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Abstract

We present the gain estimation problem for
linear dynamical systems as a multi-armed
bandit. This is particularly a very important
engineering problem in control design, where
performance guarantees are casted in terms
of the largest gain of the frequency response
of the system. The dynamical system is un-
known and only noisy input-output data is
available. In a more general setup, the noise
perturbing the data is non-white and the vari-
ance at each frequency band is unknown, re-
sulting in a two-dimensional Gaussian bandit
model with unknown mean and scaled-identity
covariance matrix. This model corresponds to
a two-parameter exponential family. Within
a bandit framework, the set of means is given
by the frequency response of the system and,
unlike traditional bandit problems, the goal
here is to maximize the probability of choos-
ing the arm drawing samples with the highest
norm of its mean. A problem-dependent lower
bound for the expected cumulative regret is
derived and a matching upper bound is ob-
tained for a Thompson-Sampling algorithm
under a uniform prior over the variances and
the two-dimensional means.

1 INTRODUCTION

Control engineering has been one of the most relevant
disciplines during the last century. The control prob-
lem can be seen as a Markov decision problem [1] with
a continuous state space and where the transition prob-
abilities are known and may depend on all the past
values of the input sequence; the most common class
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of such systems are the so-called linear dynamical sys-
tems [2], which will be considered in this paper. The
system aimed to be controlled is completely character-
ized by these probabilities which, in the control field,
are obtained from input-output data using techniques
from identification for control [3]. The different sources
of uncertainty during modelling (such as noise present
in the data) lead to a mismatch between the system
to be controlled and its model. This mismatch is a
complex-valued function in the frequency domain, and
known as modelling error.

The success of control engineering lies on the robustness
with which control laws can be designed to account
for modelling errors. In fact, the performance of the
control policy depends on the largest magnitude of the
modelling error across the frequency axis [4], what we
call the `2-gain or the H∞-norm [5] of the modelling
error. It is then a crucial step in the control design
process to estimate this quantity. The difficulty of this
problem lies on the nature of the modelling error it-
self, which indeed characterizes what the model cannot
explain, introducing a challenging task.

In this work we focus on the problem of finding the
maximum amplitude of the modelling error in a model-
free manner by casting the problem as a multi-armed
bandit. When a system is only accessible through input-
output data, the problem of efficiently estimating the
H∞ norm involves finding the peak frequency as quickly
as possible, so the H∞ norm can be estimated by
applying a sinusoidal input of such frequency as input.
In our setup, data is collected sequentially by adaptively
designing the input sequence. The model-free condition
is motivated by the fact that the system under study
(being the one for which we want to derive its H∞-
norm) is equal to the modelling error which is, by its
nature, unknown. The alternative approach requires
one to derive an explicit model for the modelling error
(from input-output data), as a transfer function or a
state-space model, and then apply standard H∞-norm
computation methods such as the ones in [6] and [7].
We avoid the process of deriving a (new) model for the
modelling error, which would be naturally uncertain,



Gain estimation of linear dynamical systems using Thompson Sampling

introducing an additional modelling error. However, as
discussed in [8], it is not clear if there is a gap, from an
information-theoretic standpoint, between the sample
complexity of the model-free approach and the one
incurred by deriving a model for the modelling error.

The presented problem corresponds to a nonlinear
bandit with two-dimensional Gaussian feedback, since
the measurements of the modelling error are complex-
valued. The agent is allowed to perform an experiment
at each round, from which it collects input-output data,
disturbed by additive Gaussian noise, in the time do-
main followed by a Fourier transformation. The input
is a sinusoidal signal of a frequency adaptively chosen
by the agent, denoting the played arm. The twist of
this problem is that, unlike traditional bandit problems,
the goal here is to find the arm whose complex mean
has the largest magnitude. The problem presented
in this work is interesting not only because it models
an important engineering problem, but also since it
introduces a non-traditional bandit problem in which
the best arm is defined by a nonlinear function of its
Gaussian outcomes’ parameters.

Our contributions: Summarizing, the main contri-
butions of our work are:
1. a model to the problem of gain estimation as a

multi-armed bandit;
2. a lower bound on the asymptotic regret any uni-

formly good algorithm will incur in;
3. a thorough theoretical derivation of the match-

ing upper bound on the asymptotic regret that
Thompson Sampling incurs in for the nonlinear
bandit with two-parameter bivariate Gaussian
feedback, when the optimal arm is the one whose
two-dimensional mean has the highest norm;

4. a numerical simulation illustrating the optimality
of the algorithm.

