Charlie Nash, Nate Kushman, Christopher K.I. Williams

Appendix A: Experimental details

Image classifiers. For each image classifier in Sec-
tion 5.1 we used the same network structure: Two lay-
ers of convolution-ReLLU-max-pooling, each with ker-
nels of size 5, and no padding, followed by one fully
connected layer, and a final linear layer that outputs
the unnormalized softmax probabilities. For MNIST
we used 32 filters in each convolutional layer, and
for SVHN and CIFAR we used 64 and 128 filters for
CONV1 and CONV2 respectively. The fully connected
layer takes the vectorized feature maps of CONV2 and
maps to FC3 which has 256 units for all datasets. We
used dropout at every layer, and Adam optimizer with
learning rate 3 x 10™*. We trained the networks for
a maximum of 250000 steps, and used early stopping
with respect to the validation accuracy.

For the AfiNIST experiments in Section 5.2 we use
three image classifiers, one with global spatial pool-
ing, one without global spatial pooling, and a network
that replaces convolutional layers with fully connected
layers. The network without global spatial pooling is
identical to the MNIST network used in Section 5.1.
The network with global spatial pooling is identical ex-
cept that it applies global max pooling to the CONV?2
feature maps. The output of this operation is a vector
with the same number of dimensions as there are chan-
nels in the CONV?2 feature maps. This vector is then
connected using a fully-connected layer to the 256 unit
FC3 features. The fully connected network replaces
CONV1 and CONV2 with fully connected layers each
with 2048 units. The training details are the same as
for the other image classifiers.

Pixel CNN-++. For all inversion networks we
used the PixelCNN++ architecture detailed in (Sal-
imans et al., 2017). The architecture consists of six
blocks of residual layers, with spatial downsampling
using strided convolutions between the first, second
and third blocks, and spatial upsampling using strided
transpose convolutions between the fourth, fifth and
sixth blocks. In order to preserve high resolution in-
formation skip connections are employed between cor-
responding downsampling and upsampling blocks. In
order to reduce the cost of training the models, we
used three residual layers in each block rather than
the five specified in the original architecture. We use
64 filters in the convolutional layers for MNIST and
196 for SVHN and CIFAR. For SVHN and CIFAR we
used the discretized mixture of logistics described in
(Salimans et al., 2017) with 10 mixture components
for the conditional pixel likelihood. For MNIST we
used a 256-way softmax distribution over the discrete
pixel values as in the original PixelCNN (van den Oord
et al., 2016¢) as we found it to be much more effective

in practice.

We used weight normalization with data-dependent
initialization (Salimans and Kingma, 2016), and
trained our models using Adam optimizer with initial
learning rate 1072 and a learning rate decay of 0.9999
for a maximum of 250000 weight updates. Again we
used early stopping, but found that in general the val-
idation performance continued to improve for the du-
ration of training. To condition on vector represen-
tations FC3 and LOGITS we linearly projected the
context vector to biases that are added to feature
maps in each residual layer. For spatial representa-
tions CONV1 and CONV2 we resize the context to
match the Pixel CNN++ feature maps and use 1 x 1
convolutions to project to spatially-structured biases
that are added to the feature maps. We used a single
dropout layer in each Pixel CNN++ residual block for
all networks. For CONV1 inversion models on SVHN
and CIFAR we used dropout rate 0.1, and for all other
networks we used dropout rate 0.5. We applied an ad-
ditional dropout layer with dropout rate 0.2 to the
outputs of the linear projection of the context for the
CIFAR-FC3 inversion model.

Appendix B: More details on mutual
information estimation in neural
networks

Here we describe some alternative approaches to mu-
tual information estimation in neural networks not
covered in Section 3.3.

Discretization. Schwartz-Ziv and Tishby (2017)
discretize tanh activations in a fully-connected neu-
ral network each into 30 equally sized bins to form a
discrete empirical distribution p(h|x). In experiments
with a known distribution of discrete inputs p(x), they
exactly compute the mutual information between the
inputs and the discretized layer activations by averag-
ing over settings of x and h.

IGh) =Y | plx.h) log (M) (12)

Saxe et al., (2018) note that the networks of inter-
est do not operate on the discretized values, and that
the binning is used solely for mutual information cal-
culations. Moreover, there are many possible ways of
binning potentially unbounded activations such as Re-
LUs, and the choice can significantly impact the mu-
tual information estimates.

Non-parametric entropy estimation. Saxe et
al., (2018) similarly obtain an approximate bound on
the mutual information by estimating the entropy of
activations with additive noise H(h€). They use the

Inverting Supervised Representations with Autoregressive Neural Density Models

estimator of Kraskov et al. (2004) that makes use of
distances between nearest neighbours in a collection of
samples. The entropy estimator is:

H(h) = %Zz log(r; +¢€) + glog(ﬂ') (13)
logl(D/2+ 1)+ B(N) — p(k), (14)

where D is the dimensionality of h, N is the number
of samples, r; is the distance between sample i and its
k’th nearest neighbour, I' is the Gamma function, and
1 is the digamma function. As with the KDE-based
approach described in Section 3.3, this non-parametric
estimate may be problematic for analysis of network
layers with very many units.

