
Notation Meaning
Fh Set of all hth-order tree experts f : X h → X

l
(tree)
t,f

∣∣∣L(tree)
t,f Instantaneous | cumulative loss suffered by tree expert f

l
(tree)
t,f = [l

(tree)
t,f]f∈FD

∣∣∣L(tree)
t,f = [L

(tree)
t,f]f∈FD Vector of instantaneous | cumulative losses suffered by tree experts in FD

lt,y Instantaneous loss at time t suffered by predicting y ∈ X
Lx,t,y Cumulative loss obtained by predicting y ∈ X after seeing x ∈ X h

F̂h(t) := arg minf∈FhLt,f Best hth-order tree expert at time t
L̂t,h := Lt,F̂h(t) Cumulative loss suffered by tree expert F̂h(t)

RT,h Regret suffered with respect to best hth-order tree expert

Table 1: Basic notation for regret minimization under contextual experts framework.

Notation Meaning
ηT1 = {ηt}Tt=1 Sequence of learning-rates used in exponential weights updates

g : {0, 1, . . . , D} → R+ Function for prior on tree experts function of order.
w1(g)

∣∣∣w(tree)
1 (g) Initial distribution on prediction | choice of tree expert

wt(ηt; g)
∣∣∣w(tree)

t (ηt; g) Distribution at round t on prediction | choice of tree expert
Z(g) Normalizing factor for initial distribution on tree experts

ht(ηt; g)
∣∣∣Ht(η

t
1; g) Instantaneous | cumulative expected loss incurred by algorithm at time t

δt(ηt; g)
∣∣∣∆t(η

t
1; g) Instantaneous | cumulative mixability gap of algorithm at time t

vt(ηt; g)
∣∣∣Vt(ηt1; g) Instantaneous | cumulative variance of loss incurred by algorithm at time t

Table 2: Notation specific to algorithm ContextTreeAdaHedge.

A Main proofs of ContextTreeAdaHedge(D)

A.1 Second-order regret bound and adversarial result
We first obtain our second-order-regret bound, stated generally for a prior function g : {0, 1, . . . , D} → R.
Tables 1 and 2 recap the basic notation for regret minimization and important algorithmic notation,
and are useful to look at while reading the proof of the second-order bound.

Recall the expression for the computationally naive update in Equation (5):

w
(tree)
t,f (ηt; g) =

(∑D
h=order(f) g(h)

)
e−ηtLt,f∑

f∈FD

(∑D
h=order(f) g(h)

)
e−ηtLt,f

.

and the expression for the initial distribution on tree experts based on Definition 1:

w
(tree)
1,f (g) =

∑D
h=order(f) g(h)

Z(g)

where Z(g) > 0 is the initial normalizing factor. The explicit expression for the normalizing factor
is Z(g) =

∑D
h=0 22hg(h).

Lemma 1. ContextTreeAdaHedge(D) with prior function g(·) obtains regret

RT,d ≤
(√

VT ln 2 +
2

3
ln 2 + 1

)1 +
ln
(
Z(g)
g(d)

)
ln 2


for every d ∈ {0, 1, . . . , D}.

13

Proof. Recall that F̂d(T) denotes the best dth-order tree expert at round T for the given loss sequence.
We denote L̂T,d := Lt,F̂d(t) as the actual loss incurred by this expert. We start with the computationally
naive update in probability distribution over tree experts as in Equation (5), and the proof proceeds
in a very similar manner to the variance-based regret bound for vanilla AdaHedge [DRVEGK14]. We
denote

ht(ηt; g) := 〈wt(ηt; g), lt〉 = 〈w(tree)
t (ηt; g), l

(tree)
t 〉

HT (ηT1 ; g) :=

T∑
t=1

ht(ηt; g)

mt(ηt; g) :=
1

ηt
ln〈wt(ηt; g), e−ηtlt〉 =

1

ηt
ln〈w(tree)

t (ηt; g), e−ηtl
(tree)
t 〉

MT (ηT1 ; g) :=

T∑
t=1

mt(ηt; g).

Recall that the mixability gap δt(ηt; g) = ht(ηt; g)−mt(ηt; g) and ∆T (ηT1 ; g) =
∑T
t=1 δt(ηt; g). Since

the instantaneous losses are bounded between 0 and 1, it is easy to show that 0 ≤ δt(ηt; g) ≤ 1.
A standard argument tells us that

RT,d = HT (ηT1 ; g)− L∗T,d
= HT (ηT1 ; g)−MT (ηT1 ; g) +MT (ηT1 ; g)− L∗T,d
= MT (ηT1 ; g)− L∗T,d + ∆T (ηT1 ; g).

Recall that the sequence ηT1 is decreasing as an automatic consequence of the update in Equation (2),
and non-negativity of δt. Handling a time-varying, data-dependent learning rate is well known
to be challenging [EKRG11, DRVEGK14]. We invoke a simple lemma from the original proof of
AdaHedge [DRVEGK14] that helps us effectively subsitute the final learning rate.

Lemma 2 ([DRVEGK14]). For any exponential-weights update with a decreasing learning rate ηT1 and
prior function g(·), we have MT (ηT1 ; g) ≤MT ({ηT }Tt=1; g).

Thus, we get

RT,d ≤MT ({ηT }Tt=1; g)− L∗T,d + ∆T (ηT1 ; g). (15)

We also have the following simple intermediate result for MT ({ηT }Tt=1; g), which is simply a slightly
more general version of the lemma in [DRVEGK14] that can apply to non-uniform priors.

Lemma 3.

MT ({ηT }Tt=1; g) ≤ L∗T,d +
1

ηT
ln

(
Z(g)

g(d)

)
.

Proof. We note that

〈w(tree)
1 (g), e−ηTL

(tree)
T 〉 ≥ w(tree)

1,f∗T,d
(g)e−ηTL

∗
T,d .

Because the initial distribution w
(tree)
1 is normalized to sum to 1, a simple telescoping argument can

be used to give MT ({ηT }Tt=1; g) =
∑T
t=1mt({ηT }Tt=1; g) = − 1

ηT
ln
(
〈w(tree)

1 (g), e−ηTL
(tree)
T 〉

)
.

14

This automatically tells us that

MT ({ηT }Tt=1; g) = − 1

ηT
ln
(
〈w(tree)

1 (g), e−ηTL
(tree)
T 〉

)
≤ − 1

ηT
ln(w

(tree)
1,f∗T,d

(g)) + L∗T,d

= L∗T,d +
1

ηT
ln

 1

w
(tree)
1,f∗T,d

(g)


= L∗T,d +

1

ηT
ln

(
Z(g)∑D
h=d g(h)

)

≤ L∗T,d +
1

ηT
ln

(
Z(g)

g(d)

)
thus proving the lemma.

Now, Equation (15) and Lemma 3 together with the definition of ηt in Equation (2) give us

RT,d ≤
1

ηT
ln

(
Z(g)

g(d)

)
+ ∆T (ηT1 ; g)

=
ln
(
Z(g)
g(d)

)
ln 2

∆T−1(ηT−1
1 ; g) + ∆T (ηT1 ; g).

From non-negativity of δt, we have ∆T−1(ηT1 ; g) ≤ ∆T (ηT1 ; g) and so

RT,d ≤ ∆T (ηT1 ; g)(1 +
ln
(
Z(g)
g(d)

)
ln 2

). (16)

It now remains to bound the quantity ∆T in terms of variance. In fact, it will be useful to define
slightly more generic quantities

∆T
T0

(ηTT0
; g) :=

T∑
t=T0

δt(ηt; g)

V TT0
(ηTT0

; g) :=

T∑
t=T0

vt(ηt; g) where

vt(ηt; g) := varKt∼wt(ηt;g) [lt,Kt] .

The bound is described below.

Lemma 4. We have

∆T
T0

(ηTT0
; g) ≤

√
V TT0

(ηTT0
; g) ln 2 +

(
2

3
ln 2 + 1

)
.

Proof. The argument is similar to the original AdaHedge proof [DRVEGK14] and proceeds below. We

15

use a telescoping sum to get

(
∆T
T0

(
ηTT0

; g
))2

=

T∑
t=T0+1

(
∆t
T0

(
ηtT0

; g
))2

−
(

∆t−1
T0

(
ηt−1
T0

; g
))2

=

T∑
t=T0

(
∆t−1
T0

(
ηt−1
T0

; g
)

+ δt
(
ηt; g

))2

−
(

∆t−1
T0

(
ηt−1
T0

; g
))2

=

T∑
t=T0

2δt
(
ηt; g

)
∆t−1
T0

(
ηt−1
T0

; g) +
(
δt
(
ηt; g

))2

≤
T∑

t=T0

2δt
(
ηt; g

)
∆t−1

(
ηt−1

1 ; g
)

+
(
δt
(
ηt; g

))2

=

T∑
t=T0

2δt
(
ηt; g

) ln 2

ηt
+
(
δt
(
ηt; g

))2

)

≤
T∑

t=T0

2δt
(
ηt; g

) ln 2

ηt
+ δt

(
ηt; g

)
since δt(ηt; g) ≤ 1

≤ (2 ln 2)

T∑
t=T0

δt(ηt; g)

ηt
+ ∆T

T0

(
ηTT0

; g
)
.

We also recall the following lemma from the original proof of AdaHedge [DRVEGK14]. The proof
of this lemma involves a Bernstein tail bounding argument.

Lemma 5 ([DRVEGK14]). We have

δt
(
ηt; g

)
ηt

≤ 1

2
vt
(
ηt; g

)
+

1

3
δt
(
ηt; g

)
.

