Globally-convergent Iteratively Reweighted Least Squares
for Robust Regression Problems

Bhaskar Mukhoty* Govind Gopakumar*!

{bhaskarm,govindg,purushot}@cse.iitk.ac.in

*IIT Kanpur

Abstract

We provide the first global model recovery
results for the IRLS (iteratively reweighted
least squares) heuristic for robust regression
problems. IRLS is known to offer excellent
performance, despite bad initializations and
data corruption, for several parameter esti-
mation problems. Existing analyses of IRLS
frequently require careful initialization, thus
offering only local convergence guarantees.
We remedy this by proposing augmentations
to the basic IRLS routine that not only offer
guaranteed global recovery, but in practice
also outperform state-of-the-art algorithms
for robust regression. Our routines are more
immune to hyperparameter misspecification
in basic regression tasks, as well as applied
tasks such as linear-armed bandit problems.
Our theoretical analyses rely on a novel ex-
tension of the notions of strong convexity
and smoothness to weighted strong converity
and smoothness, and establishing that sub-
Gaussian designs offer bounded weighted con-
dition numbers. These notions may be useful
in analyzing other algorithms as well.

1 Introduction

Suppose there exists an unknown gold model w*
and we are given n data points (x;,y;)l, with d-
dimensional covariates x; € R? and the real-valued
responses y; generated as y; = x; w*. However,
for an unknown set of £k < n data points iy, ...1g,
the responses get corrupted i.e. we instead receive
Yi; = x;';_w* + b;; where b;; € R is the corruption.
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Given the complete set of clean and corrupted data
points (x;,y;)"_;, can we recover the gold model w*?

This is the classical robust regression problem that
has become increasingly relevant to machine learning
and statistical estimation techniques which frequently
encounter situations where data is not trustworthy.
Works exist in settings where test data is corrupted
in order to fool a model that was learnt on clean data
[17], as well as the more challenging setting, on which
we focus, where the training data presented to the al-
gorithm is itself corrupted [9] [Tl [16].

We will seek to offer reliable model recovery despite
the presence of (possibly maliciously) corrupted data
in the training set. Settings which present corrupted
data to learning algorithms include relatively innocu-
ous instances of erasures and missing data, improperly
or mistakenly attributed data, transient or temporary
changes in user-behavior patterns, as well as deliber-
ate and malicious attempts to derail recommendation
systems and other decision-making systems using mal-
ware, click-bots and other fraudulent techniques.

Despite being a well established field, given the early
seminal contributions of Huber [I8] and Tukey [27],
robust statistics and algorithms have received renewed
interest given the threat to modern machine learning
techniques. Of the several techniques that have been
proposed for robust learning problems, one heuristic,
namely the iteratively reweighted least squares (IRLS),
remains a practitioner’s favorite owing to its ease of use
and excellent performance. The IRLS technique has
been effectively adapted to several problems, including
sparse recovery, and robust regression. The work of
[26] shows that certain biological dynamical systems
can be modeled upon the IRLS principle as well.

Our Contributions We offer several advances in the
understanding and application of the IRLS method. In
particular, we provide the first global model recovery
guarantee for IRLS for robust regression - our contribu-
tions are distinguished in the context of existing anal-
yses for IRLS in We also propose algorithmic aug-
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mentations, in particular a fast gradient-based variant,
to the basic IRLS heuristic which offer superior per-
formance compared to existing state-of-the-art robust
algorithms in terms of speed, as well as resilience to
misspecified hyperparameters. We demonstrate this
in the standard linear regression setting, as well as an
applied setting, namely linear-armed bandits.

2 Related Work

Two lines of work directly relate to our contributions:
1) robust algorithms for regression and other learning
problems, and 2) works that analyze (variants of) the
IRLS heuristic in various settings. We review both, as
well as distinguish our contributions, below.