The remainder of this paper is organized as follows:
Section 2 formalizes the H∞-norm estimation problem
and describes it as a stochastic multi-armed bandit,
while Section 3 describes the preliminaries on multi-
armed bandits and Thompson Sampling. Concentra-
tion inequalities for the Gaussian model are derived in
Section 4, and the optimality of Thompson Sampling is
shown in Section 5. Finally, an illustrative example is
introduced in Section 6 and conclusions are presented
in Section 7. For brevity, proofs are appended in the
supplementary material.

1.1 Related work

Multi-armed bandits (MAB) are a class of reinforce-
ment learning problems formally introduced in [9],
which exhibit the so-called exploration-exploitation

dilemma. In these problems, an agent bets on an arm
at each round, and this action generates an outcome
the agent perceives. The outcome is a realization drawn
from a parametrized distribution where the parame-
ters for each arm are unknown to the agent. In the
traditional bandit setup [10], the goal of the agent is to
minimize the expected cumulative difference between
the outcome of its choice and the one an oracle would
have drawn by always choosing the optimal arm.

Fundamental limitations on the regret depend on how
many of the parameters the agent knows beforehand,
where a detailed analysis is provided in [11] for a general
class of problems. Explicitly derived as lower bounds,
these limitations motivate the search for optimal al-
gorithms whose asymptotic performance match these
restrictions. Different classes of optimal algorithms can
be found in [10].

Thompson Sampling [12] (TS) is one of the most inter-
esting algorithms in MAB due to its excellent empirical
finite-time performance for many models, compared
to other optimal algorithms [13]. It corresponds to a
Bayesian policy that keeps track of the posterior mean
for each of the arms, where the agent decides the next
action by sampling these posteriors and choosing the
arm with the largest sample. Optimality of TS for
the Bernoulli model [14] has been extended to the one-
parameter one-dimensional exponential family bandit
in [15]. Recently, [16] has developed a thoroughly anal-
ysis for this algorithm under a two-parameter (mean
and variance) Gaussian bandit, concluding that its op-
timality crucially depends on the choice of the prior. In
fact, the algorithm does not achieve optimality when
a Jeffreys prior is employed, not even achieving loga-
rithmic asymptotic regret. The authors also discuss
that the main difficulty of proving optimality for the
two-parameter Gaussian bandit lies in the posterior
distribution for the mean being heavy-tailed, so no
straightforward upper/lower bounds can be found. For
the bandit model considered in our paper, the two-
dimensional posterior mean distribution is a linear
transformation of a multivariate t-distribution. Per-
haps surprisingly, the latter can not be factorized as
the multiplication of both one-dimensional marginal
posteriors, even when their outcomes and prior distri-
butions are statistically independent, as we show later.
This counter-intuitive phenomenom forces us to derive
multivariate concentration inequalities instead of recy-
cling the ones in [16], making the extension of their
work into the bivariate Gaussian bandit of highest norm
not straightforward. A one-parameter Gaussian ban-
dit model (known variance) for H∞-norm estimation
was firstly introduced in [17] when the policy allows
to choose arms inside a simplex. The authors of [17]
showed that the asymptotic regret lower bound for
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Figure 1: Mathematical relationship of a linear system with
additive non-white noise.

these policies is equal to the one of policies playing
only one arm per round, proving that playing several
arms does not increase the performance of an optimal
algorithm (i.e., an algorithm whose asymptotic regret
matches the lower bound).

Some iterative approaches have been already proposed
in system identification for control [18, 19], where the in-
put signal is allowed to be designed upon previous data
at each round, based on the power-iterations method
of numerical linear algebra. The particular problem
of H∞-norm estimation has gained some attention in
computer science, where [8] has derived sharp asymp-
totic bounds on the error incurred by a method that
firstly fits an L-FIR (finite impulse response) filter of
L coefficients to N -length data, in terms of N .