Using Lemma 5, we then get

(
∆T
T0

(
ηTT0

; g
))2

≤ V TT0

(
ηTT0

; g
)

ln 2 +

(
2

3
ln 2 + 1

)
∆T
T0

(
ηTT0

; g
)

(17)

which is an inequality for the quantity ∆T
T0

(
ηTT0

; g
)
in quadratic form. We now solve Equation (17),

and use Fact 2 from Appendix D to get

∆T
T0

(
ηTT0

; g
)
≤
√
V TT0

(
ηTT0

; g
)

ln 2 +
2

3
ln 2 + 1. (18)

Now we complete the proof of Lemma 1 by combining Equations (16) and (18) for the special case
of T0 = 1.

Now, noting that VT (ηT1 ; g) ≤ T
4 and substituting the expression for g = gprop from Equation (11)

directly proves Equation (12) from Lemma 1. To see this, we substitute g = gprop into the statement of

16

Lemma 1 to get

RT,d ≤
(√

VT (ηT1 ; g) ln 2 +
2

3
ln 2 + 1

)1 +
ln
(
Z(gprop)
gprop(d)

)
ln 2



=

(√
VT (ηT1 ; g) ln 2 +

2

3
ln 2 + 1

)1 +

ln

(∑D
h=0 22h2−2h+1

2−2d+1

)
ln 2



=

(√
VT (ηT1 ; g) ln 2 +

2

3
ln 2 + 1

)1 +

ln

(∑D
h=0 2−2h

2−2d+1

)
ln 2


≤
(√

VT (ηT1 ; g) ln 2 +
2

3
ln 2 + 1

)1 +
ln
(

2 · 22d+1
)

ln 2


=

(√
VT (ηT1 ; g) ln 2 +

2

3
ln 2 + 1

)(
2 + 2d+1

)
≤
(

1

2

√
T ln 2 +

2

3
ln 2 + 1

)(
2 + 2d+1

)
which is precisely Equation (12) when expressed in big-O notation.

A.2 Exploiting stochasticity

To effectively bound regret for the “easier" stochastic instances, we need finer control on the cumulative
mixability gap term ∆T (ηT1 ; g). Our starting point is the following thresholding lemma.

Lemma 6. Fix t0 > 0. Let T0 := max{0 < t ≤ T : ηt >
ln 2
t0
}. Then, we have

∆T (ηT1 ; g) ≤ t0 + 1 +
√
V TT0

(ηTT0
; g) ln 2 +

2

3
ln 2 + 1. (19)

Proof. From the definition of T0, we observe that

ηT0
=

ln 2

∆T0−1(ηT0−1
1 ; g)

>
ln 2

t0

=⇒ ∆T0−1(ηT0−1
1 ; g) < t0

=⇒ ∆T0(ηT0
1 ; g) < t0 + 1.

Then, using ∆T (ηT1 ; g) = ∆T0
(ηT0

1 ; g) + ∆T
T0

(ηTT0
; g) and Lemma 4 directly gives us the statement in

Equation (19) and completes the proof.

We observe that the threshold T0 depends on the choice of t0 as well as the data (in fact, it is a
random variable when the process {(Xt, Yt)}Tt=1 is stochastic). We have the freedom to choose t0 > 0 for
our analysis. Conceptually, in the stochastic regime, the choice of t0 thresholds the number of rounds
T0 below which we can make few, if any, statistical guarantees, and will become clear in subsequent
sections. Effectively, Lemma 6 uses the elegant inverse relationship between learning rate and mixability
(in Equation (2)) to show that a minimal amount of regret, precisely, in terms of t0, is accumulated
even before we can make high-probability statistical guarantees.

17

Notation Meaning/Interpretation
Nt(x(h)) Appearance frequency of a sub-context x(h) ∈ X h
P̂t(h|x(h)) Fraction of times that we observed Xt(h) = x(h), Yt = y

St,h Number-of-seen sub-contexts of length h at time t
π̂h(t) Estimated unpredictability based on hth-order tree expert predictors
Dt(h) Gap between correct and incorrect predictors at time t
w

(h)
t Probability distribution on predictions

v
(h)
t Variance of loss of ContextTreeAdaHedge(h) with uniform prior at time t

qt(h) ∝ Qt(h) Posterior probability that the hth-order model is the right model
d True model order of data (Xt, Yt)

T
t=1

Q∗h(·), h ≤ d Marginal distribution on Xt(h), h ≤ d
P ∗(·|x(h)) Conditional distribution on Yt given Xt = x(h)
β(x(d)), β∗ Average prediction accuracy with conteext x(d)
π∗h, h ≤ D Asymptotic unpredictability under hth-order model.

thigh(h), h > d Number of epochs of x(h) ∈ X h after which we can guarantee a unique best predictor
tlow(h), h ≤ d Number of rounds after which we can conclusively rule out lower hth-order model

Table 3: Notation for analysis.

A.2.1 Notation for contextual prediction

First, we define a couple of convenient counts for the number of appearances of a particular context,
and the number of contexts that have so far appeared.

Definition 8. The appearance frequency of a particular context x(h) ∈ X h at time t is given by

Nt(x(h)) :=

t−1∑
s=1

I[Xs(h) = x(h)],

The fraction of times the value y ∈ X seen after a particular context is given by

P̂t(y|x(h)) :=

∑t−1
s=1 I[Xs(h) = x(h), Ys = y]∑t−1

s=h I[Xs(h) = x(h)](
= 1−

Lx(h),t−1,y

Nt(x(h))

)
The number-of-seen-contexts is given by

St,h :=
∑

x(h)∈Xh
I[Nt(x(h)) > 0].

Next, we define our estimates for unpredictability, effectively an estimate for the approximation
error, under various model orders.

Definition 9 ([FMG92]). For every value of h ≥ 0 and a sequence {(Xt, Yt)}t≥1, we define its estimated
unpredictability

π̂h(t) :=
∑

x(h)∈Xh

Nt(x(h))

t

(
1−max

y∈X
{P̂t(y|x(h))}

)

=
∑

x(h)∈Xh

1

t
min
y∈X
{Lx(h),t,y}.

This definition is inspired by the information-theoretic perspective on universal sequence predic-
tion [FMG92]. In this line of work, the quantity π̂h(t) represents the estimated unpredictability of a

18

binary sequence under a h-memory Markov model. This is the natural estimate of approximation error
of the hth-order model that is used to carry out data-driven model selection.

Finally, we denote the true prediction (the one we would make if we had oracle knowledge of the
best predictor f∗(·)) as

Y ∗t := f∗(Xt(d)).

Then, for every h ≥ d we define

Dt(h) := LXt(h),t,1−Y ∗t − LXt(h),t,Y ∗t
(20)

represents the “gap" between the correct predictor Y ∗t and the worse predictor 1− Y ∗t at time t,
and pertaining to the current context Xt(h).

A.2.2 Explicit model selection

We have stated the problem of wanting to exploit the structure of a dth-order stochastic sequence
{(Xt, Yt)}t≥1 in an online fashion, as a model selection problem. This has been implicitly clear in the
choice of prior function in Equation (11): more complex experts are downweighted. Now, we make the
connection clear.

As a reminder, we evaluate the performance of the algorithm ContextTreeAdaHedge(D) with
prior function gprop(·)), and using Equation (18) as a jumping point, we are concerned with bounding
the cumulative variance V TT0

(ηTT0
; g).

First, we observe that

V TT0
(ηTT0

; gprop) =

T∑
t=T0

vt(ηt; gprop)

=

T∑
t=T0

wt,Y ∗t (ηt; gprop)
(
1− wt,1−Y ∗t (ηt; gprop)

)
since lt,Kt i.i.d ∼ Ber(wt,1)

≤
T∑

t=T0

wt,1−Y ∗t (ηt; gprop)

and thus, it is sufficient to control the evolution of the term wt,1−Y ∗t (ηt; gprop) with t. This is the
probability with which we select the prediction 1 − Y ∗t that is more likely to be wrong under the
stochastic model for the data.

The first step is to express the update in this probability in terms of a posterior probability on the
effective order of the model the algorithm is selecting. Explicitly, we can re-write Equation (6a) as

wt,1−Y ∗t (ηt; gprop) =

D∑
h=0

qt(h; ηt, gprop)w
(h)
t,1−Y ∗t

(ηt)

where we have defined the shorthand notation for the update used by ContextTreeAdaHedge(h)
with uniform prior,

w
(h)
t,1−Y ∗t

(ηt) := wt,1−Y ∗t (ηt; gunif) =
e−ηtDt(h)

1 + e−ηtDt(h)
,

where Dt(h) is according to Equation (20) and the quantities {qt(h; ηt, gprop)} are explicitly written
as

qt(h; ηt, gprop) ∝ Qt(h; ηt, gprop) := gprop(h)
∏

x(h)∈Xh

∑
y∈X

e−ηtLx(h),t,y

 (21)

19

where the proportionality constant is set such that
∑D
h′=0 qt(h; ηt, gprop) = 1. The quantity

qt(h; ηt, gprop) is exactly the posterior probability that the algorithm ContextTreeAdaHedge(D)
selects a hth-order model. We will see that controlling the posterior on model order selection is crucial
to bounding the variance in our desired manner.

First, we state a simple lemma that bounds Equation (21) in terms of more intuitive quantities.

