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Abstract

We introduce algorithms for online, full-
information prediction that are computation-
ally e�cient and competitive with contex-
tual tree experts of unknown complexity, in
both probabilistic and adversarial settings.
We incorporate a novel probabilistic frame-
work of structural risk minimization into ex-
isting adaptive algorithms and show that we
can robustly learn not only the presence of
stochastic structure when it exists, but also
the correct model order. When the stochas-
tic data is actually realized from a predic-
tor in the model class considered, we obtain
regret bounds that are competitive with the
regret of an optimal algorithm that possesses
strong side information about both the true
model order and whether the process gener-
ating the data is stochastic or adversarial. In
cases where the data does not arise from any
of the models, our algorithm selects models
of higher order as we play more rounds. We
display empirically improved overall predic-

tion error over other adversarially robust ap-
proaches.

1 Introduction

In full-information online learning, there are no gen-
erative assumptions on the data. We consider online

supervised learning where we observe pairs of covari-
ates and responses, and need to minimize regret with
respect to the best function in hindsight from a fixed

model class. In the case where covariates and re-
sponses are discrete, we can consider the 0 � 1 loss
function, and characterize the performance of tree ex-
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perts (also called contextual experts) that map a co-
variate to an appropriate response. A natural goal
is to minimize minimax cumulative regret as a func-
tion of the number of rounds T . This is well known to
scale [CBFH+97] asO(

p
T ·(max. model complexity)).

Once this is guaranteed, we are especially interested
in adaptive algorithms that preserve this guaran-
tee and also adapt to “easier” stochastic structure.
Again, it is well known that we can get much faster
O((max. model complexity)) rates in this case; es-
sentially, constant regret. Recent work [CBMS07,
EKRG11, DRVEGK14, LS15, KVE15, KGvE16] con-
structs algorithms that adapt to these faster rates
while preserving the minimax rate; thus obtaining the
best of both worlds.

A more classical goal of adaptivity is adapting to the

complexity of the true model class. O✏ine model se-

lection has a rich history [Boz87, Vap99, Mas07] - typ-
ically a structured hierarchy of models is studied, and
the right model for the problem can be chosen in a
data-adaptive fashion when the data is independent
and identically distributed. It is clear that model
adaptivity is a natural goal in online learning – af-
ter all, while low regret is important, so is the right
choice of benchmark with respect to which to mini-
mize regret. And the importance of model selection
is reflected very naturally in regret: either our data is
not well-expressed by the used model class, leading us
to question what a good regret rate really means, or
our data is actually realized from a simple model and
we spend more time than needed looking for the right
predictor, building up unnecessary regret. Even if the
data is actually generated by a very complex model,
it may be well-approximated by simpler models – in
which case we might still prefer predicting according
to the simpler, easier-to-learn model. In these very
general settings, while we often frame the objective
as regret minimization, it is important not to forget
that our actual goal is minimizing overall expected
loss/prediction error. And so the choice of benchmark
is as important as guaranteeing achievement of it.

In this context, we have a natural goal. Starting with
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absolutely no assumptions, we still wish to protect our-
selves from adversaries with the minimax regret rates
(up to constants). However, we also want to adapt
simultaneously to the existence and statistical com-
plexity of stochastic structure, and perform almost as
well as an algorithm with oracle knowledge of that
structure would.

Typically, we use adaptive entropy regularization with
a changing learning rate to interpolate between the
stochastic and adversarial regimes. Structural risk
minimization has been considered in purely stochas-
tic, or purely adversarial environments, and uses a
very di↵erent kind of model complexity regulariza-
tion. In this paper, we develop a probabilistic notion
of structural risk minimization and adaptively recover
the stochastic model selection framework in a con-
textual experts setting under mild generative assump-
tions. When the generative model is actually within
the model class, we obtain near-optimal, theoretical
guarantees on regret in expectation and with high
probability. Undermodel-misspecified settings that are
nevertheless approximable by finite-order models, we
empirically show that our algorithm adapts to higher-
order models after playing more rounds – and demon-
strate the added advantage of achieving this kind of
two-fold adaptivity.

Our contributions We show that an adaptive vari-
ant of the computationally e�cient tree expert fore-

caster adapts not only to stochastic structure but also
the order of that stochastic structure that best de-
scribes the mapping between covariates and responses.