2 MODEL SETUP AND PROBLEM
STATEMENT

Following the set-up described in [3], let g := (gτ )∞τ=0
and h := (hτ )∞τ=0 denote the impulse responses of
systems G and H, respectively, depicted in Fig. 1,
where gτ , hτ ∈ R, τ = 1, 2, . . . . The systems are as-
sumed to be linear and time-invariant (LTI) and causal
(gτ , hτ = 0 ∀τ < 0). Then, in experiment t, the output
signal (yτ )∞τ=0, as a function of the input (uτ )∞τ=0 and
the zero-mean unit-variance and white1 [2] Gaussian
sequence (wτ )∞τ=0 is defined as

yτ = (g ∗ u)τ + (h ∗ w)τ︸ ︷︷ ︸
=:eτ

=
∞∑
τ ′=0

gτ ′uτ−τ ′ +
∞∑
τ ′=0

hτ ′wτ−τ ′ , (1)

where each term corresponds to a convolution (denoted
as ∗) between a signal and an impulse response. We
also impose the assumption that both systems in Fig. 1
are stable, that is, (uτ )∞τ=0 satisfying |uτ | < ∞, ∀τ ,
implies that |yτ | <∞, ∀τ . The latter implies that the
Fourier transforms of g and h exist for each frequency
ω ∈ [0, π], denoted by G(ejω) and H(ejω), also known
as the frequency responses of G and H, respectively,
with j :=

√
−1 .

The system in Fig. 1 is suitable to model the problem of
collecting noisy data from the modelling error system

1 A zero-mean sequence (wt) is said to be white if
E {wiwk} = δij .

G = Go − Ĝ, where Go denotes the real system we are
trying to derive a model for and where Ĝ is the actual
model. Assuming thatGo and Ĝ are stable LTI systems,
the difference is also stable and LTI, implying that mea-
surements from G = Go−Ĝ can be collected by exciting
Go and Ĝ independently with the same input sequence
(uτ ) and then subtracting their outputs. When G de-
notes the modelling error, the goal is to estimate the
H∞-norm of G: ‖G‖∞ := maxω∈[0,π]

∣∣G(ejω)
∣∣, where

both G and H are unknown to us. We assume that
the maximum is attained in (0, π).

In this work, we estimate ‖G‖∞ recursively from
input-output data collected in sequential experiments
(rounds) t = 1, . . . , T . At each round t ∈ {1, . . . , T},
experiments are designed by defining an input se-
quence ut := (ut0, . . . , utN−1) and collecting a noisy
output yt = (yt0, . . . , ytN−1) disturbed by the addi-
tive non-white Gaussian sequence et := (et0, . . . , etN−1)
of zero mean. Experiments are performed indepen-
dently of previous and future ones by waiting long
enough between two consecutive experiments2. We
allow experiments to be sequentially designed, that
is, sequence ut is mapped from previous input-output
data (u1, y1, . . . , ut−1, yt−1). Furthermore, the input
to G at round t ∈ {1, . . . , T} is restricted to be a unit-
norm sinusoidal sequence parametrized by frequency3

ω ∈ [0, π]. As we explain in the following paragraph,
we make use of bandit technology to design an agent π
able to design these experiments optimally by discretiz-
ing the frequency axis into K (with K large enough)
equally spaced frequencies, denoting the possible arms
the agent can choose at each round. Then, the dis-
cretized H∞-estimation problem becomes ‖G‖∞ :=
maxω∈[0,π]

∣∣G(ejω)
∣∣ ≈ maxk∈{1,...,K}

∣∣G(ejωk)
∣∣, where

ωk := 2πk/(2K + 1). Hence, at every round t, ut is
completely characterized by its frequency ωkπ(t), with
kπ(t) being selected by the agent π among the K differ-
ent arms (frequencies). To avoid frequency leakage [3],
N is set to 2K + 1.

For every k, U tk, Y tk and Etk denote the dis-
crete Fourier transforms (DFT) of ut, yt, et, respec-
tively, at frequency ωk(t) where U tk = U t(ωk) :=

1√
N

∑N−1
τ=0 utτe−jωk(t)τ , and analogously for yt and et.

The agent has access to both U t and Y t, but not to
Et, where U tk(t) = 1, and U ti = 0, i 6= k(t).

2This is assumed so the natural response of the system,
due to initial conditions introduced by the previous experi-
ments, exponentially decays to zero, making the plant static
in terms of inputs (u1, u2, . . . ) and outputs (y1, y2, . . . ). For
practicality, one can directly reset the system (if possible)
or use a controller that brings the state of the system to
zero in a finite amount of time.