Lemma 7. We have

exp{−ηtπ̂h(t)t+ ln gprop(h)} ≤ Qt(h; ηt, gprop) ≤ exp{−ηtπ̂h(t)t+ 2h ln 2 + ln gprop(h)}. (22)

Proof. For the upper bound, we have

Qt(h; ηt, gprop) := gprop(h)
∏

x(h)∈Xh

∑
y∈X

e−ηtLx(h),t,y


= exp

 ∑
x(h)∈Xh

ln

∑
y∈X

e−ηtLx(h),t,y

+ ln gprop(h)


≤ exp

 ∑
x(h)∈Xh

ln
(

2e−ηt miny∈X {Lx(h),t,y}
)

+ ln gprop(h)


= exp

− ∑
x(h)∈Xh

ηt min
y∈X
{Lx(h),t,y}+ 2h ln 2 + ln gprop(h)


= exp

{
−ηtπ̂h(t)t+ 2h ln 2 + ln gprop(h)

}
and for the lower bound, we have

Qt(h; ηt, gprop) := exp

 ∑
x(h)∈Xh

ln

∑
y∈X

e−ηtLx(h),t,y

+ ln gprop(h)


≥ exp

 ∑
x(h)∈Xh

ln
(
e−ηt miny∈X {Lx(h),t,y}

)
+ ln gprop(h)


= exp

− ∑
x(h)∈Xh

ηt min
y∈X
{Lx(h),t,y}+ ln gprop(h)


= exp {−ηtπ̂h(t)t+ ln gprop(h)}

Substituting ln gprop(h) = −2h+1 ln 2 = −2 · 2h ln 2, we get

exp{−ηtπ̂h(t)t− 2 · 2h ln 2} ≤ Qt(h; ηt, gprop) ≤ exp{−ηtπ̂h(t)t− 2h ln 2}. (23)

Equation (23) effectively makes the tradeoff between approximation error (reflected by the quantity
π̂h(t)) and model complexity (reflected by the quantity 2h ln 2 clear in the model-order selection problem.
We can think of the model orders as “meta-experts" that are being randomized over. Note that the
learning rate that is being used to randomize their selection is still ηt!

A.2.3 Analysis for a higher-than-needed model order

Here, we analyze the contribution of a specific selected model order to the variance, an important
intermediate step. Formally, we consider the algorithm ContextTreeAdaHedge(h) equipped with
the uniform prior function gunif(h

′) = I[h′ = h]. The regret guarantee is given by the following
proposition.

20

Proposition 1. 1. For any sequence {Xt, Yt}Tt=1 the algorithm ContextTreeAdaHedge(h) with
uniform prior gives us regret rate

RT,d = O
(√

T2h
)

(24)

with respect to the best dth-order tree expert in hindsight, and for every d ≤ h.

2. ContextTreeAdaHedge(h) with uniform prior gives regret with probability greater than (1− ε):

RT,d = O
(22h

(2β∗ − 1)2

(
h+ ln

(
1

ε(2β∗ − 1)

)))
.

on a sequence (Xt, Yt)t≥1 that satisfies the dth-order stochastic condition with parameter β∗.

Observe the suboptimal scaling in terms of 22h in the regret bound for the case where d < h. We
now proceed to prove Proposition 1.

Formally, the algorithm ContextTreeAdaHedge(h) equipped with the uniform prior function
gunif(h

′) = I[h′ = h] gives us qt(h′; ηt, gunif) = I[h′ = h], and we would get

T∑
t=1

D∑
h′=0

qt(h
′; ηt, gunif)w

(h)
t,1−Y ∗t

(ηt) =

T∑
t=1

w
(h)
t,1−Y ∗t

=

T∑
t=1

e−ηtDt(h)

1 + e−ηtDt(h)

≤
T∑
t=1

min{e−ηtDt(h), 1}

≤
T∑
t=1

min{e−ηTDt(h), 1}

where Dt(h) is the gap between predictions as in Equation (20), and the last inequality is because
ηT1 is a decreasing sequence according to the update in Equation (2).

Therefore, we have

VT (ηT1 ; gunif) ≤
T∑
t=1

min{e−ηtDt(h), 1}. (25)

We observe that Equation (25) can be effectively unraveled to get a closed-form variance bound for
particular evolutions of {Dt(h)}t≥1. Particularly, we care about Dt(h) as a function of Nt(Xt(h)), the
number of appearances so far of the current context. We show this result in the following lemma.

Lemma 8. Let the following condition hold for some t0(h) > 0 and α > 0.

Dt(h) ≥ αNt(Xt(h)) for all t such that Nt(Xt(h)) ≥ t0(h) (26)

for some α > 0.
Then, we have

∞∑
t=1

w
(h)
t,1−Y ∗t

(ηt) ≤ 2h
(
t0(h) +

1

ηTα

)
. (27)

Proof. We can directly use the condition in Equation (26). For values of t such that Nt(Xt(h)) < t0(h),
we apply w(h)

t,1−Y ∗t
(ηt) ≤ 1. Otherwise, we use w(h)

t,1−Y ∗t
(ηt) ≤ e−ηTαNt(Xt(h)).

21

Combining the two gives us

∞∑
t=1

w
(h)
t,1−Y ∗t

(ηt) ≤
∑

x(h)∈Xh

t0 +

NT (x(h))∑
s=t0(h)

e−ηTαs


≤ 2ht0(h) +

∑
x(h)∈Xh

∞∑
s=t0(h)

e−ηTαs

≤ 2h

t0(h) +

∞∑
s=t0(h)

e−ηTαs


≤ 2h

(
t0(h) +

e−ηTα

1− e−ηTα

)
.

Now, we have

e−ηTα

1− e−ηTα
=

1

eηTα − 1

≤ 1

ηTα

by the inequality ea ≥ 1 + a for a ≥ 0. Substituting this above gives us our required result.

It remains to show that the condition in Equation (26) is met with high probability for (Xt, Yt)t≥1

satisfying the dth-order realizability condition with paramter β∗, and for any d ≤ h. We use a standard
Hoeffding-bounding technique to show this.

Lemma 9. Let ε ∈ (0, 1]. For a process {(Xt, Yt)}t≥1 satisfying the dth-order realizability condition
with parameter β∗ > 1/2, the condition in Equation (26) holds for all h ≥ d for parameter values

α :=
2β∗ − 1

2
(28)

t0(h) = thigh(h) :=
2

α2
ln

(
4(D − d) · 2h+1

α2ε

)
(29)

with probability greater than or equal to (1− ε/2).

Proof. Essentially, we need to obtain to bound properties of the gap sequence {Dt,(h)}Tt=1 so defined in
Equation (20) – we use the Hoeffding bound for this. This proof is a simple adaptation of the proof in
the original AdaHedge paper [EKRG11] to the case of contextual prediction.

We denote the pth epoch of arrival of context x(h) ∈ X h by Tp(x(h)). Showing that the condition in
Equation (26) holds with probability greater than or equal to (1− ε/2) is exactly equivalent to showing
that the probability of the following bad event{

∪Dh=d ∪x(h)∈Xh ∪
NT (x(h))
p=t0(h)

{
DTp(x(h))(h) < αp

}}
(30)

is less than or equal to ε
2 . We proceed by showing exactly this.

From the definition of a dth-order stochastic process, we have Yt|{Xt, (Xs, Ys)
t−1
s=1} i.i.d ∼ P ∗(·|Xt(d)).

This means that Yt is independent of (Xt(D, . . . ,Dd), Xs, Ys)
t−1
s=1 conditioned on Xt(d), and we can

write

DTp(x(h))(h) =

p∑
s′=1

2Zs′

where

{Z ′s}s′≥1 i.i.d ∼

{
1 w. p. β(x(d))

−1 otherwise .

22

Denote α := 2β∗−1
2 . We have E[Zs] = 2β(x(d))−1 ≥ 2β∗−1 = 2α and so we have E[DTp(x(h))(h)] ≥

2αp. Noting that Zs ∈ {−1, 1}, we can directly use the Hoeffding bound to get

Pr
[
DTp(x(h))(h) < αp

]
≤ Pr

[
DTp(x(h))(h) <

(
2β(x(d))− 1

2

)
p

]
≤ exp{− (2β(x(d))− 1)2p

8
}

≤ exp{−α
2p

2
},

and so, for any t0(h) ≥ 1 and x(h) ∈ X h, we can use the union bound to get

Pr
[
∪NT (x(h))
p=t0(h)

{
DTp(x(h))(h) < αp

}]
≤
NT (x(h))∑
p=t0(h)

exp{−α
2p

2
}

≤
∞∑

p=t0(h)

exp{−α
2p

2
}

≤
∫ ∞
u=t0(h)

exp{−α
2u

2
}du

=
2e−

α2t0(h)
2

α2
.

We need to bound the probability that the above bad event happens for any context x(h) ∈ X h
and model order h ≥ d. To do this, we apply the union bound twice more, to get

Pr
[
∪Dh=d ∪x(h)∈Xh ∪

NT (x(h))
p=t0(h)

{
DTp(x(h))(h) < αp

}]
≤

D∑
h=d

∑
x(h)∈Xh

2e−
α2t0(h)

2

α2

=

 D∑
h=d

2 · 2h · e−
α2t0(h)

2

α2


≤ ε/2

if t0(h) ≥ thigh(h) = 2
(α)2 ln

(
4(D−d)·2h
ε(α)2

)
.

Setting t0(h) = thigh(h) bounds the probability of the bad event as defined in Equation (30), and
completes our proof.