Robust Learning Algorithms: Work on robust
statistics dates back several decades [18, 27] and is
too vast to be reviewed in detail. Recent years have
seen interest in scalable algorithms for classification
[16], principal component analysis [9], and moment es-
timation [I4]. Within the specific problem of robust
regression, two broad lines of work exist:

Covariate (feature) corruption: Results in this set-
ting usually either give only weak guarantees, or else
severely constrain data. e.g., [IIl [24] allow only a

o (1 / \/&) fraction of data to be corrupted, d being

the ambient dimensionality, whereas [15, 21] only ad-
mit covariates drawn from a Gaussian distribution.

Response (label) corruption: Variants within this set-
ting arise based on the power of the adversary intro-
ducing the corruptions, the fraction of data points that
can be corrupted, restrictions on the choice of covari-
ates, and scalability of the algorithms. Table |1 sum-
marizes these traits for a selection of algorithms. We
refer the reader to [6] [I5] for other references.

IRLS Variants and Analyses: The IRLS heuristic
has been successfully applied to several problems in-
cluding sparse recovery [4] [13], facility location prob-
lems [§] (via the Weiszfeld procedure), and optimizing
various robust cost functions, such as the L, and Hu-
ber loss functions [2, [7] 12], 25].

Some of these works are not directly relevant to robust
regression as they either operate with uncorrupted
data [8], or else assume that the noise is Gaussian
[4, 13]. Convergence guarantees for IRLS are com-
mon in these benign settings. To handle adversar-
ial corruptions, it is common to use IRLS to optimize
a robust cost function F' such as L, or Huber loss,
in the anticipation that the model so obtained, say
w = arg min F(w; {(x;,¥;)}), will ensure w ~ w*.

However, none of these works actually ensure such a re-
sult i.e. w ~ w*. Some works [7| [I2] 25] operate with

cost functions that are convex (e.g. L, for g € [1,2])
and simply show that IRLS approaches small cost func-
tion values. Other approaches [2] do work with non-
convex cost functions, but then offer only monotonicity
guarantees and no global convergence guarantees.

We bridge this gap by presenting a much stronger anal-
ysis of IRLS that guarantees global recovery of the gold
model w* under mild conditions. Key to our proof
technique is a novel concept that extends the basic
notions of strong convexity and strong smoothness to
weighted versions of the same, as well as a guarantee
that Gaussian and sub-Gaussian designs have bounded
weighted condition numbers. These results may be of
independent interest in analyzing other algorithms.

3 Notation

Bold lower-case Latin letters x,y denote vectors. x;
denotes the it coordinate of the vector x. Upper case
Latin letters A, X denote matrices. For a vector v €
R™ and set S C [n], vg denotes the vector with (vg); =
v; for ¢ € S and (vg); = 0 for j ¢ S. Similarly, for
any matrix A € R¥"™ and any set S C [n], Ag denotes
the matrix in which columns 7 € S in Ag are identical
to those in A and columns j ¢ S are filled with zeros.

Amin (X) and Apax(X) denote, respectively, the small-
est and largest eigenvalues of a square symmetric ma-
trix X. Ba(v,r) := {x e R?: [x — v|, <r} denotes
the ball of radius r centered at v. S9! denotes the
surface of the unit sphere in d dimensions. We use the
shorthand Bz (r) := Bz (0, 7).

4 Problem Formulation

Given n data points (x;,7) € RY x R, let Ry :=
max;cpy) [Xill, be the maximum Euclidean length of
any covariate, X = [X,...,X,] € R%*" be the covari-
ate matrix, and y = [y1,...,yn] € R” the response
vector. Assume that the covariates are generated as
X1,...,Xp ~ D from an unknown distribution D with
mean g € R? and sub-Gaussian norm [2§] 1Dy, < R
w* € R? will be the gold model with Ry := ||w*||,.