3 This assumption is general since ‖G‖∞ =
supu:‖u‖6=0 ‖y‖/‖u‖ is attained by a sinusoidal sequence
of frequency ω? = arg maxω∈[0,π]

∣∣G(ejω)
∣∣ [20, Chapter 7].
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Remark 1 {Etk}Kk=1 is a circularly symmetric [21,
Section 3.7] complex zero-mean and white sequence,
whose real and imaginary parts are statistically indepen-
dent for every k ∈ {1, . . . ,K}. Moreover, for every k,
the real and imaginary parts of Etk are zero-mean Gaus-
sian with variance σ2

k/2 := E{|Etk|2}/2 = |H(ejωk)|2/2.
Notice that the sequence (σ2

k)k is unknown since H is
unknown.

The outcome perceived by the agent when it plays arm
k at experiment t is the R2-vector

Xt
k = Xt(ωk) :=

[
Re Y

t
k

Ut
k

Im Y tk
Ut
k

]>
=
[
Re
{
G(ejωk) + Etk

Ut
k

}
Im
{
G(ejωk) + Etk

Ut
k

}]>
,

(2)

for every k ∈ {1, . . . ,K} and t ∈ {1, . . . , T}. Since
G(ejωk) is deterministic, it follows that

E
{
Xt
k |U tk

}
=
[
ReG(ejωk) ImG(ejωk)

]>
, (3)

var
{
Xt
k

}
= E

{
|Etk|

2

|U tk|
2

}
= σ2

k. (4)

Therefore, the outcome Xt
k corresponds to a bivariate

Gaussian vector

Xt
k |U tk ∼ N (µk, σ2

kI2/2), (5)

where In is the n × n identity matrix,
µk := [ReG(ejωk) ImG(ejωk)]>, and where the best
arm is denoted by k? := arg maxk∈{1,...,K} ‖µk‖ =
arg maxk∈{1,...,K}

∣∣G(ejωk)
∣∣.

The selection of k(t) is adaptive, depending on the col-
lected outcomes and played arms on previous rounds,
i.e., for class of policies considered in this paper, k(t)
is Ft-measurable, where Ft is the sigma algebra gen-
erated by (k(1), X1

k(1), . . . , k(t − 1), Xt−1
k(t−1)). Denote

Π as the set composed by these policies. For a given
policy π, its performance is indexed by the cumulative
expected regret E {Rπ(µ, T )} =

∑T
t=1 E

{
∆kπ(t)

}
it

incurs , where ∆k := ‖µk?‖ − ‖µk‖, with ‖·‖ being
the Euclidean norm, and where kπ(t) is the arm at
round t under policy π. The bandit problem is then
summarized as [10]

min
π∈Π

E {Rπ(µ, T )} = min
π∈Π

∑
k 6=k?

E {Nπk (T )}∆k, (6)

where Nπk (t) =
∑t
t=1 11 {kπ(t) = k} is the number of

times arm k has been played up to round t under policy
π.

Remark 2 Our definition of regret involves the mea-
surement of a random variable of mean ‖µk‖ for each

arm k ∈ {1, . . . ,K}. However, the feedback the agent
receives is not the reward, but the outcome Xt

k(t). This
supposes an important difference to traditional MAB
problems.

Remark 3 The gain estimation problem can be casted
in different ways. In the traditional approach, we wish
to solve minπ∈Π E{(‖µk?‖−‖µk̂π(T )‖)2}, where k̂π(T )
is an FT+1(T )-measurable estimation of k? under pol-
icy π ∈ Π. As discussed in [22], solving (6) is much
more challenging because it accounts for the sample
complexity. Additionally, the traditional problem only
minimizes the estimation after T experiments, whereas
in (6) we minimize the cumulative error when estimat-
ing the gain after each of the T experiments.

3 UNIFORMLY GOOD POLICIES
AND THOMPSON SAMPLING

In the following, and without loss of generality, we as-
sume that k? = 1. This is possible because smoothness
of the frequency responses G,H is not exploited by the
considered class of algorithms. As discussed in [23], the
regret can be pushed down if the agent were allowed
to consider smoothness as prior knowledge.

Definition 1 A policy π is said to be uniformly ef-
ficient [10] Nπk (t) = o(tα), for every α > 0, and for
every suboptimal arm k.

When k = 1 is the unique optimal arm, among other
mild regularity conditions, a lower bound derived in [11]
for the asymptotic number of times each suboptimal
arm is played holds. Using a similar reasoning, we de-
rive the following lower bound for the regret incurred by
any uniformly efficient algorithm aimed at solving (6).

