Learning Natural Programs from a Few Examples in Real-Time

Nagarajan Natarajan!

"Microsoft Research, India

Abstract

Programming by examples (PBE) is a rapidly
growing subfield of Al, that aims to synthesize
user-intended programs using input-output ex-
amples from the task. As users can provide only
a few I/O examples, capturing user-intent accu-
rately and ranking user-intended programs over
other programs is challenging even in the sim-
plest of the domains. Commercially deployed
PBE systems often require years of engineer-
ing effort and domain expertise to devise ranking
heuristics for real-time synthesis of accurate pro-
grams. But such heuristics may not cater to new
domains, or even to a different segment of users
from the same domain. In this work, we develop
a novel, real-time, ML-based program ranking
algorithm that enables synthesis of natural, user-
intended, personalized programs. We make two
key technical contributions: 1) a new technique
to embed programs in a vector space making
them amenable to ML-formulations, 2) a novel
formulation that interleaves program search with
ranking, enabling real-time synthesis of accu-
rate user-intended programs. We implement our
solution in the state-of-the-art PROSE frame-
work. The proposed approach learns the intended
program with just one I/O example in a vari-
ety of real-world string/date/number manipula-
tion tasks, and outperforms state-of-the-art neu-
ral synthesis methods along multiple metrics.

1 Introduction

Programming by examples (PBE) is an important and
emerging subfield of Al (Parisotto et al., 2016; Balog et al.,
2017; Devlin et al., 2017; Bunel et al., 2018; Kalyan et al.,
2018), where a user-intended program is synthesized au-
tomatically with the help of a few input-output examples

Proceedings of the 22" International Conference on Artificial In-
telligence and Statistics (AISTATS) 2019, Naha, Okinawa, Japan.
PMLR: Volume 89. Copyright 2019 by the author(s).

Danny Simmons?> Naren Datha!
2Microsoft Corporation, Redmond

1 2

Prateek Jain® Sumit Gulwani

Input Output
Missing page numbers, 1993 | 1993
64-67, 1995 ?
2002 (1-27) ?

Table 1: I/O spec provided to a PBE system. Goal is to find
a program that is: a) consistent (maps the first input into the
corresponding output), b) generalizable or accurate (com-
putes desired output on last two inputs). While millions
of programs in the DSL in Figure 1 are consistent, only a
handful of them generalize well to unseen inputs.

(I/0 specification, or spec for short). A large fraction of
computer users are not experts in programming, and syn-
thesizing programs automatically enables them to be more
productive. Table 1 describes a typical PBE task.

PBE is essentially a needle-in-haystack problem where the
goal is to search for a consistent program (i.e. one that
satisfies given I/O spec) in a certain Domain Specific Lan-
guage (DSL) that might contain infinitely many programs.
The problem becomes significantly more difficult due to
user-centric focus of the systems — the PBE system has to
be real-time and should be able to synthesize non-trivial
programs; and often in under-specified situations as one
cannot expect a user to provide a large number of I/O ex-
amples. Unfortunately, these requirements are somewhat
contradictory. That is, if the DSL is rich and can support
complicated programs, then a small number of I/O exam-
ples might not be able to uniquely identify a program in the
DSL. For example, for the specification in Table 1, we can
generate several consistent programs in the DSL of Fig-
ure 1, such as “extract the first number” or “extract the last
token”. However, human programmers are typically able
to figure out the correct program using a few I/O exam-
ples. So, the key question is: can we synthesize rich user-
intended programs using a small number of I/O examples,
in real-time?

Starting with the FlashFill PBE system (Gulwani, 2011)
that was commercially deployed in MS Excel (PCWorld,
2012), there has been tremendous progress in this domain
over the past few years. Typical PBE techniques search for
a program in a carefully-designed DSL and can be catego-
rized into: a) symbolic deduction based techniques (Polo-

Learning Natural Programs from a Few Examples in Real-Time

zov and Gulwani, 2015; Gulwani et al., 2017; Alur et al.,
2017; Le et al., 2017), b) neural computation based tech-
niques (Parisotto et al., 2016; Balog et al., 2017; Devlin
etal., 2017; Bunel et al., 2018; Kalyan et al., 2018).

Most neural synthesis (Parisotto et al., 2016; Balog et al.,
2017; Devlin et al., 2017; Bunel et al., 2018) models are
trained on synthetic data and hence in general, do not cap-
ture user-intended programs with a small number of I/O
examples. In contrast, symbolic computation based PBE
systems handcode the structure of programs and domain
knowledge tightly leading to significantly more accurate
programs in certain cases. However, manual engineering
of the system makes it challenging to extend the solution
for even slightly different scenario or a new domain.

Our work alleviates concerns with both the approaches
by carefully combining ML techniques with the symbolic
search techniques well-understood by the P community.
(1) Our first contribution addresses the fundamental ques-
tion of embedding heterogeneous programs/expressions in
a vector-space which can make programs more amenable to
standard learning techniques (Section 3). In the context of
PBE, a few key learning tasks that are enabled by program
embeddings are: clustering programs/expressions (Padhi
et al., 2018), predicting correct programs (Singh and Gul-
wani, 2015; Ellis and Gulwani, 2017), and ranking pro-
grams (Polozov and Gulwani, 2015; Balog et al., 2017).
Defining program embedding is challenging because pro-
grams are inherently recursive and can be composed of
heterogeneous sub-expressions. Furthermore, semantically
different programs can often behave equivalently on a given
I/O spec, so the embedding should take I/O spec into ac-
count as well.

