
Bhaskar Mukhoty, Govind Gopakumar, Prateek Jain, Purushottam Kar

A IRLS and the Scaled Huber Loss - Supplementary Details

We recapitulate below the definitions of the Huber loss, the scaled (and translated) Huber loss and, given a
model w0 and data (xi, yi)

n
i=1, other allied functions.

hε(x) =

{
1
2x

2 |x| ≤ ε
ε |x| − 1

2ε
2 |x| > ε

fε(x) =

{
1
2

(
x2

ε + ε
)
|x| ≤ ε

|x| |x| > ε

gε(x; a) :=
1

2

(
x2

max {|a| , ε}
+ max {|a| , ε}

)
`ε(w) :=

1

n

n∑
i=1

fε (〈w,xi〉 − yi)

℘ε(w; w0) :=
n∑
i=1

gε
(
〈w,xi〉 − yi;

〈
w0,xi

〉
− yi

)
The claim that M -truncated IRLS minimizes ℘ 1

M
(w; w0) to obtain the next model can be easily verified using

the equivalence between the truncation and regularization techniques explained in Footnote 1 (see §5 for the
footnote). In the following, we establish that gε(·; ·) is a valid majorizer for fε for any ε > 0.

Claim 3. For any a, x ∈ R, ε > 0, we have gε(a; a) = fε(a) as well as gε(x; a) ≥ fε(x).

Proof. We have, for the first claim,

gε(a; a) =
1

2

(
a2

max {|a| , ε}
+ max {|a| , ε}

)
=

{
1
2

(
a2

ε + ε
)
|a| ≤ ε

|a| |a| > ε
= fε(a).

For the second claim, we consider two simple cases

Case 1 |x| > ε : In this case we have fε(x) = |x| and we always have 1
2

(
x2

max{|a|,ε} + max {|a| , ε}
)
≥ |x|.

Case 2 |x| ≤ ε : In this case denote b = max {|a| , ε}. Then we have b ≥ ε ≥ |x| which gives us x2 ≤ bε. Thus,

we have gε(x; a)− fε(x) = 1
2

(
x2

b + b
)
− 1

2

(
x2

ε + ε
)

= (b−ε)(bε−x2)
2bε ≥ 0.

The following claim shows that we have f ′ε(x)|x=a = g′ε(x; a)|x=a for any ε, a. This immediately establishes that
∇℘ε(w0; w0) = ∇`ε(w0) for any model w0.

Claim 4. For any a, x ∈ R, ε > 0, we have f ′ε(x)|x=a = g′ε(x; a)|x=a.

Proof. We have g′ε(x; a) = x
max{|a|,ε} which gives us

g′ε(x; a)|x=a =

{
a
ε |a| ≤ ε
sign(a) |a| > ε,

whereas we have

f ′ε(x) =

{
x
ε |x| ≤ ε
sign(x) |x| > ε

,

which establishes the claim.
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B Supporting Results

In this section we prove a few results used in the convergence analysis of STIR.

Lemma 5. Suppose we have data covariates X = [x1, . . . ,xn] generated from an isotropic but otherwise arbitrary
sub-Gaussian distribution. Then for any fixed set S ⊂ [n] and n = Ω

(
d+ log 1

δ

)
, with probability at least 1− δ,

0.99 |S| ≤ λmin(XSX
>
S ) ≤ λmax(XSX

>
S ) ≤ 1.01 |S| ,

where the constant inside Ω (·) depends only on the sub-Gaussian distribution and universal constants.

Proof. This is a special case of [6, Lemma 16] for isotropic distributions. Note that since our adversary is partially
adaptive, the sets of good and bad points G,B are fixed and this lemma applies to both G and B.

Lemma 6. Suppose our data covariates x1, . . . ,xn are generated from a sub-Gaussian distribution with sub-
Gaussian norm R. Then with probability at least 1−δ, we have RX := maxi∈[n] ‖xi‖2 ≤ ‖µ‖2+O

(
R
√
d+ log n

δ

)
.

Proof. If x is R-sub-Gaussian with mean µ, then for any unit vector v ∈ Sd−1, 〈v,x− µ〉 is centered as well as
2R-sub-Gaussian which gives us

P [|〈v,x− µ〉| ≥ t] ≤ 2 exp
[
−t2/2R2

]
If v1,v2 ∈ Sd−1, such that

∥∥v1 − v2
∥∥

2
≤ 1

2 , then we have
∣∣〈v1 − v2,x− µ

〉∣∣ ≤ 1
2 · ‖x− µ‖2. Thus, taking a

union bound over a 1/2-net over Sd−1 gives us

P
[

max
v∈Sd−1

|〈v,x− µ〉| ≥ 1

2
· ‖x− µ‖2 + t

]
= P [‖x‖2 ≥ ‖µ‖2 + 2t] ≤ 2 · 5d exp

[
−t2/2R2

]
Taking t2 = 2R2(d log 5 + log n

δ + log 2) proves the result.

P
[
max
i∈[n]

‖xi‖2 > ‖µ‖2 +R

√
2
(
d log 5 + log

n

δ
+ log 2

)]
≤ δ

In the following, we establish that the scaled Huber loss is Lipschitz. This will be helpful in transferring our
convergence guarantees to those with respect to the Huber and absolute loss functions.

Lemma 7. For any ε > 0, we have |`ε(w)− `ε(w′)| ≤ ‖w −w′‖2 ·
√

1.01.

Proof. The function fε(·) is clearly 1-Lipschitz for any ε > 0. This means that we have

|`ε(w)− `ε(w′)| ≤
1

n

n∑
i=1

|〈w,xi〉 − 〈w′,xi〉| =
1

n

∥∥X>(w −w′)
∥∥

1
≤ 1√

n

∥∥X>(w −w′)
∥∥

2

≤ 1√
n
‖X‖2 ‖w −w′‖2 ≤ ‖w −w′‖2 ·

√
1.01,

where the last step follows due to Lemma 5.

C Convergence Analysis - Supplementary Details

We begin by restating Theorem 1, the main result that we will prove in this section.

Theorem 1. Suppose we have n data points with the covariates xi sampled from a sub-Gaussian distribution D
and an α fraction of the data points are corrupted. If STIR (or STIR-GD) is initialized at an (arbitrary) point
w0, with an initial truncation that satisfies M1 ≤ 1

‖w0−w∗‖2
, and executed with an increment η > 1 such that

we have α ≤ c
2.88η+c , where c > 0 is a constant that depends only on D, then for any ε > 0, with probability at

least 1−exp
(
−Ω

(
n− d log(d+ n) + log 1

M1ε

))
, after K = O

(
log 1

M1ε

)
stages, we must have

∥∥wK −w∗
∥∥

2
≤ ε.

Moreover, each stage consists of only O (1) iterations.
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Proof. As mentioned before, notice that this is indeed a global convergence guarantee since it places no restrictions
on the initial model w0. The only requirement is that the accompanying initial truncation parameter M1

complement the model initialization by satisfying M1 ≤ 1
‖w0−w∗‖2

. In particular, if initialized at the origin, as

Algorithms 1 and 2 do, we need only ensure M1 ≤ 1
RW

where RW = ‖w∗‖2. This can be done using a simple
binary search to identify an appropriate value of M1. Recall that both STIR and STIR-GD operate in stages. We
introduce a notion of a well-initialized stage below.

Definition 2 (Well-initialized Stage). A stage in the execution of STIR or STIR-GD is said to be well-initialized
if, given the truncation parameter MT which will be used during that stage, at the beginning of that stage T , we
are in possession of a model wT,1 that satisfies

∥∥wT,1 −w∗
∥∥

2
≤ 1

MT
.