Lemma 1 Under every uniformly efficient algorithm
π, the expected cumulative regret satisfies

lim inf
T→∞

E {Rπ(T )}
log T ≥

K∑
k=2

‖µ1‖ − ‖µk‖

log
(

1 + (‖µ1‖−‖µk‖)2

σ2
k

) . (7)

Proof: For any µ = (µk)k satisfying ‖µ1‖ > ‖µi‖,
i = 2, . . . , it is known [10] that

lim inf
T→∞

E {Nk(T )}
log T

≥ 1
infµ′,σ′2 : |µ′|>|µ1|D {µk, σ

2
k||µ′, σ′2}

, (8)

where D
{
µk, σ

2
k||µ′, σ′2

}
denotes the Kullback-

Leibler [24] (KL) divergence between two bivariate dis-
tributions parametrized by (µk, σ2

kI2) and (µ′, σ′2I2),
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respectively, and is given by

D
{
µk, σ

2
k||µ′, σ′2

}
= log σ

′2

σ2
k

+ σ2
k + ‖µk − µ′‖

σ′2
− 1.

It then follows that

inf
µ′,σ′2 : |µ′|>|µ1|

log σ
′2

σ2
k

+ σ2
k + ‖µk − µ′‖

σ′2
− 1

= log
(

1 + (‖µ1‖ − ‖µk‖)2

σ2
k

)
. (9)

The proof is completed by observing that E {Rπ(T )} =∑K
k=1 ∆kE {Nπk (T )}[10].

Thompson Sampling (TS) is a Bayesian bandit policy.
It starts with a prior distribution over the unknown
parameters parametrizing the distribution of each arm.
These parameters are deterministic but unknown, and
the prior distribution represents our belief on each value
being the actual parameter. At each experiment, the
agent collects data and updates our belief, known as
the posterior distribution of the parameters. TS keeps
track of the posterior distribution for the mean of the
rewards, drawing one sample of these posteriors at each
round in order to play the arm with the highest sample
during the next round. Algorithm 1 summarizes this
procedure.

Algorithm 1 Thompson Sampling
1: Input: ρ1 = (ρ1

1, ..., ρ
1
K) (prior distribution for each

reward mean)
2: for t = 1 to T do
3: for k = 1 to K do
4: Draw one sample µ̃k ∼ ρtk
5: end for
6: Play arm kTS(t) = arg maxk µ̃k
7: Collect the outcome from arm kTS(t)
8: Update the posterior ρt+1 (given Ft+1)
9: end for

In our case, the prior distribution is selected as
fµk,σ2

k
(µk, σ2

k) ∝ 1, (µk, σ2
k) ∈ R2 × (0,∞), k ∈

{1, . . . ,K}. This corresponds to an improper prior
(since it is not integrable) that, in spirit, assigns the
same confidence to each pair in R2 × (0,∞).

The drawback of using TS to solve our problem is that
the posterior mean of the rewards, say f‖µk‖ | Ft , might
be hard to obtain. However, we can overcome this
issue in two steps. Firstly, for every ` ∈ {1, . . . , T}, we
condense F`+1 into the sufficient statistics

x̄k(`) = x̄k,Nk(`) := 1
Nk(`)

∑̀
t=1

Xt
k11 {k(t) = k}

Sk(`) := Sk,Nk(`) =
∑̀
t=1

11 {k(t) = k} ‖Xt
k − x̄k,Nk(`)‖2,

and then x̄k,n ∼ N (µk, σ2
kI/(2n)) and Sk,n/(σ2

k/2) ∼
χ2

2(n−1). Secondly, samples from f‖µk‖ | Ft can be
obtained by sampling fµk | x̄k(t)=x,Sk(t)=s and then
taking the norm of the sample. Let µ̃k(t) ∼
fµk | x̄k(t)=x,Sk(t)=s denote a random vector whose pdf
(probability density function) is the posterior distri-
bution for µk given Ft. The following result shows
that, for every k ∈ {1, . . . ,K}, given x̄k(t) and Sk(t),√

2((Nk(t)− 2)n/Sk(t)(µ̃k(t)−x̄Nk(t)) has a bivariate
t-distribution with parameter ν = 2(Nk(t)− 2).