(2) We show how the proposed embedding can be lever-
aged for learning to rank programs, a crucial component of
PBE systems. However, we cannot apply standard ranking
techniques — we cannot even enumerate all the candidate
programs to rank as there can be millions of consistent pro-
grams. So, we need to interleave synthesis and ranking for
real-time synthesis, which in turn requires comparing het-
erogeneous programs, subprograms, expressions, etc. The
problem is further complicated by unavailability of super-
vision for such intermediate subprograms, and by biased
training data that the bootstrapping process induces. We
propose three novel and successively refined formulations
to address the above mentioned challenges (Section 4).

(3) Finally, we integrate our ranking solution with the state-
of-the-art PROgram Synthesis using Examples, PROSE
(2015) framework. In particular, we show that on real-
world data wrangling tasks, the proposed ranking approach
outperforms baselines, as well as state-of-the-art neural-
synthesis approaches significantly. Our solution is com-
petitive wrt. the ranker tuned over two expert-years that
currently ships in Microsoft products (MS Excel, Power-
shell, Azure ML). Using just one I/O example, our method

@start program = tr | If (cond) Then (tr)
Else (program) ;

bool cond := Matches (input, 7);

string tr := atom | Concat (atom, tr);

string atom = ConstStr(s) | let string =z

: tnput in SubStr(x, pp) | input;

Tuple<int, int> pp = Pair (pos, pos) |
RegexOccurrence (x, 1, k);

int pos := AbsPos (z, k);

@input string dnput; string s; int k;
Regex r; //Terminals

Figure 1: An illustrative subset of the FlashFill DSL (Gul-
wani, 2011). A program takes a string input, and returns
a string, a concatenation of atoms. The operators are self-
explanatory. See Appendix B for the full DSL.

synthesizes a desired program for about 67% of the tasks
while baselines are successful only in at most 44%.

2 Background

In this section, we define the PBE problem formally, intro-
duce various aspects of PBE systems and terminology/no-
tation used in the rest of the paper.

The goal of a PBE system is to generate user-intended pro-
gram(s) where the user intention is specified using input-
output examples (I/O spec): ¢ = {o; — ¥}, U
{oi}i=,41- 0 is the i-th example’s input and 1; is the
corresponding output (when available). Unlabeled inputs
are often available and can be used for doing simple vali-
dation checks on synthesized programs (See Remark 1).

Typically, PBE systems restrict the search for a program to
a domain specific language £ that is powerful enough for
solving critical tasks in a certain domain, but is still restric-
tive and structured enough for efficient program synthesis.
A DSL L is arepresented as a context-free grammar (CFG)
consisting of ferminal symbols T', non-terminal symbols
N, rules that govern how non-terminals are expanded, and
operators F' : (N UT)* — N that make the production
rules. As an example, consider the popular FlashFill DSL
meant for data wrangling tasks in spreadsheets (Gulwani,
2011; Polozov and Gulwani, 2015). The core DSL is cap-
tured in Table 1 (Appendix B has the full DSL).

A program or an expression £ 3 P : 0 — 1 is a struc-
tured entity with precise syntax and semantics defined by
the DSL.

Remark 1 (Unlabeled inputs). Using unlabeled inputs (i.e.
{oi}ie,,41) can be often helpful in characterizing program
behavior, for example, programs that map many of the un-
labeled inputs to nulls or empty strings can be indicative
of unintended behavior.

For a PBE system to be usable in an interactive setting, it

Nagarajan Natarajan'

Danny Simmons> Naren Datha’

1

Prateek Jain' Sumit Gulwani’

should satisfy three key requirements:

(R1) be consistent (see Definition 1), i.e., return pro-
gram(s) that satisfy the user-provided I/O spec,

(R2) be generalizable, i.e., the synthesized program(s)
should give desired output on unseen inputs; for severely
underspecified problems (say m = 1 I/O example) there
can be millions of consistent programs (see Table 1), and
(R3) be real-time, i.e., the synthesise generalizable pro-
grams on consumer-class devices.

Definition 1 (Consistent Program). A program P €
L is “consistent” on a given input-output specification
{oi, i}y, if P(o;) =)y, fori = 1,2,...,m. Other-

wise, P is inconsistent.

While consistency (R1) is essentially a search problem,
(R2) is more critical and interesting from a machine learn-
ing perspective — often there can be millions of programs
that satisfy (R1), but the user would find most of the con-
sistent programs unusable because they do not generalize
to new inputs. It is not possible to formally specify “natu-
ralness” of programs with symbolic logic. Typically, (R2)
is addressed by means of a ranking function that can help
choose the “best” program from possibly many consistent
programs. One way to address this is to first synthesize all
the consistent programs, and then rank them (Ellis and Gul-
wani, 2017). Unfortunately, the naive approach cannot be
done in real-time — it can take hours to even enumerate the
consistent programs, thus contradicting (R3). State-of-the-
art neural-network based synthesis approaches are trained
on synthetic datasets/programs, so they fail to capture the
structure in the domain. As a result, neural synthesis ap-
proaches suffer in the quality of synthesized programs, es-
pecially for underspecified synthesis tasks (See Section 5).

It is therefore crucial to look at the search and the rank-
ing problem as a whole (i.e., (R1)-(R3)). Success-
ful, commercially-deployed PBE systems (Gulwani, 2011;
Gulwani et al., 2015; Alur et al., 2013) use symbolic logic
and deductive synthesis techniques to efficiently address
(R1) and (R3). In particular, the symbolic PBE systems
use a top-down deductive synthesis strategy based on the
divide-and-conquer paradigm. Here, the search problem
for a given 1/O spec is reduced into smaller subproblems
with suitably modified specs'. For e.g., the synthesis prob-
lem (= {“New York” — “NY”} is broken down into
finding a set of subprograms P; with spec (; = {“New
York” — “N”} and a set of subprograms P, with spec
¢ = {“New York” — “Y”}, i.e., programs in P; gener-
ating “N” and those in Py generating “Y”. Then the final
program set is given by P = {Concat (P, P») s.t. P, €
Py, Py € Py} Each of the synthesis subproblems is solved
recursively using the same strategy.

lit is beyond the scope of the paper to describe how spec for
the subproblems are obtained. See Polozov and Gulwani (2015)
for details of search. The key idea is to leverage inverse semantics
of the involved operators.