In the case when the sequence is actually generated
from one of the tree expert models, we obtain a near-
optimal regret guarantee, stated below. (For a formal
statement of the theorem, see Theorem 1.)

Theorem 1 (informal): Let D be the maximum

model order of tree experts. The regret of our algo-

rithm with respect to the best dth-order tree expert is

O(
p
T2d) in an adversarial setting and O(d ·D lnD ·

22d) with high probability when the data is ac-

tually generated by a dth-order tree expert, for any

d 2 {0, . . . , D}.

Thus, we can recover stochastic online model selection
in an adversarial framework – our regret rate for dth-
order processes is achieved without knowing the value
of d in advance, or even that the process is stochas-
tic. In stochastic environments, this rate is competi-
tive with the optimal regret rate (which is O(2d)) that
would be achieved by a greedy algorithm possessing
side information about both the existence of stochastic
structure and the true model order. In the adversarial
regime, the rate is optimal in terms of its dependence

on the time horizon T . To the best of our knowledge,
this is the first provable guarantee on simultaneous
adaptivity by an e�cient algorithm

1.

Interestingly, we are able to obtain these guarantees
for an algorithm that is a natural adaptation of the
standard exponential weights framework, and our re-
sults have an intuitive interpretation. We combine
the adaptivity to stochasticity of an existing “best-of-
both-worlds” algorithm (calledAdaHedge [EKRG11,
DRVEGK14]) with the prior weighting on tree experts
that is used in tree forecasters [HS97]2. As is intuitive,
the prior is inversely proportional to the complexity of
the tree expert.

Our analysis recovers the stochastic structural risk
minimization framework in a probabilistic sense.
There are two penalties involved: the complexity of
the model selected (to achieve model selection) as well
as determinism (to ensure protection against adver-
saries). Remarkably, our algorithm uses a common
time-varying, data-dependent learning rate, defined in
the elegant AdaHedge style, to learn the correct pro-
portion with which to apply both regularizers.

We also empirically consider more challenging stochas-
tic settings in which the data does not, in fact, arise
from any of the models considered. The quantity of
regret does not necessarily make sense here, as there
is no natural benchmark that contains a generative
model for the sequence. We still do care about overall
prediction error – ideally, our approach should select
higher-order models as we play more rounds as well
as form better estimates under these models. We dis-
play the empirical benefit of our model-order-selecting
framework in simulations in Section 5 on predicting
sequences realized by hidden Markov models, which
have been shown to be approximable by finite-memory
models [SKLV18].

Related work The framework for o✏ine struc-
tural risk minimization in purely stochastic environ-
ments was laid out in seminal work (for a review,
see [Mas07]). Generalization bounds are used to char-
acterize model order complexity, and empirical process
theory is used to show that data-adaptive model selec-
tion can be performed with high probability. Online
bandit approaches for stochastic model selection have
also been considered more recently [ADBL11].

1A clever application of the Bernstein condition on the
recently proposed Squint [KGvE16] shows simultaneous
adaptivity in the realizable case, but Squint as directly
applied to the tree expert problem is computationally pro-
hibitive.

2Most interestingly, this prior distribution was designed
for the original tree expert forecaster [HS97], but this algo-
rithm could not e↵ectively utilize the prior because of the
fixed learning rate.
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On the other side, the paradigm for adversarial regret
minimization was laid out in the discrete “experts” set-
ting in seminal work (for a review, see [CBFH+97]),
and subsequently lifted up to the more general on-

line convex optimization framework (for a review,
see [SS+12]). The next natural goal was adaptivity to
several types of “easier” instances while preserving the
worst-case guarantees. Most pertinent to our work are
the easier stochastic losses [DRVEGK14], under which
the greedy Follow-the-Leader algorithm achieves re-
gret O(1). In the experts setting, multiple algorithms
have been proposed [CBMS07, EKRG11, DRVEGK14,
LS15, KVE15, KGvE16] that adaptively achieve O(1)
regret. Some of these guarantees have been extended
to online optimization [vEK16]. As we will see, naively
extending these analyses to the tree expert forecaster
problem gives a pessimistic O(2D) regret bound. In
our work, we show that we can get the best of many

worlds and greatly improve the exponent to eO(22d),
reducing the dependence on the maximum model com-
plexity D from exponential to linear.