Lemma 2 Let the outcomes Xt
k(t) be generated as

in (5), and consider the improper prior fµ,σ2(µ, σ2) ∝
1. Then, for every k ∈ {1, . . . ,K}, the posterior mean
density function, given n := Nk(t) ≥ 2 samples and
sufficient statistics θ̂k,n = (x̄k,n, Sk,n), is

ρtk(µ) := fµk | x̄k,n=x,Sk,n=s(µ)

= n(n− 2)
πs

(
1 + n ‖x− µ‖2

s

)−n+1

. (10)

Remark 4 After t experiments, ‖G‖∞ can
be estimated as ‖x̄β(t)(t)‖ where β(t) =
arg maxk∈{1,...,K}Nk(t). However, different methods
to perform the estimation at round t may be considered,
as we explain in Section 6.

4 CONCENTRATION
INEQUALITIES

In this section we provide concentration inequalities
for the tail upper bounds of the sufficient statistics and
for the posterior mean conditioned on them.

Lemma 3 For every arm k ∈ {1, . . . ,K}, with
Nk(t) = n ≥ 2, and ε > 0, it holds that

P {‖x̄k,n‖ ≥ ‖µk‖+ ε} ≤ e−nε
2/σ2

,

P
{
Sk,n ≥ n(σ2 + ε)

}
≤
(

1 + ε

σ2
k

)−1
e−nh(ε/σ2

k),

where h(x) = x− log(1 + x) > 0, ∀x > 0.

Proof: Consider any arbitrary arm k ∈ {1, . . . ,K},
and let n ≥ 2 arbitrary. For the first inequality, observe
that

P {‖x̄k,n‖ ≥ ‖µk‖+ ε} ≤ P {‖x̄k,n − µk‖ ≥ ε}

=
∫
z:‖z‖≥ε

n

πσ2
k

e−n‖z‖/σ
2
k

= 2
∫ ∞
nε2/σ2

k

e−ydy = e−nε
2/σ2

k .

For the second inequality, we relax Chernoff’s bound:

P
{
Sk,n ≥ n(σ2

k + ε)
}
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≤ einfλ<1/σ2
k

logE{eλSk,n}−λn(σ2
k+ε)

=
(

n

n− 1

)n−1(
1 + ε

σ2
k

)n−1
e−(1+nε/σ2

k), (11)

and the bound follows from
(

n
n−1

)n−1
< e1 being

strictly increasing in n.

Lemma 4 For every k = 1, . . . ,K, satisfying Nk(t) =
n ≥ 2, it holds that

P {‖µ̃k − x̄k,n‖ ≥ δ |Sk,n = s} ≤
(

1 + nδ2

s

)−n+2

.

(12)

Proof: From Lemma 2, and by a polar change of
coordinates,

P {‖µ̃i − x̄k,n‖ ≥ δ |Sk,n = s}

=
∫
z : ‖z‖>δ

n(n− 2)
πs

(
1 + n‖z‖22

s

)−n+1

dz

= n(n− 2)
πs

∫ ∞
δ

2π
(

1 + nr2

s

)−n+1

r dr

=
(

1 + nδ2

s

)−n+2

. (13)

5 OPTIMALITY OF THOMPSON
SAMPLING

In this section we present the main result of our work.
We derive an upper bound for (6) under TS by split-
ting the non-expected regret into three different terms
parametrized by some arbitrary ε(T ) > 0 depending on
the time horizon T . It is shown then that as T →∞,
one of the terms achieves the lower bound, while the
other two increase slower than log T .

Theorem 1 Under the improper prior
fµk,σ2

k
(µk, σ2

k) ∝ 1, the regret incurred by TS
satisfies

lim sup
T→∞

E
{
RTS(T )

}
log T

≤
K∑
k=2

‖µ1‖ − ‖µk‖

log
(

1 + (‖µ1‖−‖µk‖)2

σ2
k

) . (14)

Proof: Define the following events for 0 < ε <
mink(‖µ1‖ − ‖µk‖)/2:

A(t) := {‖µ̃?(t)‖ ≥ ‖µ1‖ − ε},

Bk(t) := {‖x̄k(t)‖ ≤ ‖µ1‖+ ε, Sk(t) ≤ n(σ2
k + ε)},

where µ̃k(t) follows the posterior distribution in
Lemma 2, and where ‖µ̃?(t)‖ := maxk ‖µ̃k(t)‖. Let
∆max := maxk ∆k, and let kTS(t) denote the arm
played at round t under TS. Define also T̄ := 3K. The
non-expected cumulative regret can be then written as

