. For proving this Proposition we combine techniques from both the
partitioning and subsampling approach. More precisely:

[HZW 1 (T /(T 5 = 1) HL2 y)} :Zpﬂ “9* 1 (L)) (T, f5 = £5) HLz(V ]

SB[V Ti0r0n (T T s~ 5[]
j=1

We shall decompose as in , with 7" replaced by T} and Tx replaced by T,

I T390 (T (T, F5 = £, < CR ((a) + () + () ) = (+) -

Following the lines of the proof of Proposition 4| leads to an upper bound (with probability at
least 1 — ) for the rhs of the last inequality, which is

1
2

1 T 1 ‘a
(x) < CRlog*(8n~ ") <€ (1) 4 22T Bf (Tj, An) + VAn e;(m)”)

1 41
< CRlog? (877 )A, " (B?T“(T;-,AnHB 2(Tj, Mn) + 93?’“(Tj,xn)>-

n
m



Thus, by integration and since r < %

m

B[l Y2 9rt BT fi = Fi)ll 52| < CRENTTS Sy (BE(Ty An) + B2 (T, M) + BE(T3, A)) -
j=1

m

j=1

Note that by Lemma [5], if

n > Copypm ™5 (13)

we have

B

n
m

2
2m maN(Tj, \n)
T \) = |1 2

el (22) (25
<C.

Moreover, since N(T}, A,) < N(T, A\, /pj), by Assumption |3} 2. and since p; <1

2

)\—’Y
+o -

By (T, ) <1
e [PVl e

Straightforward calculation shows that

1
2r+~v+1

\/ =0(1 fl,>n", pg>—""" . 14
ln)\n ()’ 1 —n 7/8—2r+7+1 ( )

Thus, ensures By, (T, A\p,) = O(1). Finally, on each local set we have the requirement
In < min, which is implied by

n ~

=o(1), ifl,>n", 8>

and

2

ln<n ~ 2t |

~

Together with we get a sharp bound

1
ln ~ n2rFv+l |

E Probabilistic Inequalities

In this section we recall some well-known probabilistic inequalities.

Proposition 7 ([2]). For n € N, X\ € (0,1] and n € (0,1], one has with probability at least
1—mn:

T+ 272 (T = S53) o < 2log(2™) (%* - A)) |

Proposition 8 ([2], Proposition 5.3). For any A € (0,1] andn € (0,1) one has with probability
at least 1 —n:

(T +X)"HT = T)| g < 2log(207) (fﬁ MZA,A)) |

10



Proposition 9 ([3]). Define

2
2 N(T, \)
B, (T, N\ = |1 — 1
(T, 2) + <n)\ + ni ) (15)
For any A > 0, n € (0,1], with probability at least 1 —n one has
(T + A)"H(T + N)|| < 8log?(2n ") Bu(T, ) . (16)

Lemma 5. Let m € N and A, be defined by (12)). Then for any j € [m] and n > ng

B (T, An) < 2.

Here, ng depends on the number m of subsets and the model parameter R, o,~v,r and is explicitly

given in .

Proof of Lemma[j Recall that we assume N(T',\) < Cy ™7, for some b > 1, C, < oo. Thus,
by Lemma [I] we have for any j € [m]

N(T;,A) < N(T,Mpj) < Cypj A7

and thus N(T5 ) .
mAG, An My —(1+7)
— 2 < COypi—A V< =
n\p, =Pt An < 2’
provided
R 2(“54-1)
n>Q2Cpm) w2
o
Moreover,
2m < 1
nh, 2
provided

2

2r+y+1 R\ 2r++
n > (4m) 21 < ) .

g

Finally, setting pmas = max(p1, ..., pm), if

. a2 . (3+1)
n>ng = (4m) T H max ( (R/0)7 5, (pmaz Cy) 5 (RJo) o ) (17)
we have
B (TjAn) <14 (242 g
m Jr\n) = 2 2 - Y
uniformly for any j € [m)]. O

Lemma 6. If )\, is defined by
Bn(T, M) <2,
provided n is sufficiently large.

Proof of Lemmalf. The proof is a straightforward calculation using Definition and recall-
ing that N(7,\) < C,A™7 . O

11



F Miscellanea

Proposition 10 (Cordes Inequality,[I], Theorem 1X.2.1-2). Let A, B be two bounded, self-
adjoint and positive operators on a Hilbert space. Then for any s € [0, 1]:

|A°B°|| < [[AB][” . (18)

Lemma 7. Let X be a non-negative random variable with P[X > Clog"(kn=')] < n for any
n € (0,1]. Then E[X] < Cul'(u).

Proof. Apply E[X] = [(*P[X > t]dt. O
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