Recent guarantees on adapting to a simpler model
class, but not to stochasticity, have also been devel-
oped [RS13, Ora14, LS15, KVE15, OP16, FKMS17].
Many of these approaches [RS13, Ora14, OP16,
FKMS17] do not improve the O(

p
T ) rate for

stochastic data. We address in particular two
recent algorithms, AdaNormalHedge [LS15] and
Squint [KVE15], both of which obtain second-order
quantile regret bounds in terms of a “variance” term
and the correct model complexity in the worst case.
AdaNormalHedge can be implemented two ways:
ine�ciently by considering all tree experts in each
round, and e�ciently using a sleeping experts re-
duction [?]. For both implementations, proving the
stochastic model selection guarantee is non-trivial and
does not follow from existing analysis3. Squint cleverly
applies the Bernstein condition [KGvE16] and obtains
the optimal stochastic rate of O(2d) for the special
“realizability” case. However, the computational com-
plexity of Squint necessarily scales linearly with the
number of experts, which in the case of the tree ex-
pert problem is a prohibitive double-exponential-in-D
complexity. It is not obvious how to reduce Squint’s

computational complexity, as the algorithm uses a

3In more detail: Theorem 2 part 2 of the paper, which
gives regret bounds in the stochastic regime, requires a
single best expert in every round and a positive gap be-
tween that expert and all others. Noting that the ex-
pected gap for the tree expert problem is 1/2D, applying
this directly to the ine�cient version gives a pessimistic
O(2D+d⇤) regret bound. For the sleeping expert version,
di↵erent experts are awake on every round and the condi-
tions of the theorem do not directly apply. Analyzing this
would likely require reasoning directly about model order
selection guarantees as we have done.

black-box framework on prediction using expert ad-
vice and results in a more complex update. We con-
sider the broad exponential weights framework that is
well-known to be e�ciently implementable for the tree
expert problem [HS97], and our analysis intuitively
tackles the model selection problem directly.

The most complex model-misspecified example we con-
sider is that of hidden Markov models, of which pa-
rameter estimation is an active area of research. Per-
haps surprisingly, finite-memory models are reasonable
approximators of a HMM [SKLV18], and can be reli-
ably estimated under a mixing condition on the hidden
Markov chain. Our empirical results support this re-
cent theory.

2 Problem statement

We consider a contextual prediction setting over T >
0 rounds, in which we receive context-output pairs
(Xt, Yt)Tt=1. We consider Xt 2 X

D, Yt 2 X , where
X = {0, 1} is the binary alphabet4. It will also be
natural to consider the truncated version of Xt that
only represents the last d coordinates – we denote
this by Xt(d), with the convention that Xt := Xt(D).
Note that this includes the universal sequence predic-

tion paradigm in which the contextXt(d) = {Ys}
t�1
s=t�d

comprises of previous observation values itself.

We follow the online supervised learning paradigm:
before round t, we are given access to Xt, but not Yt.
Let FD denote the set of all tree experts, expressed
as Boolean functions from X

D to X . We will also be
considering tree experts that map from the subcon-
texts {Xt(h)} to outputs Yt, denoted by fh 2 Fh for all
values of h in {0, 1, . . . , D}. (In universal prediction,
these can be thought of as finite-memory predictors.)
We use the shorthand notation f := fD 2 FD. We de-
fine the order of a tree expert, denoted by order(fh),
as the minimum value of d  h for which its func-
tionality can be expressed equivalently in terms of a
function from X

d to X . That is,

order(fh) := min{d  h : there exists f 0d 2 Fd s.t.

fh(x(h)) = f 0d(x(d)) for all x(h) 2 X
h
}.

We define our randomized online algorithm for pre-

diction using tree experts in terms of a sequence of

probability distributions {w(tree)
t }

T
t=1 over the set FD

of all tree experts. Note that w(tree)
t cannot depend

on {(Xs, Ys)}s�t+1 or Yt. We denote the realization

of the prediction at time t by bYt 2 X , and the distri-

bution on bYt by wt (clearly induced by w(tree)
t ). After

4As a general note, all our analysis can easily be ex-
tended to the m-ary case. We present the binary case for
simplicity.
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prediction, the actual value Yt is revealed, and the
expected loss is modeled as 0 � 1 loss depending on
whether we get the prediction right. Formally, we have
lt =

⇥
I[Yt 6= 0] I[Yt 6= 1]

⇤
, and the expected loss of

the algorithm in round t is given by hwt, lti = wt,1�Yt .
We also call this the expected prediction error of the
algorithm. We denote as shorthand (for all h  D)

Lt,f :=
tX

s=1

I[Ys 6= f(Xs(h))] for all f 2 Fh

LX,t,y :=
tX

s=1

I[Xs = X;Ys 6= y] for all X 2 X
h, y 2 X

LX,t :=
⇥
LX,t,0 LX,t,1

⇤
for all X 2 X

h.