A.2.4 Completing proof of Proposition 1

Now, the proof of Proposition 1 follows directly from Lemmas 1 and 8. We denote as shorthand the
following:

∆
(h)
T = ∆T (ηT1 ; gunif)

V
(h)
T = VT (ηT1 ; gunif)

Substituting g(·) = gunif(·) into Lemma 1, we have

RT,d ≤ RT,h ≤
(√

V
(h)
T ln 2 +

2

3
ln 2 + 1

)1 +
ln
(

Z
gunif(h)

)
ln 2


≤
(√

V
(h)
T ln 2 +

2

3
ln 2 + 1

)(
1 + 2h

)

23

Thus, it remains to bound the variance term V
(h)
T . We denote the final learning rate as

η
(h)
T =

ln 2

∆
(h)
T−1

≥ ln 2

∆
(h)
T

and from [DRVEGK14] that

∆
(h)
T ≤

√
V

(h)
T ln 2 +

2

3
ln 2 + 1

≤
√
V

(h)
T

(√
ln 2 +

4

3
ln 2 + 2

)(
as
√
V

(h)
T ≥

√
v

(h)
1 =

1

2

)
≤ 6

√
V

(h)
T ln 2.

Together, these give us

η
(h)
T ≥ 1

6

√
V

(h)
T

and therefore, we have with probability greater than or equal to (1− ε),

V
(h)
T ≤

T∑
t=1

w
(h)
t,1−X∗t

≤ 2h

(
thigh(h) +

1

η
(h)
T (2β∗ − 1)

)

≤ 2h

thigh(h) +
6

√
V

(h)
T

(2β∗ − 1)


≤ 2h

 8

(2β∗ − 1)2
ln

(
8 · 2h

ε(2β∗ − 1)2

)
+

6

√
V

(h)
T

(2β∗ − 1)


Therefore, we have √

V
(h)
T ≤ 8 · 2h

(2β∗ − 1)2
ln

(
8 · 2h

ε(2β∗ − 1)2

)
+

6 · 2h

(2β∗ − 1)

≤ 14 · 2h

(2β∗ − 1)2
ln

(
8 · 2h

ε(2β∗ − 1)2

)
This gives us

RT,d = O
(22h

(2β∗ − 1)2

(
h+ ln

(
1

ε(2β∗ − 1)

)))
.

with probability greater than or equal to (1− ε). This completes the proof.

A.2.5 Ruling out higher-order models

We can make two clear inferences from Lemma 8:

1. ContextTreeAdaHedge(d) gives us the true regret scaling in terms of O(22d
(
d+ ln

(
1
ε

))
).

2. For h > d, ContextTreeAdaHedge(h) gives us suboptimal scaling
Oh(22h

(
h+ ln

(
1
ε

))
). The reason for suboptimality is because of sample splitting: for every true

context x(d) ∈ X d, we are unnecessarily splitting the data into 2d−h extra contexts and treating
the best predictors for these contexts as independent.

24

It is clear, particularly from the second inference, that we would like to control the posterior
probability with which we select overly complex models. This quantity is expressed as qt(h; ηt, gprop)
for all h > d. Now, we consider an explicit upper bound on qt(h; ηt, gprop) and show how it decreases
with t.

Using Equation (23), it is convenient to consider the following upper bound on the quantity
qt(h; ηt, gprop) for h > d:

qt(h; ηt, gprop) =
Qt(h; ηt, gprop)∑D

h′=0Qt(h
′; ηt, gprop)

≤ Qt(h; ηt, gprop)

Qt(d; ηt, gprop)

≤ exp{ηt(π̂d(t)− π̂h(t))t− 2h ln 2 + 2 · 2d ln 2}

We should expect that as t becomes large the difference in estimated approximation errors is
negligible, i.e. we will observe that π̂h(t) = π̂d(t) with high probability. We would then get a scaling
of qt(h; ηt, gprop) ≤ exp{−2h ln 2}. However, we can say π̂h(t) = π̂d(t) with high probability only after
O(2h) rounds. Before this, and particularly for times between O(2d) and O(2h), we have to worry
about the difference in approximation errors, ηt(π̂h(t)− π̂d(t))t. This is the overfitting regime in which
the hth order model may look deceptively better. Luckily, we can cap this quantity as well owing to
already established statistical guarantees on the sequence {Xt}t≥1. The following lemma expresses this.

Lemma 10. The process {(Xt, Yt)}t≥1 satfisfying Equation (26) for all h ≥ d and for

t0(h) = thigh(h)

directly implies

(π̂d(t)− π̂h(t))t ≤ min{ t
2
, 2h−1thigh(h)}. (31)

The two quantities on the right hand side of Equation (31) have different operational meaning. The
bound in terms of t

2 will be used to show that for a small number of rounds, the doubly exponential
prior on model order h will weigh this model order down and prevent it from being selected prematurely
even if it could be leveraged for more accurate prediction in later rounds, as would be the case when the
data is out-of-model. On the other hand, the bound in terms of 2h−1thigh(h) is useful to conclusively
rule out the hth-order model even in later rounds for the case where data is realized from a dth-order
model, by which time it is clear that the higher-order model does not lead to any improvement in
approximability.

Proof. It suffices to prove the following two inequalities separately:

(π̂d(t)− π̂h(t))t ≤ t

2

(π̂d(t)− π̂h(t))t ≤ 2h−1thigh(h).

Recall the notation we defined for the best dth-order tree expert at time t, F̂d(t), as well as the
number of appearances of context x(h) at time t, denoted by Nt(x(h)).

From Definition 9, we have

(π̂d(t)− π̂h(t))t

=
∑

x(d)∈Xd
Nt(x(d))

(
1−max

y∈X
{P̂t(y|x(d))}

)
−

∑
x(h)∈Xh

Nt(x(h))

(
1−max

y∈X
{P̂t(y|x(h))}

)

=
∑

x(d)∈Xd

 ∑
x(h):x(d)⊂x(h)

Nt(x(h))

(
max
y∈X
{P̂t(y|x(h))} − P̂t(F̂d(t)(x(d))|x(d))

)
︸ ︷︷ ︸

T1

25

Let T1 be the quantity under the brace (for shorthand). We also define the number of super-contexts
of length h that contain x(d),

St,h−d(x(d)) :=
∑

x(h):x(d)⊂x(h)

I[Nt(x(h)) > 0].

Now, we have one of two cases:

1. We have Nt(x(d)) ≤ thigh. In this case, we have T1 ≤ thigh
2 .

2. Nt(x(d)) > thigh. In this case, we have F̂d(t)(x(d)) = f∗(x(d)) from Equation (26), and we directly
get

T1 =
∑

x(h):x(d)⊂x(h) and arg max{P̂t(y|x(h))}6=f∗(x(d))

Nt(x(h))

(
max
y∈X
{P̂t(y|x(h))} − P̂t(f∗d (x(d))|x(d))

)

Clearly, the overfitting effect is created only by the set of contexts x(h) for which the best
predictor does not match f∗(x(d)). From Lemma 9, Equation (26) is satisfied for all h ≥ d and
for Nt(x(h)) ≥ thigh(h). It is easy to see that Equation (26) implies a non-negative separation
between the truly correct predictor f∗(x(d)) and its alternative, and so we have

arg maxy∈X {P̂t(y|x(h))} = f∗(x(d)) if Nt(x(h)) ≥ thigh(h).

Substituting this directly, and noting that

max
y∈X
{P̂t(y|x(h))} − P̂t(f∗d (x(d))|x(d)) ≤ 1/2

gives us

T1 ≤
∑

x(h):x(d)⊂x(h) and Nt(x(h))≤thigh(h)

min{Nt(x(h), thigh(h)}
2

}

≤
∑

x(h):x(d)⊂x(h) and Nt(x(h))≤thigh(h)

thigh(h)

2

≤ St,h−d(x(d))
thigh(h)

2
.

Noting that 1 ≤ 2h−d and St,h−d(x(d)) ≤ 2h−d gives us

T1 ≤ 2h−d
thigh(h)

2
,

and substituting back this expression yields

(π̂d(t)− π̂h(t))t ≤
∑

x(d)∈Xd
T1

≤ 2h−1thigh(h).

This completes our proof.

Recall that for all t > T0(h) where T0(h) is as defined in Lemma 6 with respect to t0(h) = thigh(h),
we have ηt < ln 2

t0
. Under this condition, the explicit cap on the overfitting effect as defined in Lemma 10,

26

together with the adaptive regularization of AdaHedge, ensures that we can sufficiently restrict the
contribution of higher-order models.

We use Equation (31) to get

qt(h; ηt, gprop) ≤ exp{ηt(π̂d(t)− π̂h(t))t− 2h ln 2 + 2 · 2d ln 2}

≤ exp{2h−1thigh(h) ln 2

thigh(h)
− 2h ln 2 + 2d+1 ln 2}

≤ exp{−2h−1 ln 2 + 2d+1 ln 2}

= 2−2h−1+2d+1

.

Therefore, we can apply Lemma 8 to get

T∑
t=T0

qt(h; ηt, gprop)w
(h)
t,1−Y ∗t

(ηt) ≤ 2−2h−1+2d+1
T∑

t=T0

w
(h)
t,1−Y ∗t

≤ 2h−2h−1+2d+1

(
thigh(h) +

1

ηTα

)
.

It is now easy to check that

2h ≤ 2h−1 − 2d+1 for all h ≥ d+ 4 and d ≥ 0

=⇒ h− 2h−1 + 2d+1 ≤ −h

=⇒ 2h−2h−1+2d+1

≤ 2−h.