Note that the initialization of STIR and STIR-GD with respect to the setting of M1 ensure M1 ≤ 1
‖w0−w∗‖2

which

implies that the very first stage is always well-initialized. Now, Lemmata 8 and 9 show that, if the preconditions
of this theorem are satisfied, then a stage T , started off with a model wT =: wT,1 (see Algorithm 1, line 3) and
a truncation parameter MT that satisfy the well-initialized condition i.e.

∥∥wT,1 −w∗
∥∥

2
≤ 1

MT
, will ensure with

probability at least 1 − exp (−Ω (n− d log(d+ n))), that there exists an upper bound of t0 = O (1) iterations,
such that we are assured that

∥∥wT,τ −w∗
∥∥

2
≤ 1

ηMT
for all τ ≥ t0.

An application of the triangle inequality shows that we will have
∥∥wT,t0 −wT,t0+1

∥∥
2
≤ 2

ηMT
which implies (see

Algorithm 1, line 5) that we will exit this stage at the (t0 + 1)th inner iteration. However, notice that at this
point we are endowed with

∥∥wT+1,1 −w∗
∥∥

2
=
∥∥wT+1 −w∗

∥∥
2

=
∥∥wT,t0+1 −w∗

∥∥
2
≤ 1

ηMT
= 1

MT+1
. Note that

this means that stage (T + 1) is well-initialized too.

Thus, whenever a stage T is well-initialized, with probability at least 1 − exp (−Ω (n− d log(d+ n))), we have∥∥wT+1,1 −w∗
∥∥

2
≤ 1

η

∥∥wT,1 −w∗
∥∥

2
. Since we always set η > 1, there exists an upper bound T0 = O

(
log 1

M1ε

)
on the number of stages. Thus, an application of union bound shows that we must have

∥∥wT0+1,1 −w∗
∥∥

2
≤ ε

with probability at least 1− exp
(
−Ω (n− d log(d+ n)) + log 1

M1ε

)
= 1− exp(−Ω̃ (n)) for all ε = 1

nO(1) .

Lemma 8. Suppose we have n data points with the covariates xi sampled from a sub-Gaussian distribution
D and an α fraction of the data points are corrupted. Suppose we initialize a stage T within an execution of
STIR with truncation level M , increment parameter η, and a model wT =: wT,1 such that α ≤ c

2.88η+c and

‖w −w∗‖2 ≤
1
M , then with probability at least 1 − exp (−Ω (n− d log(d+ n))), there exists an upper bound of

t0 = O (1) iterations, such that we are assured that
∥∥wT,τ −w∗

∥∥
2
≤ 1

ηM for all τ ≥ t0. Here c is the constant

of the WSC property and depends only on the distribution D (see Lemma 12).

Proof. Let wT,τ be a model encountered by STIR within this stage and let r = X>wT,τ −y denote the residuals

due to wT,τ and S = diag(s) denote the diagonal matrix of weights where si = min
{

1
|ri| ,M

}
. Then STIR will

choose as the next model wT,τ+1 = (XSX>)−1XSy = w∗ + (XSX>)−1XSb which gives us

∥∥wT,τ+1 −w∗
∥∥

2
≤

‖XSb‖2
λmin(XSX>)

Now by Lemma 5, with probability at least 1− exp(−Ω (n− d)), we have ‖XB‖2 =
√
λmax(XBX>B ) ≤

√
1.01B.

By Lemma 10 we have, again with probability at least 1− exp(−Ω (n− d))

‖Sb‖2 ≤
√

4B(1 + 1.01M2 ‖w −w∗‖22) ≤ 2
√

2.01B

It should be noted that Lemma 10 relies precisely on Lemma 5 to derive its confidence assurance. Since the
nature of Lemma 5 is such that it need be established only once, and not repeatedly for every iteration, we have,
with probability at least 1 − exp(−Ω (n− d)), for all iterations within this stage (actually all iterations across
all stages), both Lemma 10 and Lemma 5 hold simultaneously.

Using Lemma 12, with probability at least 1 − exp (−Ω (n− d log(d+ n))), we have λmin(XSX>) ≥
λmin(XGSGX

>
G ) ≥ 0.99c · GM . Note that since all models wT,τ , τ ≥ 1 in this stage will at least satisfy
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∥∥wT,τ −w∗
∥∥

2
≤ 1

M (since the initial model wT,1 satisfies this by assumption and STIR offers monotonic conver-
gence), the result of Lemma 12 applies uniformly to all these models and need not be applied separately to each
model in this stage. Using these results to upper bound ‖XSb‖2 and lower bound λmin(XSX>) shows that at
either we must have ∥∥wT,τ+1 −w∗

∥∥
2
≤ 2B

√
2.0301

0.99c ·GM
or else if the above is not true, then we must instead have∥∥wT,τ+1 −w∗

∥∥
2
≤ 0.99 · ‖w −w∗‖2

Note that since we have α ≤ c
2.88η+c , we get 2B

√
2.0301

0.99c·GM ≤ 1
ηM . Thus, it is assured that after t0 = O (log η) = O (1)

iterations, iterates wT,τ of STIR will satisfy
∥∥wT,τ −w∗

∥∥
2
≤ 1

ηM for all τ ≥ t0

Lemma 9. Suppose we have n data points with the covariates xi sampled from a sub-Gaussian distribution
D and an α fraction of the data points are corrupted. Suppose we initialize a stage T within an execution of
STIR-GD with truncation level M , increment parameter η, and a model wT =: wT,1 such that α ≤ c

2.88η+c and

‖w −w∗‖2 ≤
1
M , then with probability at least 1 − exp (−Ω (n− d log(d+ n))), there exists an upper bound of

t0 = O (1) iterations, such that we are assured that
∥∥wT,τ −w∗

∥∥
2
≤ 1

ηM for all τ ≥ t0.

Proof. As observed before, all models wT,τ , τ ≥ 1 in this stage at least satisfy
∥∥wT,τ −w∗

∥∥
2
≤ 1

M since the initial

model wT,1 satisfies this by assumption and we will see below that STIR-GD offers monotonic convergence. Thus,
Lemma 12 applies uniformly to all these models and thus, with probability at least 1−exp (−Ω (n− d log(d+ n))),
for all τ ≥ 1, the function ℘ 1

M
(·,wT,τ ) (refer to §6 for notation) is γ-strongly convex for γ ≥ 0.99c ·GM .

Similarly, Lemma 5 tells us that, again with probability at least 1− exp (−Ω (n− d log(d+ n))), for all τ ≥ 1,the
function ℘ 1

M
(·,wT,τ ) is δ-strongly smooth for δ ≤ 1.01Mn. From now on, we will be using the shorthand

℘(·) := ℘ 1
M

(·,wT,τ ) to avoid notational clutter.