However, the aforementioned PBE systems rely on heuris-
tics for (R2), i.e. ranking (Polozov and Gulwani, 2015;
Rolim et al., 2017; Wang et al., 2017) (such as choos-
ing smaller programs/expressions over larger ones). Sim-
ple heuristics may result in bad failures even in sim-
ple cases. For illustration, consider the data format-
ting task with just one I/O example: {“[CCC-0001" —
“[CCC-0001]"}. Adopting naive heuristics such as “pre-
fer programs with fewer constants” or “prefer shorter pro-
grams” leads to the incorrect program: Concat (input,
ConstStr ("]")), which would fail on an already for-
matted input, say “[CCC-002]”. On the other hand, de-
veloping carefully-tuned ranking heuristics often takes one
to two expert-years; and requires continual effort to keep
up with domain changes, let alone scaling to new domains.
Also, it can be challenging to personalize the heuristics to
user segments with unique biases/preferences.

The primary goal of our work is to develop an ML-based
ranking solution for real-time synthesis of natural pro-
grams. Programs are difficult objects to analyse/rank, so
we need to be able to embed them in a suitable feature
space. To this end, we first address the problem of em-
bedding heterogeneous programs/expressions in a common
vector space. Defining an embedding that handles the het-
erogeneity is non-trivial, and it turns out that we need to
learn the embeddings themselves. Existing embedding
techniques (Ellis and Gulwani, 2017) do not work because
they are defined for homogeneous programs. We address
the embedding challenges and our solution in Section 3.
Subsequently, we consider the problem of doing program
ranking and search jointly. Apriori, it is unclear how to
set up/formulate the machine learning problem, or what
loss function to optimize. Ranking programs/expressions
is challenging for multiple reasons: 1) classical ranking
techniques (Liu et al., 2009) do not work, as we do not
even have a clean supervised dataset to begin with, and 2)
search for user-intended programs is a sequential decision
making problem, therefore a mistake at any point in the
search may be irrevocable; this necessitates a novel rank-
ing formulation that admits interleaved search and ranking
during synthesis. We address these challenges and propose
ranking solutions in Section 4.

3 Program-Spec Embedding

Informally, the problem is to find a representation for
programs/expressions P € L together with the I/O
spec (, such that the embedding captures syntactic and
semantic structure (defined by DSL), as well as behavioral
properties (defined by I/O spec). Defining a feature
vector for programs/expressions that captures the complex
structure/properties is not obvious. Simple techniques like
using the abstract syntax tree (AST) directly do not suffice.
Programs with very similar ASTs can differ arbitrarily in
their semantics. Consider two programs from the FlashFill

Learning Natural Programs from a Few Examples in Real-Time

DSL for the task in Table 1, P, = let =z nput in
SubStr (r, RegexOccurrence (z, "Number",

1)) and P, = let =z input in SubStr (x,
RegexOccurrence (x, "Number", -1)); P, and

P; have identical ASTs but different semantics (extracting
the first number vs the last number in the input). On the
other hand, two programs with very different ASTs can
produce identical outputs on given inputs.

(1) It is crucial to embed I/O spec along with the pro-
gram/expression itself. The utility of a program can
vary drastically based on the I/O spec. For e.g., the
program P = let z input in SubStr (x,
Pair (1, 3)) has the outcome of extracting first three
digits of SSN in (; = {“123-45-6789” — “123”, “555-
21-9012” +— “555”} vs an undesirable outcome of
extracting first three letters of name in (o = {“Joe
Smith” — “Joe”}. So the embedding must be defined on
the tuple (P, {) rather than just P.

(2) The embedding should facilitate comparisons be-
tween expressions and programs of different sizes,
types and complexities. For e.g., we want the ex-
pressions Concat (Concat (ConstStr("@"),
ConstStr("gmail")), ConstStr(".com"))
and ConstStr ("@gmail.com") to yield similar rep-
resentations. This is highly non-trivial; existing embedding
techniques do not impose/satisfy such a requirement.

3) Programs are compositional, e.g.
Concat (Concat (P, P), Ps). We want the
embedding to be recursive, thereby preserving the
compositional structure. The embedding of a program
should respect and conform to the embeddings of its
subprograms/expressions.

Often domain knowledge can help us define features for in-
dividual operators in the DSL. Concretely, let o, (P, () €
R0 be the set of given do, features for an operator Op.
For e.g., for the Concat operator, the length of its pre-
fix string argument is a feature (note that the feature may
depend on the spec (). See Appendix B.3 for features in
FlashFill DSL.

Define the dimensionality d to be d = ZopeCFG(L) dop.

Definition 2 (Program-Spec embedding). For any given
program/expression P € L, operator features ®o, €
R for all operators Op € CFG(L), and I/O spec ¢, we
want an embedding ®(P;() € R? that satisfies the afore-
mentioned three requirements.