2.1 Adaptive regret minimization and
ContextTreeAdaHedge(D)

The traditional quantity of regret measures the loss
of an algorithm with respect to the loss of the algo-
rithm that possessed oracle knowledge of the best sin-
gle “action” to take in hindsight, after seeing the entire
sequence o✏ine. In the context of online supervised
learning, this “action” represents the best dth-order
Boolean function bFd(T ) 2 Fd. The expected regret
with respect to the best dth-order tree expert is de-
fined as RT,d :=

PT
t=1hwt, lti � LT, bFd(T ).

Our algorithm is e↵ectively an exponential-weights up-
date on tree experts equipped with a time-varying,

data-dependent learning rate and a suitable prior dis-
tribution on tree experts. We start by describing the
structure of the prior distribution.

Definition 1. For any non-negative-valued function

g : {0, 1, . . . , D} ! R+ [ {0}, we define the prior

distribution on all tree experts in FD, w(tree)
1,f (g) =

PD
h=order(f) g(h)

Z(g) , where Z(g) is the normalizing factor.

We select a function g(·) and use the prior defined
above to e↵ectively downweight more complex experts.
We will see that the choice of prior is crucial to recov-
ering stochastic model selection.

A good data-adaptive choice of {⌘t}t�1 has been an
intriguing question of significant recent interest. The
idea is that we want to learn the correct learning rate
for the problem. We consider a particularly elegant
choice based on the algorithm AdaHedge, that was
defined for the simpler experts setting. We denote
⌘s2s1 = {⌘s}s=s2

s=s1 for shorthand.

Definition 2 ([DRVEGK14]). The AdaHedge

learning rate process {⌘t}t�1 is described as

⌘t =
ln 2

�t�1(⌘
t�1
1 )

, (1)

where �t(⌘
t�1
1 ) is called the “cumulative mixability

gap” at time t and is given by

�t(⌘
t�1
1 ) :=

tX

s=1

�s(⌘s) where (2)

�s(⌘s) := hws(⌘s), lsi+
1

⌘s
lnhws(⌘s), e

�⌘slsi. (3)

We are now ready to describe our main algorithm.

Definition 3. The algorithm

ContextTreeAdaHedge(D) whose prior is

derived from the function g(·) updates its probability

distribution on tree experts as follows:

w(tree)
t,f (⌘t; g) =

⇣PD
h=order(f) g(h)

⌘
e�⌘tLt,f

P
f 02FD

⇣PD
h=order(f 0) g(h)

⌘
e�⌘tLt,f0

.

(4)

and learning rate update {⌘t}t�1 made according to

Equations (1) and (2).

The algorithm ContextTreeAdaHedge(D) ap-
pears to have a prohibitive computational complex-
ity of O(|FD|) = O(22

D

). However, the distributive
law enables a clever reduction in computational com-
plexity to O(2D). The main idea is that instead of

keeping track of cumulative losses of all the 22
D

func-
tions in FD, represented by {Lt,f}f2FD , we only need
to keep track of the cumulative losses of making cer-
tain predictions as a function of certain contexts, rep-
resented by {{Lx,t,y}y2X }x2XD . This reduction was
first considered for tree expert prediction in the worst-
case [HS97], with a fixed learning rate ⌘ > 0, and can
easily be extended to the broader class of exponential-
weights updates. Proposition 2, which is stated and
proved in Appendix C for completeness, shows that
the update on probability distribution on tree experts,
described in Equation (4) – can be equivalently writ-
ten as a computationally faster update on probability
distribution on predictors:

wt,y(⌘t; g) =

PD
h=0 g

0(h; ⌘t)e�⌘tLXt(h),t,y

PD
h=0 g

0(h; ⌘t)
⇣P

y2X e�⌘tLXt(h),t,y

⌘

(5a)

where g0(h; ⌘t) = g(h)
Y

x(h) 6=Xt(h)

0

@
X

y2X
e�⌘tLx(h),t,y

1

A

(5b)

The equivalence is in the sense that the expected loss
incurred by updates (4) and (5a) is the same.
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2.2 Potential generative assumptions on data

As we have mentioned informally, we would like to
get greatly improved regret rates for data generated
in a certain way (without apriori knowledge of such
generation).