If we denote gt := ∇℘(wT,τ ) = ℘ 1
M

(wT,τ ,wT,τ ), then it is clear that STIR-GD will choose as the next model as

wT,τ+1 := wT,τ− C
Mn ·g

t. For sake of notational simplicity, we will abbreviate w := wT,τ ,w+ := wT,τ+1,g := gt.
Then, applying strong smoothness tells us that

℘(w+)− ℘(w) ≤
〈
g,w+ −w

〉
+
δ

2

∥∥w+ −w
∥∥2

2

=
〈
g,w+ −w∗

〉
+ 〈g,w∗ −w〉+

δ

2

∥∥w+ −w
∥∥2

2

=
Mn

C
·
〈
w −w+,w+ −w∗

〉
+ 〈g,w∗ −w〉+

δ

2

∥∥w+ −w
∥∥2

2

=
Mn

2C

(
‖w −w∗‖22 −

∥∥w+ −w∗
∥∥2

2

)
+ 〈g,w∗ −w〉+

(
δ

2
− Mn

2C

)∥∥w+ −w
∥∥2

2

≤ Mn

2C

(
‖w −w∗‖22 −

∥∥w+ −w∗
∥∥2

2

)
+ 〈g,w∗ −w〉 ,

where the fifth step holds for any C ≤ Mn
δ ≤ 0.99. Strong smoothness on the other hand tells us that

〈g,w∗ −w〉 ≤ ℘(w∗)− ℘(w)− γ

2
‖w −w∗‖22

Combining the above two results gives us

℘(w+)− ℘(w∗) ≤ Mn

2C

(
‖w −w∗‖22 −

∥∥w+ −w∗
∥∥2

2

)
− γ

2
‖w −w∗‖22

Now, we can either have ℘(w+) − ℘(w∗) ≥ 0 in which case we get ‖w+ −w∗‖2 ≤
√

1− Cγ
Mn ‖w −w∗‖2 ≤√

1− 0.99cCG
n ‖w −w∗‖2 or else ℘(w+)− ℘(w∗) < 0 in which case applying strong convexity once again yields

γ

2

∥∥w+ −w∗
∥∥2

2
≤ ℘(w+)− ℘(w∗) +

〈
∇℘(w∗),w∗ −w+

〉
≤
〈
∇℘(w∗),w∗ −w+

〉
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Now notice that ∇℘(w∗) = XSb and Lemmata 10 and 5 tell us that ‖XSb‖2 ≤ 2B
√

5.05 which give us

‖w+ −w∗‖2 ≤
2B
√

2.0301
γ ≤ 2B

√
2.0301

0.99cGM < 1
ηM whenever B

G ≤
0.99c

2η
√

2.0301
. This completes the proof of the result

upon making similar arguments as those made in the proof of Lemma 9.

C.1 Bounding the Weights on Bad Points

The following lemma establishes that neither STIR nor STIR-GD put too much weight on bad points.

Lemma 10. Suppose during the execution of STIR or STIR-GD, we encounter a model w while the truncation
parameter is M . Denote ‖w −w∗‖2 = ε and let S = diag(s) be the diagonal matrix of M -truncated weights
assigned due to residuals induced by w. Then, with probability at least 1− exp(−Ω (n− d)), we must have

‖Sb‖22 ≤ 4B(1 + 1.01M2ε2),

where we recall that b denotes the vector of corruptions.

Proof. Let ∆ := w−w∗ and let bi denote the corruption on the data point xi. The proof proceeds via a simple
case analysis

Case 1: |bi| ≤ 2 |∆ · xi| In this case we simply bound (sibi)
2 ≤M2b2i ≤ 4M2(∆ · xi)2.

Case 2: |bi| > 2 |∆ · xi| In this case we have |ri| = |∆ · xi − bi| ≥ |bi| − |∆ · xi| ≥ |bi|2 and thus we must have
si ≤ 2

|bi| (due to possible truncation) and thus (sibi)
2 ≤ 4.

Thus, we get

‖Sb‖22 =
∑
i∈B

(sibi)
2 ≤ 4 ·

∑
i∈B

max
{

1,M2(∆ · xi)2
}
≤ 4(B +M2ε2λmax(XBX

>
B )) ≤ 4(B + 1.01M2ε2B),

where the last step follows due to Lemma 5 which holds with probability at least 1−exp(−Ω (n− d)) and finishes
the proof.

C.2 Convergence with respect to Huber and Absolute Loss

A relatively straightforward application of Theorem 1 alongwith some Lipschitzness properties allows us to show
that STIR and STIR-GD also ensure convergence to the optimal objective value with respect to the Huber and
absolute loss functions. These are widely used in robust regression applications.

Theorem 11. Under the same preconditions as those in Theorem 1, we are assured with probability at least

1− exp(−Ω̃ (n)), that after K = O
(

log 1
M1ε

)
stages, both STIR and STIR-GD must produce a model wK so that

1. `ε(w
K) ≤ `ε(w∗) +

√
1.01ε

2. 1
n

∥∥X>wK − y
∥∥

1
≤ 1

n

∥∥X>w∗ − y
∥∥

1
+ 3
√

1.01
2 ε.

Proof. The first part follows directly from Lemma 7 and Theorem 1. The second part follows due to the fact
that |x| ≤ fε(x) ≤ |x|+ ε

2 for any ε > 0 and thus,

1

n

∥∥X>wK − y
∥∥

1
≤ `ε(wK) ≤ `ε(w∗) +

√
1.01ε ≤ 1

n

∥∥X>w∗ − y
∥∥

1
+

3
√

1.01

2
ε,

where the second inequality in the above chain follows from part 1 of this claim.
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D Establishing WSC/WSS - Supplementary Details

Recall that for any r > 0 and M > 0, SM (r) denotes the set of all diagonal M -truncated weight matrices STIR
could possibly generate with respect to models residing in the radius R ball centered at w∗ i.e.

SM (r) :=

{
S = diag(s), si = min

{
1

|〈w,xi〉 − yi|
,M

}
,w ∈ B2(w∗, r)

}
,

then we have the following result.

Lemma 12. Suppose the data covariates X = [x1, . . . ,xn] are generated from an isotropic R-sub-Gaussian
distribution D, and G denotes the set of uncorrupted points (as well as the size of that set) then there exists a
constant c that depends only on the distribution D such that for any fixed value of M > 0,

P
[
∃S ∈ SM

(
1
M

)
: λmin(XGSGX

>
G ) < 0.99c ·GM

]
P
[
∃S ∈ SM

(
1
M

)
: λmax(XGSGX

>
G ) > 1.01 ·GM

] } ≤ exp (−Ω (n− d log(d+ n))) ,

where the constants inside Ω (·) are clarified in the proof. In particular, if D is the standard Gaussian N (0, Id),
then we can take c = 0.96.

Proof. The bound for the largest eigenvalue follows directly due to the fact that all weights are upper bounded
by M and hence XGSGX

>
G � M · XGX

>
G and applying Lemma 5. For the bound on the smallest eigenvalue,

notice that Lemma 14 shows us that for any fixed S ∈ SM ( 1
M ), i.e. a set of M -truncated weights that correspond

to some fixed model w ∈ B2

(
w∗, 1

M

)
, we have

P
[
λmin(XGSGX

>
G ) < 0.995c ·GM

]
≤ 2 · 9d exp

[
−mn(0.005c)2

8R4

]
Recall that we let RX := maxi∈[n] ‖xi‖2 denote the maximum Euclidean length of any covariate. However,

Lemma 15 shows us that if w1,w2 ∈ B2

(
w∗, 1

M

)
are two models such that

∥∥w1 −w2
∥∥

2
≤ τ then, conditioned

on the value of RX , the following holds almost surely.∣∣λmin(XGS
1
GX
>
G )− λmin(XGS

2
GX
>
G )
∣∣ ≤ 2GτM2R3

X

This prompts us to initiate a uniform convergence argument by setting up a τ -net over B2

(
w∗, 1

M

)
for τ =

c
400R3

XM
. Note that such a net has at most

(
800R3

X

c

)d
elements by applying standard covering number bounds

for the Euclidean ball [28, Corollary 4.2.13]. Taking a union bound over this net gives us

P
[
∃S ∈ SM

(
1

M

)
: λmin(XGSGX

>
G ) < 0.99c ·GM

]
≤ 2 ·

(
7200R3

X

c

)d
exp

[
−mn(0.005c)2

8R4

]
≤ exp (−Ω (n− d log(d+ n))) ,

where in the last step we used Lemma 6 to bound RX = O
(
R
√
d+ n

)
with probability at least 1− exp(−Ω (n)).