Therefore, for h ≥ d+ 4, we get

T∑
t=T0

qt(h; ηt, gprop)w
(h)
t,1−Y ∗t

(ηt) ≤ 2−h
(
thigh(h) +

1

ηTα

)
.

For h < d+ 4, we do not try to non-trivially bound qt(h; ηt, gprop). We directly use Lemma 8 to get

T∑
t=T0

qt(h)w
(h)
t,1−Y ∗t

(ηt) ≤ 2h
(
thigh(h) +

1

ηTα

)
.

We have thus guaranteed that the contribution from the higher-order models (particularly for
h ≥ d+ 4) not only has no exponential dependence on h, but is in fact exponentially decaying in h!
Ultimately, we will see that we get a very weak linear dependence on D, the maximum model order, in
our regret bound.

A.2.6 Ruling out bad lower-order models

Using Equation (23), it is convenient to consider the following upper bound on the quantity qt(h) for
h < d:

qt(h; ηt, gprop) ≤
Qt(h; ηt, gprop)

Qt(d; ηt, gprop)
(32a)

≤ exp{−ηt(π̂h(t)− π̂d(t))t+ 2 · 2d ln 2− 2h ln 2} (32b)

Ruling out lower-order models actually stems from the fact that we can make concrete statements
about the sequence’s unpredictability (poor approximability) under these models.

The kind of concrete statement that we would like is detailed in the lemma below.

27

Lemma 11. Let h < d. Consider a sequence {xt}t≥1 such that we have

(π̂h(t)− π̂d(t))t ≥ αh,dt for all t ≥ t0(h) > 0 (33)

for some αh,d > 0.
Then, we have

T∑
t=1

qt(h; ηt, gprop)w
(h)
t,1−Y ∗t

(ηt) ≤ t′low(h) +
1

ηTαh,d
(34)

where

t′low(h) = max{t0(h),
2 · 2d ln 2

ηTαh,d
}. (35)

Proof. The condition in Equation (33) is essentially the same as the condition on gaps between losses
in the original AdaHedge paper [EKRG11] used to prove constant regret bounds. We use a similar
argument here.

First, we subsitute the condition in Equation (33) into Equation (32b) to get the upper bound

qt(h; ηt, gprop) ≤ exp{−ηtαh,dt+ 2 · 2d ln 2− 2h ln 2}
≤ exp{−ηtαh,dt+ 2 · 2d}
= exp{2 · 2d ln 2− ηtαh,dt}
≤ exp{2 · 2d ln 2− ηTαh,dt}.

where the last inequality applies because ηT1 is a decreasing sequence. Putting this together with
the trivial bound qt(h; ηt, gprop) ≤ 1 gives us

qt(h; ηt, gprop) ≤

{
1 for t ≤ t′low(h)

exp{2 · 2d ln 2− ηTαh,dt} for t > t′low(h).

where we have

t′low = max{t0(h),
2 · 2d ln 2

ηTαh,d
}.

From this, using the trivial bound wt,1−Y ∗t (ηt) ≤ 1 we get

T∑
t=1

qt(h; ηt, gprop)wt,1−Y ∗t (ηt) ≤ t′low(h) +

∞∑
t=t′low(h)+1

exp{2 · 2d ln 2− ηTαh,dt}

≤ t′low(h) + exp{2 · 2d ln 2− ηTαh,dt′low(h)}

(∞∑
t=1

e−ηTαh,dt

)

= t′low(h) +

∞∑
t=1

e−ηTαh,dt

≤ t′low(h) +

∫ ∞
u=0

e−ηTαh,dudu

= t′low(h) +
1

ηTαh,d

∫ ∞
v=0

e−vdv

= t′low(h) +
1

ηTαh,d
,

This completes the proof.

28

From Lemma 11, we can clearly bound the contribution of lower-order models to cumulative variance
by a constant term. This is because the difference in estimated unpredictability between the right model
and the bad lower-order model remains as the number of rounds increase – leading to an exponentially
decaying likelihood of selecting the lower-order model. (We do not even need to use any information
about whether the online learning algorithm would ensure low regret when selecting a lower-order
model, although this is sometimes the case in practice13.)

It is of interest to characterize when the condition in Equation (33) holds. We show that this holds
in a variety of settings under both the stronger realizability and the weaker approximability condition.
The informal statement is stated below; for a formal statement and proof see Appendix B.

Lemma 12 (Informal.). The condition in Equation (33) holds for αh,d =
π∗h−π

∗
d

2 , some constant c > 0,
and

t0(h) = tlow(h) :=
32

α2
h,d

(
d · 2h ln 2 + ln

(
64d

εα2
h,d

))
. (36)

with probability greater than equal to (1− ε) for the following cases:

1. (Xs, Ys)s≥1 are stochastic and iid (contextual prediction).

2. (Ys)s≥1 is a dth-memory mixing Markov process. (Here, Xs = Y s−1
s−D.)

3. (Ys)s≥1 is a mixing hidden Markov models. (Here, Xs = Y s−1
s−D.)

A.2.7 Putting the pieces together: Proof of Theorem 1

In Section A.2.3, we determined the overall contribution to the cumulative variance coming from
the vicinity of the true model orders, h ∈ {d, d + 1, d + 2, d + 3}. Then, in Section A.2.5 + A.2.6,
we appropriately limited the contribution of lower-order and higher-order models to the cumulative
variance. Now, we put together the pieces and characterize cumulative regret to complete the proof of
Theorem 1.

First, we apply Lemma 6 setting t0 = thigh(D). Recall that thigh(D) represents the number of
appearances of a full context before which we cannot necessarily make statistical guarantees about the
predictor. This gives us14

∆T ≤ thigh(D) +
√
V TT0(D) ln 2 +

2

3
ln 2 + 2. (37)

We now proceed to bound the quantity V TT0(D). Recall that

V TT0(D) ≤
D∑
h=0

qt(h)

T∑
t=T0(D)

w
(h)
t,1−X∗t

≤
d−1∑
h=0

qt(h)

T∑
t=T0(D)

w
(h)
t,1−X∗t︸ ︷︷ ︸

T1

+

d+3∑
h=d

T∑
t=T0(D)

w
(d)
t,1−X∗t︸ ︷︷ ︸

T2

+

D∑
h=d+4

qt(h)

T∑
t=T0(D)

w
(h)
t,1−X∗t︸ ︷︷ ︸

T3

13In fact, models that are close in approximability to the true model will suffer less regret. Ideally, our analysis should
consider this nuance, but doing so is likely to be technically challenging because of the data-dependent learning rate.

14Equation (37) exposes new conceptual beauty in the umbrella of approaches to varying the learning rate inversely
proportional to accumulated regret so far. The only reason a high learning rate does not affect us is because it means that
very little regret has been accumulated up to that point. Effectively, t0 = thigh(D) represents the extent of cumulative
mixability the algorithm is willing to tolerate in this regime before carrying out probabilistic stochastic model selection,
and is the natural statistical quantity to reflect this.

29

We start with summarizing the lower-order model contribution T1. From Lemmas 11 and 13, we
have

T1 ≤
d−1∑
h=0

t′low(h) +
1

ηT

(
d−1∑
h=0

1

αh,d

)

≤ dt′low(d− 1) +
1

ηT

(
d−1∑
h=0

1

αh,d

)
.

Notice that T1 is a constant independent of the horizon T as long as ηT does not decay with T .
Next, we move on to the vicinity of the true model order contribution, represented by model orders

{d, d+ 1, d+ 2, d+ 3}. From Lemmas 8 and 9, we get

T2 ≤
d+3∑
h=d

2h
(
thigh(h) +

1

ηT (2β∗ − 1)

)
≤ 15 · 2d

(
thigh(d+ 3) +

1

ηT (2β∗ − 1)

)
.

Notice that T2 is roughly what we should expect (upto constant factors) if we knew the model order
exactly.

Finally, we summarize the higher-order-model contribution T3. From Lemma 10 and the analysis in
Section A.2.5, we have

T3 ≤
D∑

h=d+4

2−h
(
thigh(h) +

1

ηT (2β∗ − 1)

)

=

D∑
h=d+4

2−hthigh(h) +
2

ηT (2β∗ − 1)
.

Recall from Equation (28) that

thigh(h) =
2

(2β∗ − 1)2
ln

(
(D − d) · 2h

(2β∗ − 1)2ε

)
=

2h

(2β∗ − 1)2
ln 2 +

2

(2β∗ − 1)2
ln

(
(D − d)

(2β∗ − 1)2ε

)
and since

∑∞
h=0 2−h ≤

∑∞
h=0 h · 2−h = 4, we get

T3 ≤
8

(2β∗ − 1)2
ln 2 +

8

(2β∗ − 1)2
ln

(
(D − d)

(2β∗ − 1)2ε

)
+

2

ηT (2β∗ − 1)
= 8thigh(1) +

2

ηT (2β∗ − 1)
.

Notice that T3 is a constant that scales only logarithmically in the maximum model order D!
Now combining the three equations for T1,T2 and T3, we get

V TT0(D) ≤ dt
′
low(d− 1) + 15 · 2dthigh(d+ 3) + 8thigh(1) +

(d+ 1) · 2d

ηT γ
,

where

1

γ
:=

1

d+ 1

(d−1∑
h=0

1

αh,d
+

15

(2β∗ − 1)
)

Next, recall from Equation (35) that

t′low(d− 1) = max{tlow(d− 1),
2 · 2d

ηTαd−1,d
} ≤ tlow(d− 1) +

2 · 2d

ηTαd−1,d

30

using Fact 1. Substituting this expression gives us

V TT0(D) ≤ d · tlow(d− 1) + 15 · 2d · thigh(d+ 3) + 8thigh(1) +
(d+ 2) · 2d

ηT γ
.