RTS(µ, T ) =
T∑
t=1

∆kTS(t)

≤
T̄∑
t=1

K∑
k=2

∆k11
{
kTS(t) = k

}
+

T̄∑
t=1

K∑
k=2

∆k

(
11
{
kTS(t) = k,A(t)

}
+ 11

{
kTS(t) = k,Ac(t)

})

≤ T̄
K∑
k=2

∆k +
K∑
k=2

T̄∑
t=1

∆k11
{
kTS(t) = k,A(t)

}
+ ∆max

T∑
t=T̄+1

11
{
kTS(t) 6= 1,Ac(t)

}
= ∆max

T∑
t=T̄+1

11
{
kTS(t) 6= 1,Ac(t)

}
+

K∑
k=2

∆k

( T∑
t=T̄+1

11
{
kTS(t) = k,A(t),Bk(t)

}
+

T∑
t=T̄+1

11
{
kTS(t) = k,A(t),Bk(t)c

}
+ T̄

)

≤ ∆max

T∑
t=T̄+1

11
{
kTS(t) 6= 1,Ac(t)

}
+

K∑
k=2

∆k

( T∑
t=T̄+1

11
{
kTS(t) = k,A(t),Bk(t)

}
+

T∑
t=T̄+1

11
{
kTS(t) = k,Bk(t)c

}
+ T̄

)
.

(15)

Now, by Lemmas 5, 6, and 7 (all of them appended in
the suplementary material), expectation in (15) yields

E
{
RTS(µ, T )

}
log T

≤ 1
log
(

1 + (‖µ1‖−‖µk‖−2ε)2

σ2
k
+ε

) + −1 + O(ε−2) + O(ε−6)
log T ,

(16)

so the result follows by choosing ε ≤ log−a T , 1/6 >
a > e(mink ‖µ1‖−‖µk‖)/2.
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6 APPLICATION TO H∞-NORM
ESTIMATION

The previous sections establish a framework for select-
ing the optimal frequency as often as possible, how-
ever, they do not provide an estimate of ‖µk?‖ :=
maxk∈{1,...,K} ‖µk‖ ≈ ‖G‖∞. In this section we discuss
the challenge of how TS can be employed to estimate
theH∞-norm of a system, given collected data on previ-
ous experiments, in an asymptotically efficient4 manner.
The theoretical relationship between regret-optimal al-
gorithms and asymptotically efficient estimation is still
ongoing research. We remark that there exist several
ways to proceed that can also lead to asymptotically
efficient estimates but we only address two ways here.

Let β := ‖G‖∞ denote the target parameter, and
let k̂(1)(t) := arg maxk∈{1,...,K}NTS

k (t) and k̂(2) :=
arg maxk∈{1,...,K} ‖x̄k(t)‖ denote two different estima-
tors of the best arm at round t. In this case, k̂(1) takes
the best arm as that one played the most up to round
t, while k̂(2) is that arm whose empirical mean is the
largest at round t. The two considered estimators are
then

β̂(i)(t) := ‖x̄k̂(i)‖, i ∈ {1, 2}. (17)

Algorithm 2 summarizes the procedure within a bandit
set-up.

Algorithm 2 H∞-norm estimation using Thompson
Sampling
1: Input: ρ1 = (ρ1

1, ..., ρ
1
K) (prior distribution for each

reward mean)
2: for t = 1 to T do
3: Play arm kTS(t) (see Algorithm 1)
4: Obtain k̂(i)(t)
5: Set β̂(i)(t) := ‖x̄k̂(i)‖, i ∈ {1, 2}.
6: end for

In the following subsections, an illustrative example
is provided where the analysis of Algorithm 2 is done
separately in terms of regret and estimation analysis,
and the estimation analysis includes a comparison to
other well known algorithms for H∞-norm estimation.
The first method corresponds to a well established algo-
rithm [18], [19] based on the power-iterations method
to estimate the largest eigenvalue (in absolute value)
of a matrix. This algorithm is well known for having a
fast rate of convergence and by being asymptotically
efficient in the absence of output noise, although it is
also well known [19] that it leads to bias estimation

4 Asymptotically efficiency means that the proposed esti-
mator has an asymptotic estimation variance that matches
the lower bound stated in [25], [26]
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Figure 2: Expected number of times each of the 200
arms has been played at round T = 106 for each arm
k ∈ {1, . . . ,K} (in blue) and for the optimal arm (k? = 76)
in red.
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‖G‖∞ = 0.7847
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Figure 3: Frequency response of G together with the fre-
quency response of G at arm k? = 76. Additionally, we
present x̄i(T ) as red dots and Si(T )/NTS

i (T ) as red bars
around x̄i(T ), for i ∈ {35, 76, 115, 154, 190}.

under noisy measurements. The second algorithm is
a method recently analyzed in [8] in terms of sam-
ple complexity. This rather old algorithm estimates a
transfer function from input-output data and uses this
information to compute its largest gain.