For the specific bound on the constant c for various distributions, including the Gaussian distribution, we refer
the reader to Section D.1.

The proof of the above result relies on several intermediate results which we prove in succession below. In the
first result Lemma 13, we establish expected bounds on the extremal singular values of the matrix XGSGX

>
G

corresponding to a fixed model w ∈ B2

(
w∗, 1

M

)
. In the next result Lemma 14, we establish the same result, but

this time with high probability instead of in expectation. The next result Lemma 15 establishes that extremal
singular values corresponding to two models close to each other must be (deterministically) close.

Lemma 13 (Pointwise Expectation). With the same preconditions as in Lemma 12, there must exist a constant
c > 0 that depends only on D such that for any fixed S ∈ SM ( 1

M ), and fixed vector unit v ∈ Sd−1, we have

c ·GM ≤ E
[
v>XGSGX

>
Gv
]
≤ GM.

In particular, if D is the standard Gaussian N (0, Id), then we can take c = 0.96.



Bhaskar Mukhoty, Govind Gopakumar, Prateek Jain, Purushottam Kar

Proof. Let x ∼ D and let y = 〈w∗,x〉. Then if we let ∆ := w−w∗

‖w−w∗‖2
(note that ‖w −w∗‖ ≤ 1

M ), then we have

s = min
{

1
|〈w,x〉−y| ,M

}
≥M ·min

{
1

|〈∆,x〉| , 1
}

as well as s ≤M . Then by linearity of expectation we have

E
[
v>XGSGX

>
Gv
]

= E

[∑
i∈G

si 〈xi,v〉2
]

= G · E
[
s · 〈x,v〉2

]
≤ GM · E

[
〈x,v〉2

]
= GM,

since D is isotropic. We also get

E
[
v>XGSGX

>
Gv
]

= G · E
[
s · 〈x,v〉2

]
≥ GM · E

[
min

{
1

|〈∆,x〉|
, 1

}
· 〈x,v〉2

]
≥ c ·GM,

where, for any distribution D over Rd, we define the constant c as

c := inf
u,v∈Sd−1

{
E

x∼D

[
min

{
1

|〈u,x〉|
, 1

}
· 〈x,v〉2

]}
.

This concludes the proof. For the specific bound on the constant c for various distributions, including the
Gaussian distribution, we refer the reader to Section D.1.

Lemma 14 (Pointwise Convergence). With the same preconditions as in Lemma 12, for any fixed S ∈ SM ( 1
M ),

P
[
λmin(XGSGX

>
G ) < 0.995c ·GM

]
P
[
λmax(XGSGX

>
G ) > 1.005 ·GM

] } ≤ 2 · 9d exp

[
−mn(0.005c)2

8R4

]

Proof. Note that for any square symmetric matrix A ∈ Rd×d, we have c − δ ≤ λmin(A) ≤ λmax(A) ≤ c + δ for
some δ > 0 iff

∣∣v>Av − c
∣∣ ≤ δ for all v ∈ Sd−1 which itself happens iff ‖A− c · I‖2 ≤ δ. Now, if Nε denotes an

ε-net over Sd−1, then for any square symmetric matrix B ∈ Rd×d, we have ‖B‖2 ≤ (1− 2ε)−1 supv∈Nε
∣∣v>Bv

∣∣.
Thus, setting B = A− c · I and ε = 1/4, we have ‖A− c · I‖2 ≤ 2 supv∈N1/4

∣∣v>Av − c
∣∣.

Let x ∼ D and t =

√
min

{
1

|〈w−w∗,x〉| ,M
}
≤
√
M and for any fixed v ∈ Sd−1, let Z := t · 〈x,v〉. Then we have

‖Z‖ψ2
= sup

p≥1
p−1/2 (E [|Z|p])1/p ≤

√
M · sup

p≥1
p−1/2 (E [| 〈x,v〉 |p])1/p

= R
√
M,

where the last step follows by observing that since D is R-sub-Gaussian, ‖〈x1,v〉‖Ψ2
≤ R. Thus, Z is R

√
M -

sub-Gaussian. This implies Z2 is MR2-subexponential (see [28, Lemma 2.7.6]), as well as Z2 − EZ2 is 2MR2-
subexponential by centering and applying the triangle inequality. Note that Lemma 13 implicitly establishes
that µ := EZ2 ∈ [cM,M ]. Let Z1, Z2, . . . , ZG be independent realizations of Z with respect to a fixed vector v.
Then we have

P
[∣∣v>XGSGX

>
Gv −Gµ

∣∣ ≥ ε ·GM] = P

[∣∣∣∣∣∑
i∈G

(Z2
i − µ)

∣∣∣∣∣ ≥ ε ·GM
]

≤ 2 exp

[
−m ·min

{
(ε ·GM)2

4M2R4G
,
ε ·GM
2MR2

}]
≤ 2 exp

[
−mnε

2

8R4

]
where m > 0 is a universal constant and in the last step we used G ≥ n/2 and w.l.o.g. we assumed that ε ≤ 2R2.
Taking a union bound over all 9d elements of N1/4, we get

P
[∥∥XGSGX

>
G −Gµ · I

∥∥
2
≥ ε ·GM

]
≤ P

[
max

v∈N1/4

∣∣v>XGSGX
>
Gv −Gµ

∣∣ ≥ ε

2
·GM

]
≤ 2 · 9d exp

[
−mnε

2

8R4

]
Setting ε = 0.005c and noticing that µ ∈ [cM,M ] by Lemma 13 finishes the proof.
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Lemma 15 (Approximation Bound). Consider two models w1,w2 ∈ Rd such that
∥∥w1 −w2

∥∥
2
≤ τ and let

s1, s2 denote the M -truncated weight vectors they induce i.e. sji = min
{
M, 1
|〈wj ,xi〉−yi|

}
, j = 1, 2. Also let

S1 = diag(s1) and S2 = diag(s2). Then for any X = [x1, . . . ,xn] ∈ Rd×n such that ‖xi‖2 ≤ RX for all i,∣∣λmin(XS1X>)− λmin(XS2X>)
∣∣ ≤ 2nτM2R3

X

Proof. We have the following four cases with respect to the weights sji = min
{
M, 1
|〈wj ,xi〉−yi|

}
, j = 1, 2 these

two models generate on any data point xi ∈ B2(RX). Note that we do not assume that these data points are
generated from D, just that they are bounded inside the ball B2(RX). Also note that although

∣∣s1
i − s2

i

∣∣ ≤ M
trivially holds by virtue of truncation, such a result is not sufficient for us since our later analyses would like to
be able to show

∣∣s1
i − s2

i

∣∣ ≤ M
1000 by setting τ to be really small.

Case 1 :
∣∣〈w1,xi

〉
− yi

∣∣ ≤ 1
M and

∣∣〈w2,xi
〉
− yi

∣∣ ≤ 1
M . Here s1

i = s2
i = M i.e.

∣∣s1
i − s2

i

∣∣ = 0.

Case 2 :
∣∣〈w1,xi

〉
− yi

∣∣ > 1
M but

∣∣〈w2,xi
〉
− yi

∣∣ ≤ 1
M . In this case s2

i = M > s1
i . Thus,

∣∣s1
i − s2

i

∣∣ = M − 1

|〈w1,xi〉 − yi|
≤M − 1

|〈w2,xi〉 − yi|+ τRX
≤M − M

1 + τMRX
< 2τM2RX

Case 3 :
∣∣〈w1,xi

〉
− yi

∣∣ ≤ 1
M but

∣∣〈w2,xi
〉
− yi

∣∣ > 1
M . This is similar to Case 2 above.