We work with the following general stochastic, station-
ary, predictable condition on our data.

Definition 4 (Stationary stochastic condition). We

say that our data (Xt, Yt)t�1 satisfies the stationary

stochastic condition if the following hold:

1. The random vectors {(Xt, Yt)}t�1 are iden-

tically distributed across t � 1 (not nec-

essarily independent). We have Xt ⇠

Q⇤
D(·), Yt|{Xt(h), (Xt�1, Yt�1), . . . , (X1, Y1)} ⇠

P ⇤(·|Xt(h)) for all Xt(h) 2 X
h

and h 2

{0, 1, . . . , D}.

We denote the marginal distribution on Xt(h) by
Q⇤

h(·). For this setting, it is natural to define the best
“external predictor” for any h  d:

f⇤(x(h)) :2 argmaxy2XP ⇤(y|x(h)) for all x(h) 2 X
h,
(6)

Based on this, we also define the important notions
of asymptotic unpredictability for all model orders h 2

{0, 1, . . . , D}. The definitions and notation are directly
inspired by information-theoretic limits on sequence
compression and prediction [FMG92].

Definition 5 ( [FMG92]). For data (Xt, Yt)t�1 satis-

fying the stationary stochastic condition, we define its

asymptotic unpredictability under the hth
-order predic-

tive model by –

⇡⇤
h :=

X

x(h)2Xh

Q⇤
h(x(h))


1�max

y2X
{P ⇤(y|x(h))}

�
(7)

In general, the sequence {⇡⇤
h}

D
h=0 is decreasing in h.

We now formally define a formally realizable sequence.

Definition 6 (Realizable sequence). We say that our

data is realized from a dth-order model if we have

Yt|{Xt, (Xs, Ys)
t�1
s=1} ⇠ P ⇤(·|Xt(d)) for all t and all

Xt 2 X
D
. This implies that ⇡⇤

h = ⇡⇤
d < 1/2 for all

h � d.

The realizability condition implies that Yt is indepen-
dent of all previous observations given Xt(d). This in-
cludes simple environments like contextual prediction

where pairs (Xt, Yt) are drawn iid – but also sequence

prediction under a dth-memory Markov process. We

assume that the best dth-order predictor is unique5,
i.e.

P ⇤(f⇤(x(d))|x(d)) > P ⇤(y|x(d)) for all y 6= f⇤(x(d))

and for all x(d) 2 X
d.

and denote the parameter6

�(x(d)) = P ⇤(f⇤(x(d))|x(d)) (8)

�⇤ := min
x(d)2Xd

�(x(d)). (9)

We also empirically consider hidden Markov models

that are not actually realized from any finite-memory
model (theoretically, they have infinite-memory de-
pendence), but are approximable by them.

3 Main results

Di↵erent choices of the function g(·) used to describe
the prior distribution on tree experts yield vastly dif-
ferent results. Consider the choice gunif(h) := I[h =
D], which corresponds to the typical prior-free im-
plementation of exponential weights (i.e Equation (4)
with a uniform prior). With this choice, Proposition 1
in Appendix A.2.3 describes the “best-of-both-worlds”
bound that we obtain: worst-case regret O(

p
T · 2D),

and regret O(22D) in the stochastic case. Note that
the stochastic regret bound, while constant and thus
independent of the horizon T , is highly suboptimal in
its dependence on the maximum model order D. The
bound does not improve for drastically simpler cases;
for example, Yt ⇠ i.i.d and Yt is independent of Xt.

We now consider the realizable case in which the
data is actually coming from model order d. We
study the algorithm ContextTreeAdaHedge(D)
with the following choice of model-order-proportional
prior function.

gprop(h) = 2�2h+1

(10)

Our first result shows that the algorithm with this
choice of prior helps us e↵ectively learn the model or-
der while staying worst-case robust.