Noise Model: Given the data covariates and the gold
model, the responses are generated asy = X 'w* +b
where b = [b1,. .., b,] is the vector of corruptions. We
make the standard assumption that ||bl|, < o - n. Let
B := supp(b) denote the “bad” points which suffer
corruption i.e. b; # 0 for j € B (note that |B| < a-n)
and G = [n]\ B denote the “good” points where b; = 0
and thus y; = x;/ w* for i € G. To avoid clutter,
we abuse notation to denote G := |G| and B := |B)|.
The largest value of the corruption fraction o that an
algorithm can tolerate is known as its breakdown point.
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Table 1: Algorithms for the Robust Regression problem (corrupted responses). 'Please see gél for details. Algorithms
able to tolerate adaptive (as opposed to oblivious) adversaries are more resilient. A more robust algorithm can handle

larger . Sub-Gaussian covariates offer a much more flexible model than (isotropic) Gaussian covariates.

Paper Adversary Model  Breakdown point’ Covariate Model Technique
Bhatia et. al. 2015 [6] Adaptive a>0(1) sub-Gaussian Hard Thresholding (fast)
Chen & Dalalyan 2010 [10] Adaptive a>0(1) sub-Gaussian SOCP (slow)
Wright & Ma 2010 [29] Oblivious a—1 Isotropic Gaussian L regularization (slow)
This Paper Adaptive a> (1) sub-Gaussian Reweighting (fast)

Adversary Model: We will work with a partially
adaptive adversary which is compelled to choose lo-
cations of the corruptions supp(b) = B before any
data covariates have been generated or w* is revealed.
However, the adversary may fill in the corruption val-
ues at those locations with knowledge of w* and X.
Our results can be extended to a fully adaptive adver-
sary that choose supp(b) after looking at w* and X
as well, but at a cost of a smaller breakdown point «.

Key to our analyses are the notions of weighted
strong convexity and smoothness which we define be-
low. These definitions reflect the fact that IRLS solves
weighted regression problems iteratively.

Definition 1 (WSC/WSS). We say that a covariate
matriz X € R¥™ offers weighted strong convexity
(WSC) at level \g (resp. weighted strong smoothness
(WSS) at level Ag), with respect to a diagonal weight
matriz S = diag(s) € R™™™ where s; > 0,i € [n], if

)\S < /\min(XSXT) < )\max(XSXT) < AS

5 Proposed Methods

IRLS solves the robust regression problem by repeat-
edly alternating between the following two steps

1. Reweighing: Given a model w, assign every
data point a weight s; inversely proportional to

its residual w.r.t. w i.e. set s; = B 1 .
X, W—Y;

2. Weighted Least Squares: Solve a weighted
least squares problem miny > i, s;(y; — x; w)?
with above weights to obtain a new model w* =

(XSXT)~1X Sy where S = diag(s).

The intuition behind this procedure is that corrupted
points are likely to suffer large residuals and hence
get downweighted. Given that this procedure runs the
risk of divide-by-zero errors and numerical precision
issues, it is common to truncate weights by employing
a truncation parameter M while assigning Weightsﬂ to

1 M}

T & ’
X; W_yi‘

the points ie. s; = min{ However,

!Literature often cites a regularization procedure that
sets s; = 5 given a parameter 0. Setting

T =
max{|xi w—yi|,

0= ﬁ shows truncation to be equivalent to regularization.

it is suboptimal to rely on any single truncation value
M. To see why, take a hypothetical example where the
adversary introduces corruptions using a fake model w
as b, = x; (W —w*) (i.e. y; =x, W) for all i € B.

Situation 1: If we set M to a small value (aggressive
truncation), then no data point can ever hope to get a
large weight. However, convergence to w* is assured
only when points in G receive really large weights in
comparison to points in B. Setting a small value of M
thus prevents IRLS from recovering w* accurately.

Situation 2: If we always use a large value of M (lax
truncation) and are unlucky enough to initialize IRLS
close to w, then points in the set B will initially have
very small residuals, hence receive large weights (which
the large value of M will allow) whereas points in the
set G will receive comparatively smaller weights. This
will cause IRLS to gravitate towards w. This example
precludes any hope of a global convergence guarantee
and forces us to do careful initialization.

The above limitations of IRLS are well corroborated by
experiments (see . To remedy this, we propose the
STIR algorithm in Algorithm [l STIR executes IRLS,
but in stages, with initial stages employing aggressive
truncation with a small value of M and later stages
successively relaxing the truncation.