Case 4 :
∣∣〈w1,xi

〉
− yi

∣∣ > 1
M and

∣∣〈w2,xi
〉
− yi

∣∣ > 1
M . In this case we have∣∣∣∣ 1

|〈w1,xi〉 − yi|
− 1

|〈w2,xi〉 − yi|

∣∣∣∣ ≤
∣∣〈w1 −w2,xi

〉∣∣
|〈w1,xi〉 − yi| · |〈w2,xi〉 − yi|

≤ 2τM2RX

This tells us that
∥∥s1 − s2

∥∥
1
≤ 2nτM2RX . Now, if we let S1 = diag(s1) and S2 = diag(s2), then for any unit

vector v ∈ Sd−1, denoting RX := maxi∈[n] ‖xi‖2 we have

∣∣v>XS1X>v − v>XS2X>v
∣∣ =

∣∣∣∣∣
n∑
i=1

(
s1
i − s2

i

)
〈xi,v〉2

∣∣∣∣∣ ≤ ∥∥s1 − s2
∥∥

1
·max
i∈[n]

〈xi,v〉2 ≤
∥∥s1 − s2

∥∥
1
·R2
X ≤ 2nτM2R3

X .

This proves that
∥∥XS1X> −XS2X>

∥∥
2
≤ 2nτM2R3

X and concludes the proof.

D.1 Calculation of Distribution-specific Constants

The WSC/WSS bounds from Lemma 12 are parametrized by a constant c that lower bounds on the singular
values of the matrix XGSGX

>
G . Recall that for any covariate distribution D, the constant is defined as

c := inf
u,v∈Sd−1

{
E

x∼D

[
min

{
1

|〈u,x〉|
, 1

}
· 〈x,v〉2

]}
.

Below we present some interesting cases where this constant is lower bounded.

Centered Isotropic Gaussian For the special case of D = N (0, Id), notice that by rotational symmetry, we
can, without loss of generality, take u = (1, 0, 0, . . . , 0) and v = (v1, v2, 0, 0, . . . , 0) where v2

1 + v2
2 = 1. Thus,

if we consider x1, x2 ∼ N (0, 1) i.i.d. then c ≥ inf(v1,v2)∈S1 f(v1, v2) where

f(v1, v2) = E
x1,x2∼N (0,1)

[
min

{
1

|x1|
, 1

}
· (v2

1x
2
1 + v2

2x
2
2 + 2v1v2x1x2)

]
= E
x1,x2∼N (0,1)

[
min

{
1

|x1|
, 1

}
· (v2

1x
2
1 + v2

2x
2
2)

]
= E
x1∼N (0,1)

[
min

{
1

|x1|
, 1

}
· (v2

1x
2
1 + v2

2)

]
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=

√
2

π

(∫ 1

0

(v2
1t

2 + v2
2)e−t

2/2dt+

∫ ∞
1

(
v2

1t+
v2

2

t

)
e−t

2/2dt

)
≥ 0.6827 · v2

1 + 0.9060 · v2
2

where in the second step we used the independence of x1, x2 and E [x2] = 0, in the third step we used
independence once more and E

[
x2

2

]
= 1, and in the last step we used standard bounds on the error function

and the exponential integral. This gives us c ≥ inf(v1,v2)∈S1

{
0.6827 · v2

1 + 0.9060 · v2
2

}
≥ 0.68.

Centered Non-isotropic Gaussian For the case of D = N (0,Σ), we have x ∼ D ≡ Σ1/2 · N (0, Id). Thus,
for any fixed unit vector v, we have 〈v,x〉 ∼ 〈ṽ, z〉 where ṽ = Σ−1/2v and z ∼ N (0, I). We also have

‖ṽ‖2 ∈
[

1√
Λ
, 1√

λ

]
where λ = λmin(Σ) and Λ = λmax(Σ). Note that we must insist on having λ = λmin(Σ) > 0

failing which, as the calculations show below, there is no hope of expecting c to be bounded away from
0. Now for any fixed vectors u,v we first perform rotations so that we have ũ = (u, 0, 0, . . . , 0) and

ṽ = (v1, v2, 0, 0, . . . , 0) where we can assume w.l.o.g. that u ≥ 0. Note that since {‖ũ‖2 , ‖ṽ‖2} ∈
[

1√
Λ
, 1√

λ

]
,

we have (v1, v2) ∈ Sr and r, u ∈
[

1√
Λ
, 1√

λ

]
. This gives us c ≥ inf(v1,v2)∈Sr f(v1, v2) where

f(v1, v2) = E
x1,x2∼N (0,1)

[
min

{
1

u · |x1|
, 1

}
· (v2

1x
2
1 + v2

2x
2
2 + 2v1v2x1x2)

]
= E
x1,x2∼N (0,1)

[
min

{
1

u · |x1|
, 1

}
· (v2

1x
2
1 + v2

2x
2
2)

]
= E
x1∼N (0,1)

[
min

{
1

u · |x1|
, 1

}
· (v2

1x
2
1 + v2

2)

]
=

1

u

√
2

π

(∫ 1
u

0

u(v2
1t

2 + v2
2)e−t

2/2dt+

∫ ∞
1
u

(
v2

1t+
v2

2

t

)
e−t

2/2dt

)

≥ 1

u

√
2

π

(∫ 1
u

0

u(v2
1t

2 + v2
2)e−

1
2 ( 1

u )
2

dt+ v2
1e
− 1

2 ( 1
u )

2

+
v2

2

2

∫ ∞
1
2 ( 1

u )
2

1

z
e−zdz

)

≥ 1

u

√
2

π

(
e−

1
2 ( 1

u )
2
(
v2

1

3u2
+ v2

2

)
+ v2

1e
− 1

2 ( 1
u )

2

+
v2

2

4
e−

1
2 ( 1

u )
2

log
(
1 + 4u2

))
≥
√

2λ

π
e−

Λ
2

(
v2

1

(
1 +

λ

3

)
+ v2

2

(
1 +

1

4
log

(
1 +

4

Λ

)))
≥
√

2λ

π
e−

Λ
2 (v2

1 + v2
2)

= r2

√
2λ

π
e−

Λ
2

≥ 1

Λ

√
2λ

π
e−

Λ
2

where in the second and third steps we used independence of x1, x2, E [x2] = 0 and E
[
x2

2

]
= 1 as before,

and in the sixth step we used lower bounds on the exponential integral.

Non-centered Isotropic Gaussian We discuss two techniques to handle the case of non-centered covariates.

• Pairing Trick This technique requires changes to the data points and relies on the fact that the
difference of two i.i.d. non-centered Gaussian random variables is a centered Gaussian random variable
with double the variance. Thus, given n covariates x1, . . . ,xn ∼ N (µ, Id) and corresponding responses

y1, . . . , yn, create n/2 data points (assume without loss of generality that n is even) x̃i =
xi−xi+n/2√

2

and ỹi =
yi−yi+n/2√

2
. Clearly x̃i ∼ N (0, 2 · Id). However, this method has drawbacks since it is likely to

increase the proportion of corrupted data points. If α fraction of the original points were corrupted, at
most 2α fraction of the new points would be corrupted.
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• Direct Centering Suppose we have data from a distribution D = N (µ, Id). As earlier, by rotational
symmetry, we can take u = (1, 0, 0, . . . , 0),v = (v1, v2, 0, 0, . . . , 0) and µ = (µ1, µ2, µ3, 0, 0, . . . , 0).
Assume ‖µ‖2 = ρ and, without loss of generality, ρ ≥ 2. Letting 〈µ,v〉 =: p ≤ ρ and x1, x2, x3 ∼ N (0, 1)
i.i.d. gives c ≥ inf(v1,v2)∈S1 f(v1, v2) where, as before, independence of x1, x2, x3 and the fact that

E [x2] = 0 and E
[
x2

2

]
= 1, gives us

f(v1, v2) = E
x1∼N (0,1)

[
min

{
1

|x1 + µ1|
, 1

}
· ((p+ v1x1)2 + v2

2)

]
Now, since (v1, v2) ∈ S1 we get two cases (recall that we have assumed w.l.o.g. ρ ≥ 2)

Case 1: v2
2 ≥ 1

2 In this case f(v1, v2) ≥ 1
2 E
x1∼N (0,1)

[
min

{
1

|x1+µ1| , 1
}]
≥ Ω

(
exp−ρ

2/2 log
(

1 + 1
ρ2

))
.