To handle the recursive nature of programs (in the require-
ment (3) above), and the grammar itself, we critically ex-
ploit the fact that £ is represented as an unambiguous gram-
mar that has a unique parse 7 (P) for P. Let Op(P) be the
operator at the top of 7 (P), and let C(P) denote the imme-
diate children nodes of P in 7 (P). We obtain embedding
for P by combining the given features for the top opera-
tor in 7 (P) with a weighted combination of embeddings
of each child node of P in 7 (P). We define embedding

ST

pl2): pi);

let x: input O Q SubStr(x, PosPair(1, 3))
p(); / \ / \ pls):
input Q ‘ Q m Q PosPair(1, 3))

- ‘o

Figure 2: Parse-tree and embedding for the program: let
r : input in SubStr(x, PosPair(l, 3)).
The types of nodes (variables/operators) are color-coded.

®(P) of P recursively as:

O(P;¢) = op(p) (P Gw)+ Y w(P)O(P, (prsw)
P’eC(P)
(1)

where ®o,, p)(P; () are the given features for the root op-
erator Op(P) of P, {p: is the spec for subprogram P’
defined as {o; — P'(0;) | 0s € (}, and w(P’) is the
weight assigned to the operator at child P/, i.e. w(P’) :=
w(Op(P")), in the parse tree of P (see Figure 2). Thus,
in addition to the given features, the embeddings are char-
acterized by children operator weights w(P’) as well, i.e.,
w € RIForl where | Lo, is the number of operators in L.

Remark 2. Note that although the definition of the embed-
ding is recursive, we can compute it once weights w are
fixed. Observe that the leaf nodes in T (P) have only the
given features and hence the embeddings are well-defined
and immediately obtained; thus, the embedding for the pro-
gram P can be computed efficiently in a bottom-up fashion.

Thus we have a homogeneous embedding ® (P, (; w) of the
program P in the same d-dimensional space as that of its
constituent expressions. The weights w(.) can be learned
based on the end task that the embedding will be used for,
addressed in Section 4.

Remark 3. Our program embedding technique is also an
independent technical contribution, as it enables key learn-
ing tasks such as clustering programs/expressions (Padhi
et al., 2018), predicting correct programs (Singh and Gul-
wani, 2015; Ellis and Gulwani, 2017), and ranking pro-
grams in code-completion task (Balog et al., 2017).

4 Program Ranking

The goal of program ranking is to learn a ranking function
s that provides the highest score to user-intended programs;
and to facilitate synthesis of a user-intended program from
a few I/0 examples. However, as mentioned in Section 2, a

Nagarajan Natarajan' Danny Simmons?

Naren Datha!

Prateek Jain' Sumit Gulwani’

standard approach (Ellis and Gulwani, 2017) of generating
all the consistent programs and then ranking them using
standard formulations (Liu et al., 2009) is not feasible for
real-time systems.

Instead, a key motivating observation for our solution is
that the search process of the synthesis algorithm parti-
tions the program generation into multiple smaller program
synthesis sub-problems. So, the ranking algorithm should
be able to generate “correct” subprograms for each of the
smaller sub-problems as well; we call a program correct if
it produces the desired output on unseen inputs as well.

That is, say a program P = Op(Py,...,P.),{P; € P;}is
generated for specification { with operator Op in the DSL
L. Bach P; € P;, 1 < j < r,is in turn generated by solv-
ing a smaller PBE problem with “refined” specification ¢;
(discussed briefly in Section 2). Now, we require the rank-
ing function s to be such that it not only scores P higher
than other programs P’ € L for specification ¢ but it also
scores each P; above other programs PJ{ € L for specifica-
tion (;. That is the ranking function is monotonic.
Definition 3 (Program ranking). Let (= {o; — 9;}, U
{oi}ie, 41 denote I/O spec given to the PBE system. We
want to learn a ranking function s : R* — R as well as the
embedding function ®(-,-) such that below hold:

1. Correctness: s(®(P;¢)) > s(®(P’;¢)), for correct
programs P € L and incorrect programs P’ € L.

2. Monotonicity: Let Pi,..., P, denote the top-K pro-
grams returned for each subproblem with specification (j,
1 < j < r and let the final set of programs be P =
{P,st.P = Op(P,...,P,),P; € P;}. Then, the fol-
lowing holds:

VP e P,YP € L\P,s(®(P
ij EPJ‘,VP]{EE\'P]‘,S((

1Q)) = s(2(P';()) =
$G1)) = s(2(Pj;)

To learn the ranking function, we use a benchmark of real-
world programming tasks that should capture the typical
user-intent. Each task has a set of input-output examples;
while we provide a small number of them for synthesizing
the program, the remaining I/O examples are used for test-
ing if a synthesized program succeeds on the task. Design-
ing such a function requires further solving the following
two key challenges:

(1) Biased training data: Learning a ranking function re-
quires generating data from the PBE system itself (by ap-
plying it to a few tasks in the benchmark). To bootstrap
and to generate training data, we supply the PBE system
with a baseline ranker sg (e.g., a ranker that generates ran-
dom scores); generated training data is used to learn a new
ranker s;. When we deploy s;, the distribution of the sub-
programs generated itself changes based on s;’s rankings,
hence the accuracy can be arbitrarily poor as s; was trained
on data generated from sg.

(2) Distant supervision: Though the ranking function s

Algorithm 1 Algorithm for training ML-PROSE.
function ML-PROSE(L, 0y, T = {(;,i € [|T|]},T)
1. w(P)o=1forall P’ € CFG(L)
2 forall0 <7 <TI'do
3: P; = Synthesis(h-,(;),1 < j < |T|, Syn-
thesized programs by applying s, to spec (;
Assign yp = 1 for each correct P € P}, Vj
Assign yp = —1 for each incorrect P € P;, Vj
0=0,w=w,
while not converged do
Compute ®(P,(;;w,) using (1), P €

Yoo g

<.