Theorem 1. 1. For any sequence {Xt, Yt}
T
t=1, the

algorithm ContextTreeAdaHedge(D) with

prior defined according to function gprop(·) gives

us regret rate

RT,d = O

⇣p
T2d

⌘
(11)

5This is the Tsybakov margin condition [T+04] that is
required for learnability. If, for e.g., ⇡⇤

d = 1/2, we would
unavoidably su↵er a

p
T regret rate [CBL06, Chap. 3,].

6Note that the uniqueness of best-predictor assumption
directly implies that �⇤ > 1/2, since we are working with
a binary alphabet.
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with respect to the best dth-order tree expert in

hindsight, and for every d 2 {0, 1, . . . , D}.

2. Consider any � 2 (0, 1]. Let the station-

ary stochastic sequence (Xt, Yt)t�1 satisfy the

dth-order realizability condition with parame-

ter �⇤
. Denote ↵d�1,d :=

⇡⇤
d�1�⇡⇤

d

2 . Then,

ContextTreeAdaHedge(D) with prior func-

tion gprop(·) incurs regret with probability greater

than or equal to (1� �):

RT,d = O

⇣
22d
⇣ d2

↵2
d�1,d

ln

 
d

↵2
d�1,d�

!
(12)

+
D · d

(↵⇤)2
ln

✓
D

↵⇤✏

◆⌘⌘
(13)

where ↵⇤ = min{↵d�1,d, 2�⇤
� 1)}.

The proof of Theorem 1 follows from a careful com-
bination of adversarial-stochastic interpolation and
structural risk minimization, and are deferred to the
appendix. We provide an intuitive sketch of the proof
in Section 4. The stochastic result in Theorem 1 hold
for a broad class of stochastic sequences; three special
cases of which we list below:

1. Independent and identically distributed data.

2. Universal sequence prediction (Xt = Y t�1
t�D) with

Yt following a d-memory mixing Markov process.

3. Universal sequence prediction with Yt generated
by a mixing hidden Markov model7.

Appendix B provides a detailed exposition of the ap-
plication of our results to these types of processes.

Theorem 1 shows that the e�cient algorithm
ContextTreeAdaHedge(D) obtains comparable
regret rates as would be achieved by an algorithm that
had oracle knowledge about the presence of stochas-
ticity and the model order. This is the strongest pos-
sible side information that an algorithm could con-
ceivably possess keeping the online learning problem
non-trivial.

In simulation, we also demonstrate the empirical ad-
vantage of algorithms that are able to adapt to model
complexity. These are better in terms of regret and
overall prediction error than other adversarially robust
approaches that do not adapt the benchmark, and are
interestingly comparable to purely greedy stochastic
model selection approaches. The advantage of o✏ine
data-driven model selection is well established, and we

7Since the “best expert” is of model order D, we get a
pessimistic regret bound in this case.

see this advantage even more naturally while measur-
ing regret, or even average prediction error, in online
learning.

4 Proof sketch of Theorem 1

Initially, we mirror the established style of “best-
of-both-worlds” results. The first step is always to
prove a regret bound that is dependent on the data
{(Xt, Yt)}Tt=1; in particular, a bound of the form

RT,d = O

⇣p
VT (⌘T1 ; gprop) · 2

d
⌘

where VT (⌘T1 ; gprop)

represents the cumulative variance of loss incurred by
the algorithm. Curiously, we are easily able to get a
bound (commonly called a second-order bound) that is
adaptive to the model order using exponential weights
with a prior8!

The cumulative variance term VT is telling us some-
thing about how random the randomized updates in
the algorithm are. In the worst case, VT 

T
4 and we

automatically recover the adversarial result; but this
term can be significantly smaller. It is easy to see that
this randomness will greatly reduce when the losses
are stochastic in the sense that one tree expert looks
consistently better than the others. It will also reduce
in the presence of a favorable prior gprop(·) if that best
expert possesses simpler structure. However, existing
analysis of e�cient algorithms [CBMS07, EKRG11,
DRVEGK14, LS15, KVE15] only exploits the former
property, and not the latter – thus giving a pessimistic
scaling of O(2D) or O(22D) for our problem.