Next, we use the connection between learning rate and mixability gap from Equation (2) to get

ηT =
ln 2

∆T−1
≥ ln 2

∆T

=⇒ 1

ηT
≤ ∆T

ln 2

≤ thigh(D)

ln 2
+

1

ln 2

(√
V TT0(D) ln 2 +

2

3
ln 2 + 1

)

where in the last step we applied Equation (37).
Ultimately, we get the following inequality for V TT0(D):

V TT0(D) ≤ d · tlow(d− 1) + 15 · 2d · thigh(d+ 3) + 8thigh(1) +
(d+ 2) · 2d

γ

(
thigh(D)

ln 2
+

1

ln 2

(√
V TT0(D) ln 2 +

2

3
ln 2 + 1

))
.

Now, we have two cases:

1. V TT0(D) <
1
4 .

2. V TT0(D) ≥
1
4 , in which case, we get

V TT0(D) ≤
√
V TT0(D)

(
2d · tlow(d− 1) + 30 · 2d · thigh(d+ 3) + 16 · thigh(1)

+
2 · (d+ 2) · 2d · thigh(D)

γ ln 2
+

1√
ln 2

+
2

3
+

1

ln 2

)
=⇒

√
V TT0(D) ≤ 2d · tlow(d− 1) + 30 · 2d · thigh(d+ 3) + 16 · thigh(1) +

2 · (d+ 2) · 2d · thigh(D)

γ ln 2

+
1√
ln 2

+
2

3
+

1

ln 2
.

So, we have bounded the cumulative variance term V TT0(D). We now substitute back into Equation (37)
to get

∆T ≤ thigh(D) +
(

2d · tlow(d− 1) + 30 · 2d · thigh(d+ 3) + 16 · thigh(1) +
2 · (d+ 2) · 2d · thigh(D)

γ ln 2

+
1√
ln 2

+
2

3
+

1

ln 2

)√
ln 2 +

2

3
ln 2 + 2.

Observe, from this inequality, that the cumulative mixability gap ∆T is dominated by three intuitive
quantities (other than the constant additive term):

1. tlow(d − 1), which represents the number of rounds after which all lower-order models can be
conclusively ruled out. The dependence on tlow(d− 1) is saying that this much mixability could
have accumulated (due to poor approximability) before then.

2. thigh(D), which represents the amount of mixability the algorithm has to accumulate before
performing effective higher-order model selection to rule out the overfitting models15.

15It is also possible that the algorithm would not have accumulated even this mixability, and the model selection phase
is never reached – however, we never observed this case empirically.

31

3. 2d · thigh(d), which represents the amount of mixability accumulated by the algorithm at the
right model order. This is the term in analysis that corresponds to standard best-of-both-worlds
analysis over a fixed model order.

Now, we know from Equation (28) that thigh(h) = 2
(2β∗−1)2 ln

(
(D−d)·2h
(2β∗−1)2ε

)
and from Equation (36)

that tlow(d− 1) = 32d
α2
d−1,d

(
d · 2d−1 ln 2 + ln

(
64d

εα2
d−1,d

))
. Substituting these in, we get

∆T = O

(
2d

(
d2

α2
d−1,d

ln

(
d

α2
d−1,dε

)
+

D(d+ 2)

γ(2β∗ − 1)2
ln

(
D

(2β∗ − 1)2ε

)))
(38)

and substituting this into Lemma 1 gives

RT,d = O

(
22d

(
d2

α2
d−1,d

ln

(
d

α2
d−1,dε

)
+

D(d+ 2)

γ(2β∗ − 1)2
ln

(
D

(2β∗ − 1)2ε

)))
, (39)

completing the proof. To highlight the dependence on true model order d and maximum model
order D (as is expressed in the informal statement of Theorem 1), we can hide the constants in terms
of parameters and write

RT,d = ∆T

(
1 + 2d

)
(40)

= O
(

22d

(
D · d · ln

(
D

ε

)))
. (41)

B Stochastic model selection guarantees
Whether the sequence was actually realized from a finite-order model, or whether it was merely well-
approximated, we required the estimates of approximation error to concentrate sufficiently quickly –
in particular, we required that the difference in approximability between a higher-order model and
lower-order model not look too small – in order to rule out lower-order models when appropriate.
This was encapsulated in Lemma 11. It is therefore of interest to understand when the condition
in Equation (33) holds, and in particular, characterize t′low(h). Recall the definition of asymptotic
unpredictability

π∗h :=
∑

x(h)∈Xh
Q∗(x(h))

[
1−max

y∈X
{P ∗(y|x(h))}

]
(42)

Also recall that for h > d, we have π∗h = π∗d; and for h < d, we have π∗h > π∗d. It is also
well-known [FMG92] that

π̂h(t)
prob.−−−→ π∗h for all h ∈ {0, 1, . . . , D}.

So the intuition is that for a large enough value of t, we should also start to see a strict decaying
in the estimated unpredictability as h increases to d – and we should be able to rule out the poorly
performing hth order models when h < d. That is,

π̂h(t) > π̂d(t) for all h < d.

In this section, we show that this condition holds for a broad class of stationary, stochastic, predictable
processes. One clear case is that of iid context-response pairs, for which proving concentration bounds
is standard. The second case considers sequences generated from a finite-memory process or a hidden
Markov model – to prove concentration bounds here, we invoke results from the information theory
community on transportation-cost inequalities, used to establish concentration of measure for weakly
dependent random variables.

32

B.1 Sufficient condition for concentration of estimate of approximability

We start by expressing our estimate for approximability for the hth-order model, π̂h(t), as a minimum
of |Fh| Lipschitz functions as below:

tπ̂h(t) = min
f∈Fh

{
f(h)({(Xs, Ys)}ts=1; f)

}
where

f(h)({(Xs, Ys)}ts=1; f) :=

t∑
s=1

I[Ys 6= f(Xs(h))]

=

t∑
s=1

Zs

where Zs = I[Ys 6= f(Xs(h))]. Note that {Zs}ts=1 are independent variables taking values in {0, 1}.
We now state the following technical lemma:

Lemma 13. Let the following condition hold for every f ∈ Fh, t ≥ h+ 1 and δ > 0:

Pr
[
|f(h)((Xs, Ys)

t
s=1; f)− E[f(h)((Xs, Ys)

t
s=1; f)|] > tδ

]
≤ 2 exp{−ctδ2} (43)

for some constant c > 0 (that can depend linearly on d as well as h).
Then, the condition in Equation (33) holds for αh,d =

π∗h−π
∗
d

2 and

t0(h) = tlow(h) :=
32

c · α2
h,d

(
d · 2h ln 2 + ln

(
64d

c · εα2
h,d

))
.

with probability greater than equal to (1− ε).

Proof. Observe that π̂h(t) itself is not an unbiased estimate of π∗h. But we know that

E[tπ̂h(t)] = E
[

min
f∈Fh

f(h)({(Xs, Ys)}ts=1; f)

]
≤ E[f(h)({(Xs, Ys)}ts=1; f∗h)] = tπ∗h

for all f ∈ Fh. The upper tail bound therefore follows easily – from Equation (43), we have

Pr [tπ̂h(t)− tπ∗h > δt] ≤ Pr
[
f(h)((Xs, Ys)

t
s=1; f∗h)− E[f(h)((Xs, Ys)

t
s=1; f∗h)]

]
≤ exp{−ctδ2}.

To get the lower tail bound, we need to use the union bound.

Pr [tπ∗h − tπ̂h(t) > δt] = Pr [tπ̂h(t) < tπ∗h − δt]

≤
∑
f∈Fh

Pr
[
f(h)((Xs, Ys)

t
s=1; f) < tπ∗h − δt

]
=
∑
f∈Fh

Pr
[
f(h)({(Xs, Ys)}ts=1; f)− E[f(h)({(Xs, Ys)}ts=1; f)] <

tπ∗h−E[f(h)({(Xs, Ys)}ts=1; f)]− δt
]

≤
∑
f∈Fh

Pr
[
f(h)({(Xs, Ys)}ts=1; f)− E[f(h)({(Xs, Ys)}ts=1; f)] < −δt

]
≤ 22h exp{−ctδ2}.

33

Next, we plug in δ =
αh,d

2 =
π∗h−π

∗
d

4 and re-apply the union bound to get

Pr
[
∪d−1
h=0{(π̂h(t)− π̂d(t)) ≤ αh,d for some t ≥ t0(h)}

]
≤ Pr

[
∪d−1
h=0{π

∗
h − π̂h(t) ≤ αh,d

2
for some t ≥ t0(h)} ∪ {π̂d(t)− π∗d ≤

αh,d
2

for some t ≥ t0(h)}
]

≤
d−1∑
h=0

Pr
[
π∗h − π̂h(t) ≤ αh,d

2
for some t ≥ t0(h)

]
+ Pr

[
π̂d(t)− π∗d ≤

αh,d
2

for some t ≥ t0(h)
]

≤
d−1∑
h=0

32 · 22h

c · α2
h,d

e−
c·α2

h,dt0(h)

32 +
32

c · α2
h,d

e−
c·α2

h,dt0(h)

32

≤ ε/2 when

t0(h) ≥ tlow(h) :=
32

c · α2
h,d

(
d · 2h ln 2 + ln

(
64d

c · εα2
h,d

))
.

This completes our proof.