 VJ
Update € by solving (3) with fixed w
Update w by solving (3) with fixed 6 and
w) computed recursively using (2)

Q@

1

s(P, ¢
11: Wr41 = W, (9-,—+1 =0
12: return sy = (wp, 91*)

is applied to rank smaller subprograms as well as the final
programs, the feedback (correctness label) is available only
for final programs; i.e., we can apply the final set of synthe-
sized programs on unseen inputs to measure their accuracy,
but we cannot get similar feedback for their subprograms.

4.1 Learning to Rank Programs/Subprograms

In this section, we describe three methods to generate
ranking problems; successive methods capture the prob-
lem structure better and try to address the above mentioned
challenges more directly. In this work, we focus on lin-
ear scoring functions over the embedding ® (parameterized
by w) defined in (1) (see Remark 4 for discussion on non-
linear functions), i.e., the score s(P, (;w) for program P
with spec (is given by: s(P,(;w) := 0T ®(P, (;w), § are
the weights. If P = Op(P, ..., P,) then,

Z '7Cj;w)7

2
is a recursive scoring (ranking) function as desired, where
6oy is the projection of # onto given features for operator
Op. Note that w(P;) > 0 is a necessary condition for sat-
isfying monotonicity (Definition 3). Now, we want to learn
weights w(.) > 0 as well as 6 in (2) such that the rank-
ing problem in Definition 3 is feasible and can be solved
accurately. For a DSL £, let T = {¢',¢2,...,¢/T1} de-
note a set of tasks, where each task corresponds to an I/O
spec (7 = {o] =] }i" U{o] }i2,, . For task (7, let
‘Pcr denote the set of programs synthesized. It is always
possible to generate at least one correct program for off-
line training tasks by providing sufficiently many I/O ex-
amples (as search returns only consistent programs). Note
that correctness of a program (if it produces the desired out-
put on all unseen inputs as well) can be easily determined

S(P7<’) - eOp(POp P C7

Learning Natural Programs from a Few Examples in Real-Time

for training data. Let y(P) = 1if P € P~ is correct for
task ¢7, else y(P) = —1.

(I) Basic formulation (ML-PROSE): In the first formu-
lation, we avoid the challenges mentioned in the previous
section by starting with a random ranker and by compar-
ing only the final programs. That is, the goal is to learn a
scoring function that ranks any correct program above all
incorrect programs, i.e. 07 ®(P,,(;w) > 0T ®(Py, G w),
for programs P,, P, € P((") generated for a task 7, such
that y(P,) = 1 and y(F,) = —1. More generally, we
want to penalize the difference between their scores using
a suitable loss function ¢. The corresponding optimization
problem is written as:

1T

min Z Z Z ((s(P,¢Tsw) — s(P', ¢ w))

6, w
7=1 P€P¢r, p’epcﬂ.,
y(P)=1 y(P)=—1

3)

+aios+C Y wop > 0,Y0p,

OpeCFG(L)

wép, s.t.

where s(.) is defined in Equation (2) and the loss function
¢(a) penalizes negative a; we use standard hinge loss for ¢
in our experiments. We solve the above given problem by
alternating over ¢ and w; note that each of the sub-problems
for 6 and w is individually convex and easy to optimize.

Remark 4 (Non-linearity). We can capture non-linearity
in the ranking model by generating polynomial features
for the local features ®oy,. This enables learning complex
scoring functions like the one in Figure 4 (See Appendix).

(I) Handling distant supervision (ML-PROSE-
SubPRG): The above formulation ignores the fact that
subprograms are generated by solving smaller synthesis
problems. So, even if the scoring function s is accurate
for final programs, it can be arbitrarily poor for the
subprograms. We alleviate this issue partially by sampling
subprograms in the training data to solve Problem (3). We
use a baseline ranker to generate both the final programs
as well as the subprograms and include a sample from
the subprograms in Problem (3). We address the issue of
distant supervision by fixing “correctness” of a subpro-
gram P’ as follows: y(P') = 1 if P’ appears as part of
at least one correct program for a given task, or else we
assign y(P’) = —1. Table 2 clearly shows that the ranking
function can be improved significantly by inclusion of
subprograms when solving (3).

(III) MinMax formulation: Problem (3) does not directly
address the crucial requirement of deductive program syn-
thesis (even if we include sampled subprograms as in ML-
PROSE-SubPRG) — we want all the subprograms of a
given correct program to be ranked correctly during syn-
thesis. Furthermore, it suffices to rank any one correct pro-
gram above all incorrect programs for a given task. For the

subprograms of given correct program P for task (, i.e.,
P; € T(P), let ¢j,j = 1,2,...,|T(P)| denote their re-
spective subproblem specification. Let P¢; denote the set
of all programs in £ that satisfy ¢, for each j. Of course, it
is impossible to enumerate the entire set, but we can sam-
ple many such subprograms for each subproblem specifi-
cation. We determine the label for the subprograms in P,
as before (+1 if the subprogram is part of at least one cor-
rect program for the task, or else -1). Define the loss on
a correct program P as the max over the losses of all the
comparisons during its synthesis:

A(P) = 0(s(P;, ¢jsw) — s(P, ¢ w)).
(P) = mmax, nax (s(Py, Gjiw) — (P, Gjrw))
y(P))=-1
“)
We solve:
17|)
. . 2
Jnin PIEI%I;T) A(P) + CY1||0H2 + CQZ'LUOP.)
T=ly(p)=1 or

The above optimization problem is non-convex even in 6,
however, we can still define sub-gradient for the problem.
In particular, we implement stochastic sub-gradient descent
method for this problem using the widely-used Tensorflow
framework (www.tensorflow.org).