Our main technical contribution is tackling the more
di�cult problem of finely controlling the cumulative
variance of the algorithm under a favorable prior
– showing that it in fact scales as the significantly
smaller

p
VT = O(2d). We achieve this by making an

explicit connection to probabilistic model selection by

complexity regularization. To see this, consider Equa-
tion (4) written equivalently as the optimization prob-
lem in the Follow-the-Regularized Leader [SS+12] up-
date:

w(tree)
t := argminw(tree)

h
hw(tree), L(tree)

t i+ (14)

1

⌘t

0

B@�H(w(tree))| {z }
entropy

+ hw(tree), C(tree)
i| {z }

complexity

1

CA
i
, (15)

where C(tree)
f := 2order(f) log 2 and H(·) denotes the

8The careful reader will notice that there is neverthe-
less a suboptimality in the dependence on d as compared
to the second-order bound obtained by algorithms like
Squint [KVE15] and AdaNormalHedge [LS15].
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entropy functional on a probability distribution over
a discrete-valued random variable. Viewed this way,
the algorithmContextTreeAdaHedge(D) updates
to minimize the cumulative loss adaptively regularized
with entropy (to protect against a potential adversary)
and model complexity (to adapt to simpler models
faster).

Approx. error

Estimation error

Total error

min. fractional error incurred by 
any online algorithm

P
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a
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)

Model order selected

Figure 1. Illustration of the tradeo↵ between es-
timation error and approximation error for vari-
ous choices of model order. The true model or-
der is 4 and the plot made is of performance
of uniform-prior ContextTreeAdaHedge(h) for
di↵erent choices of h, measured at T = 1500.

Figure 1 illustrates the classical tradeo↵ in stochastic

model selection in an example where the true model or-
der is 4 – the estimation error increases with model or-
der, and the approximation error decreases with model
order, and plateaus out at the true model order 4 (note
that this is the minimum average prediction error that
any online learning algorithm should be expected to
pay). Clearly, the true model order minimizes the ap-
propriate combination of estimation error and approx-
imation error.

Our algorithm additionally retains adversarial robust-
ness and can be interpreted as probabilistically select-
ing a model in every round. Explicitly, it maintains a
meta-expert layer where the meta-experts correspond
to algorithms (AdaHedge(h) corresponding to every
model order h)9. E↵ectively, we show a probabilistic

model selection guarantee, i.e. we can pick the true
model with high probability. We do this by ruling out
lower and higher-order models alike. On one hand, the
more (superfluously) complex a model is, the more it is
going to overfit, contributing to unnecessary accumu-
lated regret – however, the more its unfavorable prior
drags it down to rule it out. On the other hand, the
more (unnecessarily) simple a model is, the worse it is
going to approximate – and since this approximation
error is directly penalized in Equation (14), the less

9The master algorithm framework was also considered
explicitly for similar problems in the contextual bandit
regime [ALNS17], where the primary di�culty is paucity
of representative samples for each algorithm.

likely it is to be picked.

The reason the classical analysis of stochastic model
selection [Mas07] does not directly apply here is in
the requirement to adapt multi-fold, between adversity
and stochasticity of varying model complexity. The
primary technical di�culty is in characterizing the ex-
tent of adaptivity, encapsulated in the time-varying,
data-dependent learning rate which is known to be
notoriously di�cult to track [DRVEGK14, KVE15,
KGvE16]. It is perilous for the learning rate to re-
main too high (in which case the algorithm is e↵ec-
tively greedy, and overfits for too long), or sink too
low (in which case we remain stuck selecting poorly
fitting models). Remarkably, we are able to carefully
sandwich the learning rate in high probability to en-
sure model selection, in both cases using the funda-
mental inverse relationship between the learning rate
and regret that is used to learn the learning rate in
adaptive algorithms. This clever relationship has been
exploited to achieve stochastic-adversarial adaptivity;
here, we show that its power is significantly higher,
in being able to additionally adapt to model com-
plexity10. Once the (high-probability) model selection
guarantee is obtained, analysis proceeds with slight
generalization of the AdaHedge analysis [EKRG11]
to the tree experts setting.

5 Simulations

We now provide a brief empirical illustration of the
power of two-fold adaptivity to stochasticity and model

complexity with ContextTreeAdaHedge(D)
equipped with the prior function gprop(·). We show-
case two examples of stochastic sequences – one
that is actually generated from a 3-memory Markov
process with parameters:

Yt ⇠ Ber (0.6 · (Yt�3 � Yt�2 � Yt�1) + 0.2)

and one that is generated from a hidden Markov model
with parameters:

Hidden state evolution Wt+1 ⇠ Ber (|Wt � 0.9|)

Yt|Wt = 0 ⇠ Ber(0.2) , Yt|Wt = 1 ⇠ Ber(0.9).