Case 2: v2
1 ≥ 1

2 In this case, if x1 ≥ 2
√

2ρ, then |v1x1 + p| ≥ v1x1

2 , as well as |x1 + µ1| ≤ 2x1.

f(v1, v2) ≥ E
x1∼N (0,1)

[
min

{
1

|x1 + µ1|
, 1

}
(p+ v1x1)2 · I

{
x1 ≥ 2

√
2ρ
}]

≥ E
x1∼N (0,1)

[
min

{
1

2x1
, 1

}
x2

1

8
· I
{
x1 ≥ max 2

√
2ρ
}]
≥ 1

16
e−4ρ2

Since the value ρ influences the final bound on c very heavily, it is advisable to avoid a large ρ value. One
way to ensure this is to algorithmically center the covariates i.e. use x̃i := xi−µ̂ where µ̂ := 1

n

∑n
i=1 xi.

This would (approximately) center the covariates and ensure an effective value of ρ ≈ O
(√

d
n

)
Bounded Sub-Gaussian Suppose our covariate distribution has bounded support i.e. supp(D) ⊂ B2(ρ) for

some ρ > 0. Assume ρ ≥ 1 w.l.o.g. Also, using the centering trick above, assume that E
x∼D

[x] = 0. Then

we have |〈u,x〉| ≤ ρ which implies min
{

1
|〈u,x〉| , 1

}
≥ 1

ρ . Let Σ denote the covariance of the distribution D

and let λ := λmin(Σ) denote its smallest eigenvalue. This gives us c ≥ 1
ρ E

x∼D

[
〈x,v〉2

]
≥ λ

ρ .

E Corruptions and Dense Noise - Supplementary Details

In this section, we will provide details of the convergence analysis of STIR and STIR-GD in the setting where
even the “good” points experience sub-Gaussian noise. Thus, we will assume that our data is generated as
y = X>w∗ + b + ε where, as before ‖b‖0 ≤ α · n and ε ∼ Dε where Dε is a σ-sub-Gaussian distribution with
zero mean and real support. As mentioned before, we can tolerate noise with non-zero mean as well, by using
the same pairing trick we used to center the covariates in Appendix D.1. This would have a side effect of at most
doubling the corruption rate α. We will denote, as before B := supp(b) and G := [n] \ B. Our covariates will
continue to be sampled from an R sub-Gaussian distribution D with support over Rd. We (re)state the main
result of this section below.

Theorem 2. Suppose we have n data points with the covariates xi sampled from a sub-Gaussian distribution D
and an α fraction of the data points are corrupted with the rest subjected to sub-Gaussian noise sampled from a
distribution Dε with sub-Gaussian norm σ. If STIR (or STIR-GD) is initialized at an (arbitrary) point w0, with
an initial truncation that satisfies M1 ≤ 1

‖w0−w∗‖2
, and executed with an increment η > 1 such that we have

α ≤ cε
5.85η+cε

, where cε > 0 is a constant that depends only on the distributions D and Dε, then with probability

at least 1− exp
(
−Ω

(
n− d log(d+ n) + log 1

M1σ

))
, after K = O

(
log 1

M1σ

)
stages, each of which has only O (1)

iterations, we must have
∥∥wK −w∗

∥∥
2
≤ O (σ).

Proof. The overall proof of this result follows exactly the same way as the result in Theorem 1. We will still
utilize the notion of a well-initialized stage and establish (see Lemma 16 below) a convergence guarantee for each
well-initialized stage. However, Lemma 16 will itself require a few new results to be proved.

However, note that Lemma 8, a similar result for well-initialized stages in the setting without dense noise, required
two results, namely Lemmata 12 and 10 that established the WSC/WSS properties and bounded the weight put
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on bad points. Those results implicitly assumed that good points incur absolutely no modification to their
response value which is no longer true here since in the setting being considered here, even good points do incur
sub-Gaussian noise in their responses. Thus, we will establish below Lemmata 17 and 18 which will establish
those results in the dense noise setting. We note that a similar convergence guarantee may be established for
STIR-GD in the dense noise setting as well.

However, note that this result only guarantees a convergence to
∥∥wK,1 −w∗

∥∥
2
≤ O (σ) and thus, does not ensure

a consistent solution. A technical reason for this is because Lemma 17 holds true only for values of M ≤ O
(

1
σ

)
which restricts the application of this result to offer errors much smaller than σ. It would be interesting to show,
as [5] do, that STIR, or a variant, does offer consistent estimates.

For sake of notational simplicity, we will assume that εB = 0 by shifting any sub-Gaussian noise a bad point, say
j ∈ B does incur, into the corruption value corresponding to that point i.e. bj . This is without loss of generality
since we impose no constraints on the corruptions other than that they be sparse, in particular the corruptions
need not be bounded and can thus, absorb sub-Gaussian noise values into them.

Lemma 16. Suppose we have n data points with the covariates xi sampled from a sub-Gaussian distribution
D and an α fraction of the data points are corrupted with the rest experiencing noise generated i.i.d. from a
distribution Dε with sub-Gaussian norm σ. Suppose we initialize a stage T within an execution of STIR with
truncation level M ≤ cε

8ησ , increment parameter η, and a model wT =: wTT, 1 such that α ≤ cε
5.85η+cε

and

‖w −w∗‖2 ≤
1
M , then with probability at least 1 − exp (−Ω (n− d log(d+ n))), there exists an upper bound of

t0 = O (1) iterations, such that we are assured that
∥∥wT,τ −w∗

∥∥
2
≤ 1

ηM for all τ ≥ t0. Here cε is the constant

of the WSC property and depends only on the distributions D and Dε (see Lemma 17).

Proof. Let wT,τ be a model encountered by STIR within this stage and let r = X>wT,τ −y denote the residuals

due to wT,τ and S = diag(s) denote the diagonal matrix of weights where si = min
{

1
|ri| ,M

}
. Then STIR will

choose as the next model wT,τ+1 = (XSX>)−1XSy = w∗ + (XSX>)−1XS(b + ε) which gives us

∥∥wT,τ+1 −w∗
∥∥

2
≤
‖XS(b + ε)‖2
λmin(XSX>)

Now by Lemma 5, with probability at least 1− exp(−Ω (n− d)), we have ‖XB‖2 =
√
λmax(XBX>B ) ≤

√
1.01B.