4.2 TIterative Training

The above formulations still do not address the biased train-
ing data challenge. In fact, even if we have a good ranker s
to bootstrap with, the bias of baseline ranker still persists.
To alleviate this concern, we use an iterative scheme to en-
sure that the train-test distribution for our ranking function
matches while we improve the ranking function itself. Us-
ing a base ranker we synthesize programs for the training
tasks, sample programs and solve problem (3) (or (5), for
training the MinMax model). We then deploy the learned
ranker in the PBE system, synthesize (possibly different set
of) programs for the tasks, sample programs afresh again to
re-learn the ranking model, and repeat. The iterative pro-
cedure is described in Algorithm 1 (and in Figure 3 of Ap-
pendix) and is able to handle the biased training data issue
effectively. In order to ensure smooth refinement of s, we
combine data from a few recent iterations D1 UD5 . ..UDr;
here D, is the training dataset generated using s.. This
also helps us avoid poor local minima and helps the ranker
converge to a reasonable stationary point.

5 Experiments

We have implemented our learning approach in the PROSE
(2015) framework, which is the state-of-the-art PBE sys-
tem for data wrangling tasks, and is publicly available for
academic use.

Nagarajan Natarajan'

Danny Simmons> Naren Datha’

Prateek Jain' Sumit Gulwani’

Benchmark tasks. We use 740 real-world string/date/-
time manipulation tasks obtained from Polozov and Gul-
wani (2015). Each task in the benchmark consists of a list
of input strings and their corresponding outputs (See Ap-
pendix C). The available number of I/O examples per task
varies from two to a few hundreds. We use 100 tasks for
training, and the remaining 640 for testing. Permuting the
order of I/O examples in each training task, and varying
the spec size m, we get several variants of a single training
task. Results are reported on the 640 test tasks used as-is
from the benchmark.

Performance Metrics. We want the PBE system to get an
intended program in top-K. We report results for K = 1
(Acc@1)as wellas K = 10 (Acc@10).

Initial Ranking Model. In our experiments, we use the
ranking function that prefers shorter programs as the initial
ranking function in Algorithm 1. Natural programs tend
to be terse and often short, so this is a reasonable starting

point. Here, s(P;() = ﬁ ZPIEC(P) s(P';¢) — 1.

Training Data. At each iteration of Algorithm 1, we take
the top-1000 programs for each task generated with the
ranking model of the previous iteration. This ensures we
have good mix of correct and incorrect programs to sample
from. With 100 tasks (and their variants) in the training set,
sampling about 40 correct and 40 incorrect programs from
each task results in about 1.2M data points in total per iter-
ation for learning the ML-PROSE model (3). To train the
MinMax model, we sample 50 correct programs from each
training task, to compute the inner min in (5); on average
there are about 20 subprograms per program corresponding
to the outer max in (4) and about 20 (incorrect) subpro-
grams corresponding to the inner max in (4); this sampling
strategy leads to about 2M training data points. ACC@ 1
for training tasks flattens after about 5 iterations, as shown
in Figure 5 (in Appendix A); so we use the ranking function
at the end of 6 iterations to report results on test data.

5.1 Results on FlashFill benchmark

Compared methods. Our three proposed ranking algo-
rithms are (i) ML-PROSE where we use only top-level
programs for training, (i) ML-PROSE-SubPRG where
we use both programs as well as subprograms for learning
the ranking model in the objective (3), and (iii) MinMax
model that uses the more directed objective in (5). We
compare our methods against four baseline ranking func-
tions: (i) RANDOM ranking function where each weight
0; ~ Uniform([—1, 1]); (ii) the initial ranking model out-
lined earlier, that prefers shorter programs, which we call
SHORTEST-PROGRAM (Wang et al., 2017; Osera and
Zdancewic, 2015); here, we discard trivial ConstStr pro-
grams (which is by definition the shortest program, when
the I/O spec has only one example), (iii) a ranking score
model that prefers fewer and shorter constants, which we

call FEWER-CONSTANTS; good constants like delimiters
tend to be short, so this is a reasonable heuristic; (iv) com-
bining the ranking models of SHORTEST-PROGRAM and
FEWER-CONSTANTS (i.e. prefer programs that are short
as well as with fewer, shorter constants).

Accuracy. The results for accuracy at top-1 and at top-10
for the different methods are presented in Table 2 (columns
1-4). The best performing method in terms of ACC@1 is
ML-PROSE-SubPRG, which retrieves the intended pro-
gram at the top in 67% test tasks, using just one /O ex-
ample. Note that the hand-designed PROSE ranker (that
comes with PROSE (2015) SDK, and is shipped as part of
Microsoft products including MS Excel, Powershell, and
Azure ML), tuned using the entire benchmark, i.e. train-
ing as well as test tasks, achieves 0.72 top-1 accuracy with
m = 1. However, its top-10 accuracies are comparable
to ML-PROSE-SubPRG. In terms of Acc @10, the Min-
Max model is the clear winner, in both m = 1 and m = 2
cases; this suggests that the A(P) loss (4) effectively cap-
tures the synthesis-time ‘“competitions” among potential
subprograms. Another important takeaway from the results
is that the synthesis problem becomes significantly easier
with m = 2 compared to m = 1. This is evident from ob-
serving the lift in performance of all the baseline methods,
especially the fourth one.

Synthesis time. Our ranking models are competitive com-
pared to the optimized PROSE ranker in terms of synthesis
times (i.e. elapsed CPU time to synthesize top-1 program
for a given I/O spec). See Figure 5 in Appendix A.