The advantage of the above augmentation is that even
if we have an unfortunate initialization, e.g. we start
at w itself, the (initially) aggressive truncation will
prevent bad points from getting large weights whereas
good points, being in majority, even though receiv-
ing relatively smaller weights, will still prevent STIR
from latching onto w and hopefully attract the proce-
dure towards the gold model w*. Subsequent stages,
where truncation is relaxed, will allow good points to
be given large weights, thus differentiating them from
bad points. This would force STIR towards w*.

Algorithm [2] presents STIR-GD, a gradient version of
STIR, that replaces weighted least squares by a much
cheaper gradient step. This benefits large datasets,
where solving weighted least squares repeatedly may
be prohibitive. We note that although stagewise IRLS
procedures have been proposed in literature [7], previ-
ous works neither give model recovery guarantees, nor
offer scalable gradient versions of IRLS.
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Algorithm 1 STIR- Stagewise-Truncated IRLS

Input: Data Xy, initial truncation M;, increment n > 1
Output: A model w

while HWT’H_I —WT’tH2 > -2 do

3

4

5: e
6: '« XTwh! -y

7

8

St «+ diag(s"), st < min { |r1¢| , MT}
: whttl  (XS'XT)7'X Sty
9: tet+1

10: end while

11: wltl  whittl
12: Mri1 < 1n- Mrp
13: end for

14: return w’

Algorithm 2 STIR-GD: STIR-Gradient Descent

Input: Data Xy, initial truncation M;, increment n > 1,
step length C
Output: A model w

]: wT,tJrl «— WT,t _ ]\jc . Xstrt
TN

//Rest of steps 1-14 remain same as in STIR

6 IRLS is Majorization-minimization
on a Scaled Huber Loss

Before presenting a convergence analysis for STIR, we
point out a curious link between IRLS, STIR and the
Huber loss function. We note that our observation
may be folklore. The Huber loss is widely used in ro-
bust regression applications [2] [7, [12] 25], particularly
those used in situations with heavy tailed noise.

12 x| <e
he(x):{ez ) |lz| <

|| — 1?2 |z| > €

The function smoothly transitions from quadratic be-
havior close to the origin, to linear far from the origin.
Now consider the following loss function

felz) = {5 (L “) 2| < e

|| |z > e

It is easily seen that f.(z) = @ + 5 and thus, fc() is
simply a scaled (and translated) version of the Huber
loss function, as well as that |z| < f(z) < |z| + §.
Now, for any a € R, e > 0, consider the function

ge(z;a) :==

3 (o el )

Given a model w® and data (x;, ;)" ;, denote

e=1.0,a=1.5

i 0 VA
-2 -€ 0 € a 2 -2 € 0 € a 2

Figure 1: A depiction of Huber h.(), scaled Huber f()
loss functions, and its majorizer g.() for various e.

Le(w)

S Jeltwix) — )

(Wi w?) =" ge ((w,x;) — yis (W', xi) — 1)
i=1
The following observations are key (see Appendix [A]).

1. 9c(-;w?) is a majorizer for £.(-) at w° Ve > 0 i.e.
pc(w; w2 > £ (w),¥w but p.(w?;w?) = £, (w?)

2. If the current model is w? then M-truncated IRLS
minimizes o1 (w;w°) to obtain the next model.

3. Vo (wow?) = Vi (w0).

Thus, IRLS can be seen as performing majorization-
minimization [23] on the scaled Huber loss ¢.(-). The
reweighing step effectively constructs the majorizer
function p.(-,w") over which the least squares step
then performs minimization. Point 3 above shows that
STIR-GD can be effectively seen as performing gradient
descent with respect to £.(wP).

This also allows us to interpret the stages of STIR as
using scaled Huber losses with successively smaller val-
ues of € (point 2 above shows that STIR sets e = ;).
Note that in the limit € — 0, £.(-) approaches the ab-
solute error function, and thus, in the limit M — oo,
STIR ends up optimizing the absolute error function.
STIR-GD can be seen as simply replacing the mini-

mization steps with a gradient descent step.