Clearly, Lemma 13 holds for the case where (Xs, Ys)
t
s=1 are iid, as the Zs’s are iid, by the Hoeffding

bound. We proceed to show that it also holds for finite-memory Markov models and hidden Markov
models.

B.2 Concentration for finite-memory Markov models

The concentration of sums of random variables to its mean is a classical topic in statistics and probability
theory. The special case when the random variables are iid is well-understood. Intuitively, a Markov
process that is well-approximated by an iid process should follow similar concentration laws – the
transportation cost argument uses this to prove concentration bounds on sums of random variables
following a Markov process.

Formally, this notion of approximability by a product distribution is captured by the contractivity
of a Markov process which we define below.

Definition 10. 1. For a dth-memory Markov process on Y1, . . . , Yt on state space X , we define the
aggregated state at time s by

Ws = (Ws,1, . . . ,Ws,d) = (Y(s−1)d+1, Y(s−1)d+2, . . . , Ysd). (44)

Then, clearly, for any s ≥ 1, we have Ws ⊥ Ws−2|Ws−1 and so that the states {Ws ∈ X d}s≥1

satisfy the 1-memory Markov property. Explicitly, we have for any w,w′ ∈ X d,

P(w) = P(d)(w)

P−1(w′|w) =

d∏
i=1

P (w′i|(wi, . . . , wd, . . . , w′i−1)).

2. A dth-memory Markov process on Y1, . . . , Yt is γ-contractive if for every w,w′ ∈ X d, we have

‖P−1(.|w)− P−1(.|w′)‖TV ≤ γ < 1. (45)

The transportation cost method can then be easily leveraged to show that Equation (43) holds, as
we show in the following minor lemma.

Lemma 14. Equation (43) holds for a dth-memory γ-contractive Markov process with constant c =
(1−γ)
d .

34

Proof. We invoke Marton’s concentration theorem for γ-contractive Markov processes as described in
Theorem 3 (details about the transportation cost method are provided in Section B.4).

We recall the definition of functions

f(h)((Xs, Ys)
t
s=1; f) = f(h)((Ys)

t
s=1; f) :=

t∑
s=1

Zs

where Zs = I[Ys 6= f(Ys(h))]. To obtain concentration bounds from Theorem 3, it remains to rewrite
f((Ys)

t
s=1; f) as a sum of indicator functions on {Ws}s≥1 and show the Lipschitz property.

Let t = bt/dc+ k for some k ∈ {0, . . . , d− 1}. Then, we can write (with a slight abuse of notation)
for any h ∈ {0, 1, . . . , d},

f(h)(Y
t; f) := df(h)({Ws}dt/des=1 ; f) =

(bt/dc∑
s=1

d∑
i=h+1

I[Ws,i 6= f(Ws,i−h, . . . ,Ws,i−1)]

+

h∑
i=1

I[Ws+1,i 6= f(Ws,d−(h−i), . . . ,Ws,d,Ws+1,1, . . . ,Ws+1,i−1)]
)

Now, it’s easy to verify that that a change in Ws will only affect two terms in the sum over dt/de
terms, and some simple algebra tell us that the Lipschitz constant of function f(h) is at most 2. We
now apply Theorem 3 directly to get

Pr

[
|f(h)(W

d td e; fd)− E[f(h(W d
t
d e; fd)]| > δd t

d
e
]
≤ 2 exp{−2δ2(1− γ)2t

4d
} (46)

and so, we finally get

Pr
[
f(h)(Y

t; fd)− E[f(h)(Y
t; fd)] > (t− h− 1)δ

]
≤ exp{−δ

2(1− γ)2(t− h− 1)

2d
} and

Pr
[
E[f(h)(Y

t; fd)]− f(h)(Y
t; f) > (t− h− 1)δ

]
≤ exp{−δ

2(1− γ)2(t− h− 1)

2d
},

completing the proof of Lemma 15.

B.3 Concentration for hidden Markov models
Now, we consider the hidden states (Ws)

t
s=1 which form a Markov chain.

The definition of a hidden Markov model directly implies that Ys is independent of (Ws′ , Ys′)
s−2
s′=1

and Ys−1 given Ws−1. Effectively, the hidden Markov model is a special case of a 1-memory Markov
chain on (Ws, Ys)s≥1.

Like in the case of d-memory Markov processes, we consider a condition of contractivity. Let
P denote the stationary distribution on the tuple (Ws, Ys), and P−1(·, ·|x, y) denote the transition
probability matrix. (Note that this only depends on the value of x; we have P−1(·, ·|x, y) = P−1(·, ·|x, y′)
for any y′ 6= y.)

Definition 11. Consider a hidden Markov model with transition probability matrix P−1(·, ·|x, y) on
the joint state (Ws, Ys). The model is γ-contractive if for every (x, y), (x′, y′) ∈ X × X , we have

‖P−1(.|x)− P−1(.|x′)‖TV ≤ γ < 1.

The transportation cost method can then be easily leveraged to show that Equation (43) holds, as
we show in the following minor lemma.

Lemma 15. Equation (43) holds for a γ-contractive Markov process with constant c = (1−γ)
h2 (on the

function used to expressed hth-order unpredictability).

35

Proof. As before, we invoke Theorem 3 on the Markov process (Ws, Ys)
t
s=1. For the estimate of

hth-order approximability, we consider the function (overloading notation)

f(h)((Ws, Ys)
t
s=1; f) := f(h)(Y

t; f) =

t∑
s=h

I [Ys 6= f(Ys−h, . . . , Ys−1)] . (47)

Clearly, a change in Ys can affect at most h terms in the sum on the right hand side of Equation (47),
and therefore, the function f(h)(·; f) is h-Lipschitz. Thus, we apply the theorem to get the following
concentration rate:

Pr
[
f(h)(Y

t; f)− E[f(h)(Y
t; f)] > (t− h− 1)δ

]
≤ exp{−δ

2(1− γ)2(t− h− 1)

2h2
} and

Pr
[
E[f(h)(Y

t; f)]− f(h)(Y
t; f) > (t− h− 1)δ

]
≤ exp{−δ

2(1− γ)2(t− h− 1)

2h2
},

B.4 Technical details about the transportation cost method
Let t > 0. Consider a metric space X t with metric ρ.

We will consider functions of the form f : X t → R that are Lipschitz with respect to metric ρ; that
is, there exists some L > 0 such that

|f(Xt
1)− f(Xt

2)| ≤ Lρ(Xt
1, X

t
2).

We denote the Lipschitz constant of the function by ‖f‖Lip.
Now we define a useful notion of distance called the Wasserstein distance.

Definition 12. The Wasserstein distance between distributions P and Q on X t with respect to metric
ρ is defined as

Wρ(P,Q) = sup
f :‖f‖Lip≤1

∫
fdP− fdQ = inf

M couples P and Q on (Xt1,X
t
2)
E
[
ρ(Xt

1, X
t
2)
]

We will consider Xt ∈ X t be distributed according to P. For a function f such that ‖f‖Lip = L, we
care about the concentration of the quantity f(Xt) around its mean, E[f(Xt)], as a function of t.

In our case, X t = {0, 1}t is finite. We consider the additive Hamming metric

ρ(Xt
1, X

t
2) :=

t∑
s=1

I[X1,s 6= X2,s]. (48)

(For the special case of t = 1 the Wasserstein distance between P and Q corresponding to this
metric is the total variation distance, denoted by ‖P−Q‖TV .

Our basic ingredient is a transportation cost inequality, which we define below.

Definition 13. We say that the distribution P satisfies a transportation cost inequality if, for every
distribution Q, we have

Wρ(P,Q) ≤
√

2γD(Q ‖ P) (49)

Marton showed [M+96] that a transportation inequality on the underlying distribution P on Xt

implied nice concentration bounds on f(Xt) around its mean, when f(·) is Lipshitz with respect to
the metric ρ. This technique is powerful because we can establish transportation cost inequalities for
a much broader class of distributions P than just product distributions; in particular, we can handle
weak dependencies. In the special case of the Wasserstein metric corresponding to total variation
distance, the classical Pinsker’s inequality is a special case of the transportation cost inequality (49). It
turns out we can adapt Pinsker’s inequality together with the chain rule on KL-divergence to prove a

36

transportation cost inequality on the additive Hamming distance for product distributions [Mar86].
We can also do this more generally for the case where P is a Markov distribution on X t, provided
the Markov chain satisfies an important contractivity condition. Consider the Markov process with
stationary distribution P1(.), and transition probabilities P−1(.|x) for all x ∈ X . We again define
γ-contractivity for a general-state-space Markov process below.

Definition 14. A Markov chain is γ-contractive if for every two states x, x′ ∈ X , we have

‖P−1(.|x)− P−1(.|x′)‖TV ≤ γ < 1. (50)

Under this condition, the Markov distribution satisfies a transportation cost inequality, as shown by
the following theorem.

Theorem 3 ([M+96]). Let P be a Markov distribution on X t that satisfies Equation (50) with parameter
γ < 1. Then, we have

Wρ(P,Q) ≤ 1

1− γ

√
t

2
D(Q ‖ P) (51)

This directly implies a concentration bound of the form

Pr[|f(Xt)− E[f(Xt)]| > δt] ≤ 2 exp{−2δ2(1− γ)2t

L2
} (52)

C Algorithmic benefits of ContextTreeAdaHedge(D)

In this section, we expound on the algorithmic benefits of ContextTreeAdaHedge(D) equipped
with prior function g(·): in particular, we formally show the reduced computational complexity of
the algorithm, and the equivalence of the computationally efficient update in Equation (6a) and
the computationally naive update in Equation (5). The equivalence was originally proved for the
multiplicative weights algorithm with a fixed learning rate [HS97]: here, we generalize the argument to
include the family of exponential-weights updates with a time-varying, data-dependent learning rate.