5.2 Comparison to state-of-the-art ML methods

Two important neural synthesis techniques in PBE context
are the RobustFill framework (Devlin et al., 2017) and
the DeepCoder framework (Balog et al., 2017). For fair
comparison, we conduct experiments on a simpler DSL
that Devlin et al. (2017) use. In particular, we use 73
tasks from the FlashFill benchmark, which is an exact sub-
set of our 640 test tasks, on which the results are reported
in Kalyan et al. (2018). We summarize the results in Table
1 of Kalyan et al. (2018) as well as present comparisons to
our method in Table 3 of Appendix A. We find that even the
SHORTEST-PROGRAM baseline achieves 32% Acc@ 1
with m = 1, about 7% better than RobustFill with m = 1,
on the exact 73 tasks. The simple baseline performs reason-
ably well because, in this subset of tasks, 2 or 3 I/O exam-
ples are sufficient for the search strategy to find consistent
programs that also generalize very well; on the other hand,
RobustFill cannot even guarantee consistent programs. Our
ranker ML-PROSE-SubPRG performs the best on the 73
tasks, achieving 70% Acc@1 with m = 1. We exclude
comparisons to Menon et al. (2013) as it requires additional
information beyond I/O spec for synthesis.

Learning Natural Programs from a Few Examples in Real-Time

RANKING METHOD Acc@1 Acc@10

mzl’m=2 mzl‘mz?

RANDOM 0.22 0.60 0.38 0.67

(A) SHORTEST PROGRAM 0.37 0.69 0.49 0.80

(B) FEWER CONSTANTS 0.38 0.60 0.59 0.80

(A) and (B) 0.44 0.72 0.60 0.87

ML-PROSE 0.63 0.78 0.73 0.87

ML-PROSE-SubPRG 0.67 0.83 0.75 0.89

MinMax 0.65 0.81 0.79 0.92

Table 2: Performance on the FlashFill benchmark. The number of I/O examples given to the PBE system for each of the
640 test tasks is m. The proposed methods, especially ML-PROSE-SubPRG and MinMax, perform significantly better
than the baselines. The expert-designed ranker, currently shipped as part of several Microsoft products, tuned using training
as well as test tasks, gets 0.72 Acc@1 with m = 1, and 0.85 with m = 2; though its AcC@10 is worse than MinMax.

5.3 Personalization

A single ranking function may not cater to all types of
users, even within the same domain. A significant advan-
tage of our ranking solution is that we can re-train the scor-
ing model in order to capture the unique biases/preferences
for different user segments. For e.g, geography often deter-
mines date/time formats; we want the ranking function to
prefer the default formatting style for the specific user lo-
cale, unless additional I/O examples overrule the assumed
preferences. One simple and effective way to capture these
biases is to repeat the task, on which the ranker deviates
from the desired behavior, multiple times (or equivalently,
weigh the loss associated with this task higher). Below, we
present two scenarios for personalized ranking.

Rounding Numbers. Say we want to induce the following
preference for rounding a number: “Nearest” > “Toward-
sZero” > “Down”. The preference that our method (us-
ing MinMax ranking formulation) learns from the training
data is “TowardsZero” > “Nearest” > “Down” (See Figure
7, Appendix D). Learning this preferential order from the
randomly sampled training data is likely because in many
number transformation tasks where “Nearest” rounding op-
eration applies, “TowardsZero” also leads to correct pro-
grams (and “Down” is the least representative rounding op-
eration in the entire benchmark). By replicating three train-
ing tasks that induce the preferred rounding behavior 10
times and re-training, the (MinMax) ranking model learns
“Nearest” as the most-preferred rounding operation (See
Figure 8 and Example 1, Appendix D).

Formatting Dates. In many tasks, the intended output
format is ambiguous unless one looks at several I/O ex-
amples. Say, some users prefer “m/d” to “M/dd” (2/3 vs
02/03 for 3rd Feb) for date, or “h:mm:ss” to “hh:mm:ss”
for time. Our (MinMax) ranker learns a preference towards
“mm/dd” and “hh:mm:ss” formats which are representa-
tive of the training data. By replicating 2 tasks that induce
the desired formatting behavior in the training data and re-

training, the ranking model learns the desired formatting
preferences (See Example 2, Appendix D).

Remark 5 (Maintenance and Debugging). The personal-
ization scenarios above also imply another significant ad-
vantage of our ML-based ranking solution over neural syn-
thesis approaches — transparency. It is crucial for an ML-
based PBE system to be maintainable and debuggable.

6 Related Work

As mentioned in Section 1, there are two lines of work
on program synthesis, symbolic and ML/neural-synthesis
based approaches. For symbolic techniques, Gulwani
(2010) and Gulwani et al. (2017) provide extensive sur-
veys. State-of-the-art neural program synthesis techniques
have already been mentioned/discussed earlier. See Gul-
wani and Jain (2017) for recent results that are at the inter-
section of ML and PL. Statistical learning techniques for
PBE have also received some attention. Ellis and Gulwani
(2017) try to improve the accuracy of existing PROSE im-
plementations, by learning to re-rank the top K consistent
programs for given I/O spec, assuming a “good” ranking
function is already in place unlike our approach. The statis-
tical learning framework of Menon et al. (2013) employs a
log-linear model for inferring likelihood of consistent pro-
grams from a probabilistic CFG. In addition to I/O spec, it
also needs “clues” to be able to narrow down the rules to
consider for enumeration, so that synthesis time is not pro-
hibitive. Singh and Gulwani (2015) learn a ranking function
(that prefers generalizable programs) using only top-level
programs but apply the learned function recursively to rank
subprograms during synthesis; their method has not been
implemented in a PBE system to demonstrate real-time
synthesis. Raychev et al. (2016) focus on the synthesis set-
ting where one has access to many, and potentially noisy,
I/0 examples. Christakopoulou and Kalai (2017) specify
intent through a “glass-box’ scoring program that evaluates
candidate programs; they do not use any I/O spec.