By Lemma 10, with the same probability, we have

‖Sb‖2 ≤
√

4B(1 + 1.01M2 ‖w −w∗‖22) ≤ 2
√

2.01B,

whereas by Lemma 18, as we have restricted M ≤ 1
8σ , we have, yet again with the same probability,

‖XSε‖2 = ‖XGSGεG‖ ≤ 4MGσ
√

1.01 ≤ cε
√

1.01

2η
G,

where the first equality follows due to our convention that supp(ε) = G since for bad points in the set B,
we clubbed any sub-Gaussian noise into the corruption itself, thus leaving εB = 0. Now, by Lemma 17, with
probability at least 1 − exp (−Ω (n− d log(d+ n))), we have λmin(XSX>) ≥ λmin(XGSGX

>
G ) ≥ 0.99cε · GM .

This give us ∥∥wT,τ+1 −w∗
∥∥

2
≤

2B
√

2.0301 + cε
√

1.01
2η G

0.99cε ·GM
≤ 2B

√
2.0301

0.99cε ·GM
+

√
1.01

1.98η ·M

Now, since we have α ≤ cε
5.85η+cε

, we also have 2B
√

2.0301
0.99cε·GM ≤

(
1−

√
1.01

1.98

)
1
ηM and thus,

2B
√

2.0301+ cε
√

1.01
2η G

0.99cε·GM ≤ 1
ηM .

Arguing as we did in the proof of Lemma 8, we must either have ‖w+ −w∗‖2 ≤
2B
√

2.0301
0.9801cε·GM +

√
1.01

1.9602η·M and if
that does not happen, we must instead have∥∥wT,τ+1 −w∗

∥∥
2
≤ 0.99 ·

∥∥wT,τ −w∗
∥∥

2

This proves the claimed result.



Globally-convergent Iteratively Reweighted Least Squares

E.1 Establishing WSC/WSS in Presence of Dense Noise

We will rework a counterpart to Lemma 12 in this section.

Lemma 17. Given the problem setting above, then there exists a constant cε > 0 that depends only on the
distributions D,Dε such that for any M ∈

[
0, 1

σ

]
, we have

P
[
∃S ∈ SM

(
1

M

)
: λmin(XGSGX

>
G ) < 0.99cε ·GM

]
≤ exp (−Ω (n− d log(d+ n)))

In particular, for standard Gaussian covariates and Gaussian noise with variance σ2, we can take cε ≥ 0.52.

Proof. Let x ∼ D, ε ∼ Dε and let y = 〈w∗,x〉 + ε be the response of an uncorrupted data point and w ∈
B2

(
w∗, 1

M

)
be any fixed model. Then if we let ∆ := w−w∗, the weight s that the model w would cause STIR

to put on this (clean) data point must satisfy s ≥ min
{

1
|〈∆,x〉−ε| ,M

}
. This gives us, for any fixed v ∈ Sd−1,

E
[
v>XGSGX

>
Gv
]
≥ cε ·GM,

where we define,

cε := inf
0≤r≤ 1

M

u,v∈Sd−1

{
E

x∼D,ε∼Dε

[
min

{
1

|Mr 〈u,x〉 −Mε|
, 1

}
· 〈x,v〉2

]}

We analyze the constant c for the Gaussian case at the end of the proof. For now, we proceed as in Lemma 14
and realize that the sub-Gaussian norm calculations continue to hold in this case since they simply upper bound
the weights by M , and get

P
[
λmin(XGSGX

>
G ) < 0.995cε ·GM

]
≤ 2 · 9d exp

[
−mn(0.005cε)

2

8R4

]
After this we notice that the proof of Lemma 15 pays no heed to corruptions or additional noise and hence,
continues to hold in this setting too. Proceeding as in the proof of Lemma 12 to set up a τ -net over B2

(
w∗, 1

M

)
and taking a union bound over this net finishes the proof.

For the special case of D = N (0, Id) and Dε = N (0, σ2), by rotational symmetry, we can, without loss of
generality, take u = (1, 0, 0, . . . , 0) and v = (v1, v2, 0, 0, . . . , 0) where v2

1 + v2
2 = 1. Thus, if x1, x2, ε ∼ N (0, 1)

i.i.d. then c ≥ inf(v1,v2)∈S1,r∈[0, 1
M ] f(v1, v2, r) where

f(v1, v2, r) = E
x1,x2,ε∼N (0,1)

[
min

{
1

|Mrx1 −Mσε|
, 1

}
· (v2

1x
2
1 + v2

2x
2
2 + 2v1v2x1x2)

]
= E
x1,x2,ε∼N (0,1)

[
min

{
1

|Mrx1 −Mσε|
, 1

}
· (v2

1x
2
1 + v2

2x
2
2)

]
= E
x1,ε∼N (0,1)

[
min

{
1

|Mrx1 −Mσε|
, 1

}
· (v2

1x
2
1 + v2

2)

]
= v2

1 · E
x1,ε∼N (0,1)

[
min

{
1

|Mrx1 −Mσε|
, 1

}
x2

1

]
︸ ︷︷ ︸

(A)

+v2
2 · E

z∼N (0,1)

[
min

{
1

M
√
r2 + σ2 |z|

, 1

}]
︸ ︷︷ ︸

(B)

where in the second step we used the independence of x1, x2 and E [x2] = 0, in the third step we used independence
once more and E

[
x2

2

]
= 1. In the fourth step, we substituted

√
r2 + σ2z = rx1−σε and noticed that rx1−σε ∼

N (0, (r2 + σ2)) i.e. z ∼ N (0, 1). To bound (B) we notice r ≤ 1
M and M ≤ 1

σ and use standard bounds on
Gaussian and exponential integrals to get

(B) ≥ E
z∼N (0,1)

[
min

{
1√
2 |z|

, 1

}]
≥ 0.815
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To bound (A), we use the fact that pairwise orthogonal projections of a standard Gaussian vector yield indepen-
dent variables. Thus, if we denote a = Mr, b = Mσ and z = ax1−bε√

a2+b2
, w = bx1+aε√

a2+b2
, then z, w ∼ N (0, 1) as well as

z ⊥ w. Thus, we have

(A) = E
z,w∼N (0,1)

[
min

{
1

M
√
r2 + σ2 |z|

, 1

}
·
(
r2z2 + σ2w2 + 2rσzw

r2 + σ2

)]
≥ E
z,w∼N (0,1)

[
min

{
1√
2 |z|

, 1

}
·
(
r2z2 + σ2w2

r2 + σ2

)]
≥ 0.52r2

r2 + σ2
+

0.815σ2

r2 + σ2
= 0.52 +

0.295σ2

r2 + σ2

where in the second step we used M ≤ 1
σ and r ≤ 1

M , independence of z and w and the fact that E [w] =
0,E

[
w2
]

= 1 and the last step uses standard bounds on Gaussian and exponential integrals.

E.2 Bounding the Weights on Good Points

Although Lemma 10 continues to hold in this case, since good points also incur modifications to their response
values, albeit modifications that are stochastic and not adversarial, we need an analogous result for the good
points in this case as well.

Lemma 18. Suppose σ is the sub-Gaussian norm of the noise distribution Dε and the identity of the good points
G is chosen independently of the covariates. Then for any M > 0, if S is the diagonal matrix of M -truncated
weights assigned to the data points by a model w, then with probability at least 1− exp(−Ω (n− d)),

‖XGSGεG‖2 ≤ 4MGσ
√

1.01

Proof. We have, by applying Lemma 5, with probability at least 1− exp(−Ω (n− d)),

‖XGSGεG‖2 ≤
√
λmax(XGX>G ) · ‖SGεG‖ ≤

√
1.01G · ‖S‖2 ‖εG‖2 ≤

√
1.01GM · ‖εG‖2 ,

where the last inequality follows since S is a diagonal matrix and by M -truncation, the maximum value of any
weight is M . Now, since our noise is σ sub-Gaussian and unbiased, we have, for any fixed u ∈ SG−1, E [〈ε,u〉] = 0,
as well as, by applying the Hoeffding’s inequality,

P [|〈ε,u〉| ≥ t] ≤ 3 exp

(
− t2

2σ2

)
Now, if u1,u2 ∈ SG−1, such that

∥∥u1 − u2
∥∥

2
≤ 1

2 , then we have
∣∣〈u1 − u2, ε

〉∣∣ ≤ 1
2 · ‖ε‖2. Thus, taking a union

bound over a 1/2-net over SG−1 gives us

P
[
‖ε‖2 = max

u∈SG−1
〈u, ε〉 ≥ 1

2
· ‖ε‖2 + t

]
= P [‖ε‖2 ≥ 2t] ≤ 3 · 5G exp

[
−t2/2σ2

]
Setting t = σ

√
4G establishes the result.