6.1 An illustrative example

We consider systems G,H having frequency responses
depicted in Fig. 3. The frequency axis is discretized
into K = 200 equispaced frequencies. Under this setup,
the optimal arm is k? = 76 (ωk? = 2π k?

2K+1 = 1.1908
[rad/s]), satisfying ‖µk?‖ = maxk ‖µk‖ = ‖µ76‖.

6.1.1 Regret analysis

We observe in Fig. 2 that the algorithm is able to find
the optimal arm. Figure 3 shows the sufficient statistic
for only five arms (including k?): the empirical mean
x̄k,NTS

k
(T ) and the empirical variance Sk,NTS

k
(T ). It can

be seen that the estimation of the variance for each arm
grows as the arm is played less often, as predicted. In
this line, the length of the estimated variance is smaller
on the optimal arm and higher for the suboptimal ones,
since the latter are less often played.
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Expected cumulative regret
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Thompson Sampling
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Figure 4: Comparison between the regret incurred by
Thompson Sampling and the theoretical lower bound de-
rived in Lemma 1.

0 2 4 6 8 10
×105

TS: β̂(1)

TS: β̂(2)

PI [19]
10-FIR [8]
40-FIR [8]

M
SE

10-8

10-6

10-4

10-2

100

102 Mean-squared error

Number of rounds T
Figure 5: Performance of different H∞-norm estimators in
the mean-squared error sense.

Figure 4 shows the performance of TS comparing it with
the predicted lower bound in Lemma 1. As predicted by
Theorem 1, the asymptotic slope in the rate of growth
of the expected cumulative regret under Thompson
Sampling matches the slope described by the lower
bound in Lemma 1.

6.1.2 Estimation analysis

Figure 5 depicts how the proposed algorithms perform,
in a MSE (mean-squared error) sense, against two other
methods for data-driven H∞-norm estimation, named
PI (power-iterations based algorithm [18]) and L-FIR
(computation of the H∞ norm of an L-length fitted
FIR filter from input-output data). To make the test
more challenging, the noise level is increased so that∣∣H(ejω)

∣∣ is always above ∣∣G(ejω)
∣∣, ∀ω (the noise level

is now 40 times larger than in Fig. 3). Covering |G|
with the noise level reveals that some algorithms are
just unable to create accurate estimates.

We start by noticing the poor performance of the es-
timates provided by PI where, in line with what is
predicted by [19], the stationary estimates are biased
and the error covariance is significantly higher than
the rest of the algorithms. On the other hand, we see
that the quality of the estimates passing through an
L-length FIR model do not provide efficient estimates

and that, at least empirically, the estimation quality
does not increase with the length of the filter, reinforc-
ing what we have discussed in the introduction. On
the other hand, we see that both proposed estimators
β̂(i), i ∈ {1, 2} perform similarly (they actually over-
lap in Fig. 5) well compared to the other algorithms.
We remark that the MSE in the estimation of β̂(i),
i ∈ {1, 2} can not be lower that the discretization error
‖G‖∞ − ‖µk?‖.

Finally, we notice that the proposed algorithm behaves
similar in both cases, attaining a covariance that de-
creases to zero, suggesting that these methods could
provide efficient estimates of β.

7 CONCLUSIONS

We have presented a novel application of multi-armed
bandits to the problem of estimating the H∞-norm of a
linear dynamical system. The novelty of this approach
lies in that the optimal arm is given by the one whose
bivariate outcomes have the largest mean norm, arising
an interesting variation of the two-parameter Gaussian
bandit. We provide results with high theoretical quality
by deriving a lower bound for this class of problems
together with an algorithm which attains such regret.
Additionally, we have proposed two different ways of
obtaining an estimator from Thompson Sampling for
the H∞-norm of an LTI system under colored noise,
which compare to other known algorithms forH∞-norm
estimation, outperforming the latter in a simulation
study.
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