Nagarajan Natarajan'

Danny Simmons> Naren Datha’

Prateek Jain' Sumit Gulwani’

References

Alur, R., Bodik, R., Juniwal, G., Martin, M. M. K.,
Raghothaman, M., Seshia, S. A., Singh, R., Solar-
Lezama, A., Torlak, E., and Udupa, A. (2013). Syntax-
guided synthesis. In Formal Methods in Computer-Aided
Design (FMCAD), pages 1-8.

Alur, R., Radhakrishna, A., and Udupa, A. (2017). Scaling
enumerative program synthesis via divide and conquer.
In International Conference on Tools and Algorithms for
the Construction and Analysis of Systems, pages 319—
336. Springer.

Balog, M., Gaunt, A. L., Brockschmidt, M., Nowozin, S.,
and Tarlow, D. (2017). Deepcoder: Learning to write
programs. International Conference on Learning Repre-
sentations (ICLR).

Bunel, R., Hausknecht, M., Devlin, J., Singh, R., and
Kohli, P. (2018). Leveraging grammar and reinforcement
learning for neural program synthesis. In International
Conference on Learning Representations.

Christakopoulou, K. and Kalai, A. T. (2017). Glass-box
program synthesis: A machine learning approach. arXiv
preprint arXiv:1709.08669.

Devlin, J., Uesato, J., Bhupatiraju, S., Singh, R., Mohamed,
A.-r., and Kohli, P. (2017). Robustfill: Neural program
learning under noisy i/o. In International Conference on
Machine Learning, pages 990-998.

Ellis, K. and Gulwani, S. (2017). Learning to learn pro-
grams from examples: Going beyond program structure.
1JCAL

Gulwani, S. (2010). Dimensions in program synthesis. In
Proceedings of the 12th international ACM SIGPLAN
symposium on Principles and practice of declarative
programming, pages 13-24. ACM.

Gulwani, S. (2011). Automating string processing in
spreadsheets using input-output examples. In ACM SIG-
PLAN Notices, volume 46, pages 317-330. ACM.

Gulwani, S., Herndndez-Orallo, J., Kitzelmann, E., Mug-
gleton, S. H., Schmid, U., and Zorn, B. (2015). Inductive
programming meets the real world. Communications of
the ACM, 58(11):90-99.

Gulwani, S. and Jain, P. (2017). Programming by exam-
ples: PL meets ML. In Asian Symposium on Program-
ming Languages and Systems, pages 3—20. Springer.

Gulwani, S., Polozov, O., and Singh, R. (2017). Program
synthesis. Foundations and Trends®) in Programming
Languages, 4(1-2):1-119.

Kalyan, A., Mohta, A., Polozov, O., Batra, D., Jain, P.,
and Gulwani, S. (2018). Neural-guided deductive search
for real-time program synthesis from examples. Interna-
tional Conference on Learning Representations (ICLR).

Le, X.-B. D., Chu, D.-H., Lo, D., Le Goues, C., and Visser,
W. (2017). S3: syntax-and semantic-guided repair syn-
thesis via programming by examples. In Proceedings of
the 2017 11th Joint Meeting on Foundations of Software
Engineering, pages 593-604. ACM.

Liu, T.-Y. et al. (2009). Learning to rank for information
retrieval. Foundations and Trends®) in Information Re-
trieval, 3(3):225-331.

Menon, A., Tamuz, O., Gulwani, S., Lampson, B., and
Kalai, A. (2013). A machine learning framework for pro-
gramming by example. In International Conference on
Machine Learning, pages 187-195.

Osera, P-M. and Zdancewic, S. (2015). Type-and-
example-directed program synthesis. In ACM SIGPLAN
Notices, volume 50, pages 619-630. ACM.

Padhi, S., Jain, P, Perelman, D., Polozov, O., Gul-
wani, S., and Millstein, T. D. (2018). Flashprofile: a
framework for synthesizing data profiles. PACMPL,
2(OOPSLA):150:1-150:28.

Parisotto, E., Mohamed, A.-r., Singh, R., Li, L., Zhou, D.,
and Kohli, P. (2016). Neuro-symbolic program synthe-
sis. In International Conference on Learning Represen-
tations (ICLR).

PCWorld (2012). Microsoft Office 2013 Preview: Hands
On.

Polozov, O. and Gulwani, S. (2015). Flashmeta: A frame-
work for inductive program synthesis. ACM SIGPLAN
Notices, 50(10):107-126.

PROSE (2015). Microsoft SDK.

Raychev, V., Bielik, P., Vechev, M., and Krause, A. (2016).
Learning programs from noisy data. In ACM SIGPLAN
Notices, volume 51, pages 761-774. ACM.

Rolim, R., Soares, G., D’ Antoni, L., Polozov, O., Gulwani,
S., Gheyi, R., Suzuki, R., and Hartmann, B. (2017).
Learning syntactic program transformations from exam-
ples. In Proceedings of the 39th International Confer-
ence on Software Engineering, pages 404—-415. IEEE
Press.

Singh, R. and Gulwani, S. (2015). Predicting a correct pro-
gram in programming by example. In International Con-
ference on Computer Aided Verification, pages 398—414.
Springer.

Wang, X., Dillig, I., and Singh, R. (2017). Program syn-
thesis using abstraction refinement. Proceedings of the
ACM on Programming Languages, 2(POPL):63.