F Robust Linear Bandits

In this section, we briefly discuss the linear contextual bandit problem with corrupted arm pulls. We refer the
reader to [19] for a more relaxed introduction to the problem as well as formal regret bounds. Indeed, the
discussion here is adapted from the discussion in [19].

F.1 Problem Setting

The stochastic linear contextual bandit framework [1, 20] considers a (possibly infinite) set of arms. Arms
correspond to various actions that can be performed by the algorithm. For instance, in a recommendation
setting, arms may correspond to various products that are available for sale, for instance, at an e-commerce
website, or in a quantitative trading setting, arms may correspond to stocks that are available for sale/purchase.
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Problem Setting 1 Adversarial Linear Bandits

for t = 1, 2, 3.. do
Player receives a set of contexts At =

{
xt,1, . . . ,xt,nt

}
⊂ Rd

Player plays an arm, x̂t ∈ At
Clean reward is generated r∗t = 〈w∗, x̂t〉+ εt conditioned on Ht
Adversary inspects x̂t, r∗t ,Ht and chooses bt //while making sure |τ ≤ t : bτ 6= 0| ≤ η · (t+ 1)
Player receives reward, rt = r∗t + bt

end for

Algorithm 4 WUCB-Lin: Weighted UCB for Linear Contextual Bandits

Input: Upper bounds σ0 (on sub-Gaussian norm of noise distribution), B (on magnitude of corruption), α0 (on fraction
of corrupted points), initial truncation M1, increment rate η

1: for t = 1, 2, . . . , T do
2: Receive set of arms At
3: Play arm x̂t = arg max

x∈At,w∈Ct−1

〈x,w〉

4: Receive reward rt
5: (ŵt, St)← STIR

(
{x̂τ , rτ}tτ=1 ,M1, η

)
//Denote St = diag(st1, s

t
2, . . . , s

t
t)

6: V t ←
∑
τ≤t s

t
τ x̂

τ (x̂τ )>, Xt ←
[
x̂1, x̂2, . . . , x̂t

]
7: w̄t ← (V t)−1XtSty
8: Ct ← {w :

∥∥w − w̄t
∥∥
V t
≤ σ0

√
d log T + α0BT}

9: end for

Every arm a is parametrized by a vector a ∈ Rd (we abuse notation to denote the arm and its corresponding
parametrization using the same notation). Recall that the set of all arms is potentially infinite. However, not
all arms may be available at every time step. For instance, an e-commerce website would not like to recommend
products not currently in stock. Similarly, stocks not currently in one’s possession cannot be sold.

At each time step t, the algorithm receives a set of nt arms (also called contexts) At =
{
xt,1, . . . ,xt,nt

}
⊂ Rd

that can be played or pulled in this round. Pulling an arm is akin o performing the action associated with that
arm, for example, recommending an item or selling a stock unit. The context set At, as well as the number
nt of contexts available can vary across time steps. The algorithm selects and pulls an arm x̂t ∈ At as per
its arm selection policy. In response, a reward rt is generated. Let Ht =

{
A1, x̂

1, r1, . . . , At−1, x̂
t−1, rt−1, At, x̂

t
}

.

F.2 Adversary Model

In the stochastic linear bandit setting, as has been studied in prior work [1, 20] , at every time step, the reward
rt is generated using a model vector w∗ ∈ Rd (that is not known to the algorithm) as follows: rt = 〈w∗, x̂t〉+ εt,
where εt is a noise value that is typically assumed to be (conditionally) centered and σ-sub-Gaussian, i.e.,
E [εt |Ht] = 0, as well as for some σ > 0, we have E [exp(λεt) |Ht] ≤ exp(λ2σ2/2) for any λ > 0.

However, recent works [19, 22] have considered settings where the rewards may suffer not only sub-Gaussian
noise, but also adversarial corruptions that are introduced by an adaptive adversary that is able to view the
on-goings of the online process and at any time instant t, after observing the history Ht and the “clean” reward
value, i.e., 〈w∗, x̂t〉 + εt, is able to add a corruption value bt to the reward. For notational uniformity, we will
assume that for time instants where the adversary chooses not to do anything, bt = 0. Thus, the final reward to
the player at every time step is rt = 〈w∗, x̂t〉+ εt + bt. This model is described in Problem Setting 1.

For sake of simplicity we will assume that, for some B > 0, the final (possibly corrupted) reward presented to
the player satisfies rt ∈ [−B,B] almost surely. The only constraint the adversary need observe while introducing
the corruptions is that at no point in the online process, should the adversary have corrupted more than an η
fraction of the observed rewards. Formally, let Gt = {τ < t : bτ = 0} and Bt = {τ < t : bτ 6= 0} denote the set
of “good” and “bad” time instances till time t. We insist that |Bt| ≤ η · t for all t.
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F.3 Notion of Regret

The goal of the algorithm is to maximize the cumulative reward it receives over the time steps
∑T
t=1 rt. However,

a more popular technique of casting this objective is in the form of cumulative pseudo regret. At time t, let
xt,∗ = arg maxx∈At 〈w∗,x〉 be the arm among those available that yields the highest expected (uncorrupted)
reward. The cumulative pseudo regret of a policy π is defined as follows

R̄T (π) =

T∑
t=1

〈
w∗,xt,∗

〉
− E [rt] .

Note that the best arm here may change across time-steps.

F.4 WUCB-Lin: An Algorithm for Robust Linear Bandits

We use the notation ‖x‖M =
√

x>Mx for a vector x ∈ Rd and a matrix M ∈ Rd×d. We reproduce, for
convenience, the WUCB-Lin algorithm in Algorithm 4. WUCB-Lin builds upon the OFUL principle [1] for linear
contextual bandits. At every step, WUCB-Lin uses rewards obtained from previous arm pulls to obtain an
estimate ŵt of the true model vector w∗.

Whereas classical algorithms utilize ordinary least squares to solve this problem, WUCB-Lin utilizes STIR (actually
STIR-GD for sake of speed) to obtain this estimate. This lends resilience to the algorithm against the (possibly
several) past arm pulls whose rewards got corrupted by the adversary. The previous work of [19] used the
TORRENT algorithm for the same purpose.

The next step in executing the OFUL principle is the construction of a confidence set. It is common to use
an ellipsoidal confidence set with the ellipsoid induced by the covariance matrix of the arm vectors pulled so
far. The work of [19] modifies this to only consider arms considered as clean by the TORRENT algorithm while
constructing the confidence ellipsoid.

Since STIR, instead of selecting a specific subset of arms like TORRENT, instead would assign weights to all
previously pulled arms, with a small weight indicating a high likelihood of the arm pull being a corrupted one
and a large weight indicating a high likelihood of the arm pull being a clean one. Thus, STIR utilizes these
weights to construct a weighted covariance matrix which is then used to define the confidence ellipsoid and carry
out the arm selection step.