7 Convergence Analysis

In this section, we establish that both STIR and STIR-
GD enjoy a linear rate of convergence, as well as a
breakdown point o > € (1). Theorem [If summarizes
the results. It is notable that STIR and STIR-GD offer
a breakdown point of greater than % (for Gaussian
covariates — see below for details), which is far superior
to those offered by recent works such as [6] [5] which
offer breakdown points of ~ 6—10 and m respectively

(again for Gaussian covariates).
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Theorem 1. Suppose we have n data points with the
covariates x; sampled from a sub-Gaussian distribu-
tion D and an « fraction of the data points are cor-
rupted. If STIR (or STIR-GD) is initialized at an (ar-
bitrary) point w°, with an initial truncation that satis-
fies My < and executed with an increment
n > 1 such that we have a < chﬂ’ where ¢ > 0 is a
constant that depends only on D, then for any e > 0,
with probability at least 1 — exp(—Q (n)), after K =

O(log 1) , S e

Mie
Moreover, each stage consists of only O (1) iterations.

1
[wo—w=l,’

stages, we must have HWK —w*

Global Convergence Note that the above result al-
lows initialization at any location w°, so long as the
accompanying value M; is small enough ie. M; <
Two—wT, which can be ensured using a simple binary
search (see for details on parameter setting). In
particular, if an estimated upper-bound |w*||, < W

is available, then we can set w° = 0 and set M; = %

Given this parameter convergence result, we can also
establish that STIR and STIR-GD offer linear conver-
gence guarantees with respect to the Huber and ab-
solute loss functions as well. We refer the reader to

Appendix for details.

Breakdown Point Both STIR and STIR-GD enjoy a
breakdown point of a < ﬁn-&-c where 77 is chosen by
us and c is a distribution dependent constant. Bounds
on this constant are established for several interest-
ing distributions in Appendix In particular, for
the Gaussian distribution N(0, I4), we have ¢ > 0.68
which, for values of n — 1, endow STIR and STIR-GD
with a breakdown point of greater than %

7.1 Proof Outline - the Peeling Strategy

Given the stage-wise nature of our algorithms STIR
and STIR-GD, we employ a peeling-based proof strat-
egy that is a departure from the techniques used by
previous results such as [6] 10} 29].

Our proof partitions the model space into annular peels
centered at the gold model w* (see Figure [2). The
outermost peel has a radius of ]%[1, and successive inner
peels have radii that are an 7 factor smaller i.e. the
subsequent peels have radii 77171, ﬁ, ng,—}wl, .... Note
that by setting M; < m, STIR is guaranteed
to reside inside the outermost peel in the beginning.

We then inductively show (see Lemmata and E[) that
once we are inside a certain peel, say ||[w —w*|, <
ﬁ, and if the WSC/WSS properties hold with ap-
propriate constants (see Appendix @7 then if we exe-
cute (n M)-truncated IRLS for a constant number of
iterations, we are guaranteed to obtain a model, say

wT, that ensures [|[w — w*||, < W%M

103

102

L 10!

L 100

- 10—1

L 10—2
M values

Figure 2: A depiction of the peeling process. The STIR
procedure starts off far away from w* and using a small
value of M. In successive stages, it enters closer peels
around w* and also begins using larger values of M.

This implies that we have entered the next inner peel.
We can now set the truncation level to 1M and
continue the process. Note that this is exactly the al-
gorithmic step performed by STIR/STIR-GD (see Al-
gorithm line 12) to start a new stage. Due to lack of
space, all complete proofs are given in the appendices.

7.2 Establishing WSC/WSS

A central result required for the peeling strategy
to work, is ensuring that our covariates satisfy the
WSC/WSS properties (that we introduced in with
respect to the weights assigned to data points by the
STIR and STIR-GD algorithms. We show that for co-
variates drawn from sub-Gaussian distributions, this
is indeed true (see Appendix @

The use of such design properties is quite common in
literature e.g., restricted strong convexity /smoothness
(RSC/RSS) [13] in sparse recovery, and subset strong
convexity/smoothness (SSC/SSS) [6] in robust regres-
sion. It is also common to use results on extremal sin-
gular values of random matrices [28], to show that sub-
Gaussian covariates satisfy RSC/RSS [3] and SSC/SSS
[6], with high probability.