Proposition 2. The runtime of ContextTreeAdaHedge(D) per prediction round is O(2D).

Proof. Consider round t of prediction. To carry out the efficient update in Equation (6a), we need to
visit every node in the path of the context Xt. Since the full context is of length D, the update runs
in O(D). To perform the prediction, we must calculate the probability distribution wt, which has 2
entries. To calculate wt, we must visit every node in the single complete height D tree to access the
cumulative loss vectors {Lx(D),t}x(D)∈XD .

Since there are 2D such loss vectors (i.e. 2D nodes to visit), this operation takes O(2D) time. For a
general prior, these cumulative contextual losses are accessed for every value of h ∈ {0, 1, . . . , D}. Thus,
the total computational complexity of performing an update is

D∑
h=0

2h = 2D+1 − 1 ∈ O(2D).

After performing prediction and receiving loss feedback, we need to access all these nodes again
and update the cumulative losses. By a similar argument as above, this is also a O(2D) operation.
Therefore, the total computational compelexity per round is O(2D).

Computational complexity reduction: equivalence of updates Here, we state and prove
the following proposition which shows equivalence of the naive update in Equation (5) and the
computationally efficient update in Equation (6a).

Proposition 3. For any prior function g : {0, 1, . . . , D} → R+, the updates in Equation (6a) and
Equation (5) are equivalent.

37

Proof. It is convenient, for the purposes of this proof, to consider the overcounted set of tree experts
ranging from orders 0 to D. In particular, any dth-order tree expert is described by a function
f ′ : X d → X and there are 22d such experts. Corresponding to prior function g(·), we set the initial
distribution on tree experts:

w
(tree)
1,f =

∑D
h=order(f) g(h)

Z(g)

where Z(g) is the initial normalizing factor, i.e. Z(g) =
∑D
h=0 22hg(h).

Recall Equation (5) for the probability of choosing tree expert f at time t:

w
(tree)
t,f =

(∑D
h=order(f) g(h)

)
e−ηtLt,f

Zt(g)

where

Zt(g) :=
∑
f∈FD

 D∑
h=order(f)

g(h)

 e−ηtLt,f .

Also recall Equation (6a) for the probability of y ∈ X at time t:

wt,y =

∑D
h=0 g

′(h; ηt)e
−ηtLXt(h),t,y∑D

h=0 g
′(h; ηt)

(∑
y∈X e

−ηtLXt(h),t,y

) where

g′(h; ηt) = g(h)
∏

x(h)6=Xt(h)

∑
y∈X

e−ηtLx(h),t,y


To show equivalence, it clearly suffices to show for every y ∈ X that∑

f∈FD:f(Xt)=y

w
(tree)
t,f = wt,y. (53)

We have

∑
f∈FD:f(Xt)=j

w
(tree)
t,f =

D∑
h=0

∑
f :order(f)=h
f :f(Xt(h))=y

w
(tree)
t,f

=

D∑
h=0

∑
f :order(f)=h
f :f(Xt(h))=y

g(h)

Zt(g)

∏
x(h)∈Xh

e−ηtLx(h),t,f(x(h))

=

D∑
h=0

g(h)

Zt(g)
e−ηtLXt(h),t,y

∏
x(h)6=Xt(h)

∑
y′∈X

e−ηtLx(h),t,y


=

∑D
h=0 g

′(h; ηt)e
−ηtLXt(h),t,y

Zt(g)

where we have used the distributive law of multiplication over addition, and substituted the definition
of g′(h; ηt). To complete the proof of equivalence, it remains to show that

Zt(g) =

D∑
h=0

g′(h; ηt)

∑
y∈X

e−ηtLXt(h),t,y

 . (54)

38

We use the distributive law to get

Zt(g) :=
∑
f∈FD

 D∑
h=order(f)

g(h)

 ∏
x(h)∈Xh

e−ηtLx(h),t,f(x(h))

=

D∑
h=0

g(h)
∏

x(h)∈Xh

∑
y∈X

e−ηtLx(h),t,y

 .

We also substitute the expression for g′(h; ηt) to get

D∑
h=0

g′(h; ηt)

∑
y∈X

e−ηtLXt(h),t,y

 =

D∑
h=0

g(h)

 ∏
x(h) 6=Xt(h)

∑
y∈X

e−ηtLx(h),t,y

∑
y∈X

e−ηtLXt(h),t,y


=

D∑
h=0

g(h)
∏

x(h)∈Xh

∑
y∈X

e−ηtLx(h),t,y

 .

Thus, Equation (54) holds. This completes the proof of equivalence of algorithms.

D Supplementary algebra
In this section, we state a couple of supplementary algebraic statements (and prove them when
necessary).

Fact 1. For two quantities B,C ≥ 0, we have max{B,C} ≤ B + C.

Fact 2. For two numbers B,C ≥ 0,

x2 −Bx− C ≤ 0 =⇒ x ≤
√
C +B.

This results from the quadratic formula, which gives us

x ≤ B +
√
B2 + 4C

2

≤ B +B + 2
√
C

2
=
√
C +B

where the last inequality is a consequence of

a, b ≥ 0 =⇒
√
a+ b ≤

√
a+
√
b.

E Extra simulations to illustrate model adaptivity
In this section, we provide a couple of supplementary simulation to the ones in Figure 2 to show the
maximal extent of advantage that adaptivity to the model order can give us. First, we examine the
0th-order stochastic model on {(Xt, Yt)}t≥1, that is, Yt i.i.d Ber(0.7) and Yt is independent of Xt, and
again compare three algorithms: the optimal online algorithm with oracle knowledge of this structure
(the greedy Follow-the-Leader); uniform-prior ContextTreeAdaHedge(D), which adapts to
stochasticity but not model order; and our two-fold adaptive algorithm, ContextTreeAdaHedge(D)
with the prior function gprop(·).

Figure 3 shows the evolution of regret and cumulative loss of all three algorithms. The advantage
of adaptivity is even more stark in the simple iid case: ContextTreeAdaHedge(D) with prior
function gprop(·) is very close in its performance to the greedy optimal Follow-the-Leader algorithm. The

39

Number of rounds

Ex
pe

ct
ed

 n
or

m
al

iz
ed

 lo
ss

Adaptive with
uniform prior

Adaptive with
model selection

Greedy-optimal FTL

(a) Total loss as a function of T .

Number of rounds

Ex
pe

ct
ed

 n
or

m
al

iz
ed

 re
gr

et

Adaptive with
uniform prior

Adaptive with
model selection

Greedy-optimal FTL

(b) RT,0 as a function of T .

Figure 3. Comparison of optimal greedy FTL, ContextTreeAdaHedge(D) with uniform prior and
prior function gprop(·) (where D = 8); against iid structure, upto T = 1500 rounds.

disadvantage of adaptivity is also very clearly illustrated: uniform-prior ContextTreeAdaHedge(D)
is hugely overfitting for this simple iid example.

Second, we explore an additional example of an HMM with the following parameters:

Hidden state evolution Wt+1 ∼ Ber (|Wt − 0.001|)
Yt|Wt = 0 ∼ Ber(0.2) and Yt|Wt = 1 ∼ Ber(0.9).

This is an interesting example of a HMM with very slowly transitioning hidden states – we expect
there to be longer-range dependencies here than in the HMM with quickly transitioning hidden states
that we considered in Section 5. From the simulation results in Figure 4, it appears that the best model
fit is of order 3 or 4; we observe that our adaptive algorithm naturally tracks the performance of such a
model fit in this example as well. If we do not select models of roughly this order, we either overfit
or underfit as seen in the simulations. It is worth noting that depending on the parameters of the
HMM, different model orders could be considered as optimal fits for increasing numbers of round; it is
notable that ContextTreeAdaHedge(D) adapts to a suitable model order for different choices of
parameters.

0 500 1000 1500 2000

Number of rounds

0

200

400

600

800

1000

T
o
ta

l
lo

ss

Robust, model order adaptive

Robust, model order 1

Robust, model order 2

Robust, model order 3

Robust, model order 4

(a) Total loss as a function of T com-
pared to lower-model orders.

0 500 1000 1500 2000

Number of rounds

0

200

400

600

800

1000

T
o
ta

l
lo

ss

Robust, model order adaptive

Robust, model order 5

Robust, model order 6

Robust, model order 7

Robust, model order 8

(b) Total loss as a function of T com-
pared to higher-model orders.

Figure 4. Comparison of model-adaptive ContextTreeAdaHedge(D) with uniform-prior
ContextTreeAdaHedge(d) for fixed model orders on a HMM with slowly transitioning states.

40

	Main proofs of ContextTreeAdaHedge(D)
	Second-order regret bound and adversarial result
	Exploiting stochasticity
	Notation for contextual prediction
	Explicit model selection
	Analysis for a higher-than-needed model order
	Completing proof of Proposition 1
	Ruling out higher-order models
	Ruling out bad lower-order models
	Putting the pieces together: Proof of Theorem 1

	Stochastic model selection guarantees
	Sufficient condition for concentration of estimate of approximability
	Concentration for finite-memory Markov models
	Concentration for hidden Markov models
	Technical details about the transportation cost method

	Algorithmic benefits of ContextTreeAdaHedge(D)
	Supplementary algebra
	Extra simulations to illustrate model adaptivity