Figure 2 compares our model-adaptive algorithm,
ContextTreeAdaHedge(D) (with prior function
gprop(·) and D = 8), with robust and greedy
algorithms, for the above examples of stochas-
tic sequences. Under the sequence generated
by a 3-memory Markov process, we compare our

10In fact, the same conceptual idea underlies the ap-
proaches to learn the learning rate, prevalent in Squint,
MetaGrad and AdaNormalHedge.
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Figure 2. Comparison of model-adaptive
ContextTreeAdaHedge(D) with robust and
greedy algorithms.

algorithm to the optimal online algorithm with
oracle knowledge of this structure (the greedy
Follow-the-Context-Leader(3)); and uniform-
prior ContextTreeAdaHedge(D), which adapts
to stochasticity but not model order. We con-
sider the expected normalized regret RT,3

T and ex-
pected normalized cumulative loss of the algo-
rithms. We observe that model adaptivity makes
a significant di↵erence to regret and overall loss:
ContextTreeAdaHedge(D) equipped with uni-
form prior does not adapt to model order, and pays
for it with loss (regret) accumulated due to overfit-
ting. Further, our main adaptive algorithm, which is
e↵ectively learning the presence of stochasticity and

the right model order is remarkably competitive with
the optimal Follow-the-Leader algorithm, which pos-
sesses oracle knowledge of both.

We also include the HMM example to display that
our algorithm appears to be model-adaptive even in
stochastic environments that are not exactly realized
from a finite-memory model. In these cases, we care
about the overall loss incurred by an algorithm, as
there is no natural benchmark for regret minimiza-
tion. We consider a HMM with quickly transition-
ing hidden states, for which the 1-memory model ap-
pears to be the best fit in hindsight11. Our adap-
tive algorithm, without knowledge of the parameters

11An additional example of a HMM with slowly transi-
tioning hidden states is also included in Appendix E; there,
the best model order fit is slightly higher.

of the HMM, tracks such a model in terms of over-
all loss. We observe that lower-order models (such
as model order 0) underfit and higher-order models
overfit for this simple example. We should expect
ContextTreeAdaHedge(D) to adapt to higher-
order models as more rounds are played in a way
to minimize the estimation-approximation tradeo↵; it
would be interesting to show this theoretically in fu-
ture work.

6 Discussion

Summarization of contributions We study the
problem of binary contextual prediction (easily gen-
eralizable to m-ary contextual prediction) with 0 � 1
loss. We design an algorithm that incorporates recent
advances in adaptivity with contextual pre-weighting,
and show that we can simultaneously adapt to the
model order complexity and the existence of stochas-
ticity. By adaptively recovering the stochastic struc-
tural risk minimization framework, we are able to se-
lect the right dth-order model for the stochastic pro-
cess, and obtain regret rates that are competitive with
those of the optimal greedy algorithm which knows
not only the presence of stochastic structure, but the
exact value of d. Our analysis is interpretable and di-
rectly analyzes the probability with which we select a
particular model order.

Future directions Many future directions arise
from this work. First, we acknowledge that the re-
gret rate we obtain is not exactly optimal, particu-
larly in terms of the multiplicative factor of d in the
exponent. This suboptimality appears to arise from
an overly conservative regularization of model order
complexity (because the same regularization parame-
ter is also used for entropy); it would be interesting to
design an algorithm with two di↵erent adaptive regu-
larization parameters. Second, we are hopeful that the
concept of probabilistic structural risk minimization
introduced here can be leveraged to recover the full
stochastic model selection framework in which higher-
order models are provably selected as more rounds are
played. We thus hope that it can be generalized in
multiple ways. For example, we desire high-probability
bounds on overall prediction error in the setting where
the sequence is stochastic and not realized by a finite-
order model, but still approximable by one. Finally,
it would be interesting to extend the positive results
obtained here to oracle-e�cient online supervised clas-
sification and/or regression, as has been noted by oth-
ers [FKMS17], as well as limited information feedback.
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