However, doing so in our case is not as straightforward.
The reason for this is that whereas the RSC/RSS and
SSC/SSS properties are defined purely in terms of the
data covariates, the WSC/WSS properties also incor-
porate data weights. Moreover, these weights are nei-
ther constant, nor independent of the data, but rather
are assigned and repeatedly updated in a stage-wise
manner by an algorithm such as IRLS or STIR.

Since our proofs will require the WSC/WSS properties
to hold with respect to all weight assignments made
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during the entire execution of the algorithms, a direct
application of classical techniques [28] fails. Such tech-
niques could have succeeded only if the data weights
were to be constant or else independent of the data.

To overcome this challenge, we establish WSC/WSS
properties for sub-Gaussian covariates in a peel-wise
manner using a careful uniform convergence bound.
The number of peels is no more than O (log 1) since
each peel corresponds to a stage of the algorithm and
o (log %) is the number of stages required to achieve
an e-accurate solution (see Theorem , which then
allows us to take a union bound over all peels.

Within each peel, a careful uniform convergence bound
is employed over all models within that peel in order
to establish WSC/WSS. Note that our results present
a novel extension of the existing notions of SSC/SSS
since we can recover SSC/SSS as a special case of
WSC/WSS where the weights are simply zero or unity.

7.3 Corruptions and Dense Noise

So far we have looked at an idealized setting where the
responses are either completely clean y; = x, w* for
i € G or else corrupted y; = x] w* + bj for j € B.
We now look at a more realistic setting where even
the “good” points experience sub-Gaussian noise. We
will now assume that our data is generated as y =
X T"w* + b + € where, as before ||b||, < a - n, but we
additionally have € ~ D, where D, is a o-sub-Gaussian
distribution with zero mean and real support El

We will denote B := supp(b) and G := [n] \ B, as
before. Our covariates will continue to be sampled
from an R-sub-Gaussian distribution D with support
over R?. Even in this setting, we can ensure a model
recovery result with a linear rate of convergence.

Theorem 2. Suppose we have n data points with the
covariates x; sampled from a sub-Gaussian distribu-
tion D and an « fraction of the data points are cor-
rupted with the rest subjected to sub-Gaussian noise
sampled from a distribution D. with sub-Gaussian
norm o. If STIR (or STIR-GD) is initialized at an (ar-
bitrary) point w°, with an initial truncation that satis-

fies My < m, and executed with an increment
2

n > 1 such that we have o < S.S;ﬁ, where c. > 0

is a constant that depends only on the distributions D

and D¢, then with probability at least 1 —exp(—Q (n)),
after K =0 (log ﬁ) stages, each of which has only
, <O(0).

O (1) iterations, we must have HWK - w"

We refer the reader to Appendix [E] for the full proof.

2We can tolerate noise with non-zero mean as well, by
using a simple pairing trick which has a side effect of at
most doubling the corruption rate «

Global Convergence This result also allows arbi-
trary initialization so long as we set M7 < m
However, note that this result only guarantees a con-
vergence to || w1 — w*”2 < O (o) and thus, does not
ensure a consistent solution. We refer the reader to
the proof of Theorem [2]in Appendix [E]for a discussion
on this result. We also note that our results or our
algorithms, do not require the knowledge of the noise
parameter o.

Breakdown Point For Gaussian covariates i.e. x; ~
N(0,1;), Gaussian noise i.e. € ~ N(0,0?), we have
¢ > 0.52 (see Appendix , and for 7 — 1 this gives

STIR and STIR-GD with a breakdown point of Tl%

8 Experiments

In this section, we report results of a variety of ex-
periments comparing STIR and STIR-GD to other ro-
bust learning algorithms. These experiments were per-
formed over two learning settings, namely robust linear
regression and robust linear-armed bandit problems.

Parameter and Adversary Setting Algorithms
considered in this section require only scalar param-
eters to be specified (« for TORRENT, step length for
TORRENT-GD, n and M; for STIR, and step length
C for STIR-GD), all which were tuned via a fine grid
search using a held-out validation set. In particular, a
binary search was found to suffice for setting M;. For
all experiments, the adversary was made to introduce
corruptions using a fake model as described in §5] All
algorithms were initialized at the fake model itself to
test their behavior under adversarial initialization.

8.1 Robust Regression Experiments

We executed STIR and STIR-GD on linear regression
problems with response corruption as described in §4]

Algorithms: We compared STIR and STIR-GD with
the TORRENT algorithm [6], its faster gradient ver-
sion TORRENT-GD, the classical IRLS algorithm with
various fixed values of the truncation parameter, and
the standard OLS (Ordinary Least Squares) algorithm.
We do not compare to some other state-of-the-art al-
gorithms for robust regression, such as L; minimiza-
tion techniques and extended Lasso since [6] estab-
lishes that TORRENT outperforms all of them.

Data: The covariate dimensionality and the number
of data points are mentioned with each plot. All co-
variates were generated from a normal distribution.
The gold and fake models were chosen as two inde-
pendently sampled unit vectors. The set of “bad” data
points was chosen randomly and the fake model was
used to introduce corruptions, as in Section [5
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Figure 3: All y-axes are in log-scale. Figs (a) and (c) use different data dimensionalities and number of data
points and compare STIR to when IRLS is executed with various fixed values of the truncation parameter M. It
is clear that no fixed value performs well. For small fixed values M = 10°, IRLS converges rapidly but to poor
models. For large fixed values M a 10'2, IRLS gets stuck at the fake model and takes long to converge. On the
other hand, although STIR was initialized with M; = 0 for this experiment, it adaptively increases its truncation
parameter to offer far better convergence than IRLS with any fixed value of M. Figs (b) and (d) compare STIR
and STIR-GD with TORRENT and TORRENT-GD. In all cases, STIR-GD offers the fastest convergence.
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Figure 4: The figures compare STIR, TORRENT, IRLS, and OLS for convergence behavior. OLS exceeds the
figure boundaries and hence not visible in Figs (a) and (b). Fig (a) examines the effect of varying the training
set size. Note that the x-axis is in log-scale. IRLS performs poorly with very few data points but STIR and
TORRENT continue to offer good convergence. Fig (b) shows that IRLS worsens with increasing dimensionality
whereas STIR and TORRENT remain stable. Fig (c) explores the affect of increasing the fraction of corrupted
points. Both OLS and IRLS show considerable worsening with increasing fraction of corruptions. Finally, Fig (d)
explores the hybrid noise model discussed in Section [7.3] (Figs (a)-(c) had no white noise). Here, IRLS performs
the worst of all. However, once the noise variance goes beyond a point, TORRENT and STIR start losing the
distinction between good and bad points and the naive OLS starts outperforming them.
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Figure 5: The figures compare STIR and TORRENT with respect to hyperparameter misspecification. STIR was
initialized at w® = 0 in these experiments. For Fig (a), 25% data was corrupted but TORRENT was given various
values of its hyperparameter « (denoting the fraction of corrupted points) as indicated. STIR was also given
various values of its own hyperparameter 7 in a wide range. TORRENT is very susceptible to hyperparameter
misspecification and degrades heavily when not given a proper value whereas STIR is much more stable with
respect to its hyperparameter. For Figs (b), (c), (d), respectively 20%, 15% and 10% of the data was corrupted
and linear-armed bandit algorithms that use OLS (LINUCB), TORRENT (RUCB-Lin) and STIR (WUCB-Lin)
were executed. For Figs (b), (c), (d), TORRENT was always given a hyperparameter value e = 0.15. Note that
this is appropriate for Fig (¢) where actually 15% data was corrupted but not for Figs (b) and (d). TORRENT
performs comparably to STIR if provided the true value of «, as in Fig (c¢) but its performance degrades if we
give a value smaller than true value, such as in Fig (b) or a larger value, such as in Fig (d).
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Algorithm 3 WUCB-Lin: Weighted UCB for Linear

Contextual Bandits

Input: Upper bounds o¢ (on sub-Gaussian norm of noise
distribution), B (on magnitude of corruption), ao (on
fraction of corrupted points), initial truncation M,
increment rate n

1. fort=1,2,...,T do

2: Receive set of arms Ay

3:  Play arm %' = argmax  (x,w)
x€Ay,weCyr_1

4: Receive reward r;

5: (W', 8" « STIR ({&7,r-}._,, Mi,n)
//Denote S' = diag(s!,ss,...,st)

6: Vi _sixTR)T, X [x5,%%,.. %

7w (VHTIXTSy

8 Ci+A{w: Hw — Wt“vt < oov/dlogT + a9 BT}

9: end for

8.2 Robust Linear Bandit Experiments

As linear-armed bandit algorithms [I] utilize regres-
sion routines internally, recent works have explored
the possibility of using robust regression algorithms to
target cases when arm-pulls are corrupted, for example
[19] that uses TORRENT itself to develop corruption-
tolerant bandit learning algorithms.

Algorithm 3| presents WUCB-Lin, an adaptation of
STIR to linear bandit settings. We refer the reader
to Appendix [F]for details of the algorithm. WUCB-Lin
roughly follows the popular Optimism-in-the-face-of-
uncertainty (OFUL) principle while selecting arms to
pull at various time instants.

However, since we know some of the arm pulls gener-
ated corrupted rewards, instead of applying the OFUL
principle blindly, WUCB-Lin invokes STIR and obtains
not only an estimate of the reward generating model,
but also a set of weights on previous arm pulls which
indicate which pulls were corrupted and which pulls
were clean. WUCB-Lin then uses these weights to form
a weighted confidence set (Algorithm |3} line 6) that is
further utilized in applying the OFUL principle to de-
cide future arm pulls (Algorithm [3| line 3).

Algorithms and Data: We compare WUCB-Lin with
LINUCB that uses the simple OLS estimator, as well as
the RUCB-Lin algorithm from [19]. We refer the reader
to Appendix [F] for details of the problem setting.

8.3 Discussion on Experiments

Figures and [f] present graphs with the outcomes
of the experiments. Although the respective captions
in the figures detail the observed behaviours of various
algorithms considered therein, here we point out some
broad inferences.

1. STIR-GD offers much faster convergence as com-
pared to TORRENT or TORRENT-GD.

2. No single value of the truncation parameter M
ensures a good performance with IRLS. A stage-
wise implementation with continuously updated
truncation parameters, as STIR offers, is necessary
for rapid and assuredly global convergence.

3. TORRENT requires an estimate of the fraction
of corrupted points as a hyperparameter and is
extremely susceptible to misspecification in this
value. STIR and STIR-GD on the other hand are
much more resilient to misspecifications of their
own hyperparameters.

9 Conclusion and Future Work

In this work we presented STIR, a stage-wise algorithm
that makes simple and efficient modifications, includ-
ing a gradient-based implementation STIR-GD, to the
well-known IRLS heuristic to obtain the first global
convergence results for robust regression. These algo-
rithms offer not only theoretically superior results to
state-of-the-art algorithms such as TORRENT but are
empirically faster and more immune to hyperparame-
ter mis-specification.

Our theoretical results are superior to those of previous
works in terms of offering a better breakdown point,
and are based on a novel notion of weighted strong con-
vexity. Working with this new notion of strong convex-
ity required us to develop the peeling proof technique
which is novel in robust regression literature and may
be of independent interest in analyzing other iterative
algorithms.

Several avenues of future work exist. It would be in-
teresting to examine other weighing functions (IRLS
and STIR use the inverse of the residual) for robust
regression. It is likely that any reasonable decreas-
ing function of residuals should suffice. It would also
be interesting to derive formal regret bounds for the
WUCB-Lin algorithm and see how they compare to the
regret bounds of the RUCB-Lin algorithm from [I9].
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