
Tossing Coins Under Monotonicity

A Auxiliary Results

Proposition A.1 (Theorem 2.3. Bellec [2018] Re-
stated). Let C be a closed convex subset of Rn. Sup-
pose one has the model O = ✓ + e, and the estimate
based on argmin

v2C kO � vk2
2
is denoted by b✓. If for

some u 2 C there exists t⇤(u) so that the error vector
e satisfies

sup
v2C,kv�uk2t⇤(u)

e
>(v � u)  t

2

⇤(u)

2
+ Ct⇤(u)

p
2x,

with probability at least 1� exp(�x) then

kb✓ � ✓k2
2
 ku� ✓k2

2
+ 2t2⇤(u) + 4C2

x,

with probability at least 1� exp(�x).

Lemma A.2 (Fano’s inequality). Let (⇥, d) be a met-
ric space, and {P✓ : ✓ 2 ⇥} be a collection of probability
distributions. Then

inf
b✓
sup
✓2⇥

P✓(d
2(b✓, ✓) � "

2
/4) �

1�
sup✓,✓02T DKL(P✓||P✓0) + log 2

logN (", T, d)
,

where T ⇢ ⇥ is a totally bounded set, and N (", T, d)
is the packing number of T with respect to d.

B Proofs

Proof of Lemma 2.1. First note that the solution to
(2.2) will always satisfy bp0 � 0 and bpn  1 since all
0  Oi  1.

The proof proceeds to show that if for two probabilities
pi  pi+1 we have Oi � Oi+1 it follows that their
final estimates are equal, i.e., bpi = bpi+1. Therefore one
clumps Oi and Oi+1 and treats the two probabilities
as the same one, and solves a similar problem with less
parameters. Since this observation gives raise to the
pool adjacent violators algorithm (PAVA) [Mair et al.,
2009] for optimizing the loss function (2.1), which is the
same algorithm for optimizing (2.2) the two solutions
must coincide.

Suppose that indeed we have Oi � Oi+1 and bpi < bpi+1.
We will arrive at a contradiction by showing that one
can add and subtract a small c and increase the loss
function. Consider the function

c 7! Oi log(bpi + c) + (1�Oi) log(1� bpi � c)

+Oi+1 log(bpi+1 � c) + (1�Oi+1) log(1� bpi+1 + c).

Taking the derivative with respect to c yields

Oi

bpi + c
� 1�Oi

1� bpi � c
� Oi+1

bpi+1 � c
+

1�Oi+1

1� bpi+1 + c
� 0,
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if c is small enough so that bpi + c  bpi+1 � c. Hence
the function is increasing in c which is a contradiction.
This proves that bpi = bpi+1. We note that the proof
extends to any 0  Oi  1, and even if one has weights,
i.e., if one optimizes:

argmax
X

i2[n]

wiOi log pi + wi(1�Oi) log(1� pi);

(in this case instead of c one needs to consider c/wi and
c/wi+1 respectively, and the regression will also have
weights).

The fact that (2.3) holds2 is well known [see Chapter 1
of Robertson et al.].

Proof of Theorem 2.3. We will use Proposition A.1.
We need to control the tails of the process:

Z = sup
v2S"

n,kv�uk2t

X

i2[n]

(Oi � pi)(vi � ui).

We will first argue that Z is close to its expected value,
using Theorem 6.7 [Boucheron et al., 2013], and in the
second step we will control the expected value of Z. To
this end define

Zj = inf
oj2{0,1}

sup
v2S"

n,kv�uk2t

X

i 6=j

(Oi � pi)(vi � ui)

+ (oj � pj)(vj � uj),

and note that

(Z � Zi)
2  (v⇤

i
� ui)

2
,

where v
⇤ denotes the value where the

sup
v2S"

n,kv�uk2t

P
i2[n]

(Oi � pi)(vi � ui) is attained

(the sup is attained since the set S"
n
\{v : kv�uk2  t}

is compact). It therefore follows that
X

i2[n]

(Z � Zi)
2 

X

i2[n]

(v⇤
i
� ui)

2  t
2
.

By Theorem 6.7 [Boucheron et al., 2013] we have

P(Z � EZ + y)  e
�y

2
/2t

2

,

and hence setting y =
p
2xt we obtain that with prob-

ability at least 1� e
�x we have

Z  EZ +
p
2xt.

Next, using symmetrization as in the proof of Theorem
2.2 we obtain

EZ  2E" sup
v2S"

n,kv�uk2t

X

i2[n]

"i(vi � ui)


p
2⇡E⇠ sup

v2S"
n,kv�uk2t

X

i2[n]

⇠i(vi � ui), (B.1)

2(2.3) holds for unweighted regression only

where ⇠ is a standard Gaussian random vector. In Chat-
terjee et al. [2014] it is proved that the above quantity
is  t

2
/16 for values of t � c(1 + V (u))1/3n1/6

. This
completes the proof by Proposition A.1.

Proof of Theorem 2.4. Our proof will follow the proof
of Theorem 2.2 of Guntuboyina and Sen [2017] where
modifications are needed since the errors are not i.i.d.
Gaussian as required in the original statement. First
note that the second inequality follows from the first
by a simple application of Jensen’s inequality, hence
we focus on showing the first inequality. We note that
by Lemma 2.1, and any integer k

bpj = min
v�j

max
uj

Ouv  max
uj

(pu,j+k +Ou,j+k � pu,j+k)

 pj,j+k +max
uj

(Ou,j+k � pu,j+k),

where the last inequality follows by the monotonicity
of p. Hence

bpj � pj  (pj,j+k � pj) + max
uj

(Ou,j+k � pu,j+k),

which implies

E(bpj � pj)
p

+
 E((pj,j+k � pj)

+ max
uj

(Ou,j+k � pu,j+k))
p

+
,

Now let N1, N2, . . . , Nm denote the indices of the m

di↵erent equal probabilities. Take j 2 Nk, and let there
be lk numbers to the left of j and rk numbers to the
right of j in Nk (i.e. maxi2Nk i = j + rk,mini2Nk i =
j � lk). Note that since all probabilities on Nk are the
same we have pj,j+rk

= pj and therefore

E(bpj � pj)
p

+
 E(max

uj

(Ou,j+rk � pu,j+rk
))p

+
.

Here it is necessary for the proof to depart substantially
from the original argument as the sequence (Ou,j+rk �
pu,j+rk

) does not have the required i.i.d. structure. We
start by symmetrizing the function similarly to the
proof of Theorem 2.2. Let eOi be i.i.d. copies of Oi.
Note that since (·)p

+
is convex we have

E(max
uj

(Ou,j+rk � pu,j+rk
))p

+

= EO

✓
max
uj

P
j+rk

i=u
(Oi � E eOi)

j + rk � u+ 1

◆p

+

 E
O,eO

✓
max
uj

P
j+rk

i=u
(Oi � eOi)

j + rk � u+ 1

◆p

+

,

where the last expectation is taken with respect to both
Oi and eOi. We can introduce random sign "i since the
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distributions Oi � eOi are symmetric.

E(max
uj

(Ou,j+rk � pu,j+rk
))p

+

 E
O,eO

✓
max
uj

P
j+rk

i=u
"i(Oi � eOi)

j + rk � u+ 1

◆p

+

= E
O,eO,"

✓
max
uj

P
j+rk

i=u
"i(Oi � eOi)

j + rk � u+ 1

◆p

+

, (B.2)

where in the last equality the expectation is taken with
respect to the "i as well. Using the convexity of (·)p

+
,

the properties of max and sign symmetry we obtain

E(max
uj

(Ou,j+rk � pu,j+rk
))p

+

 EO,"

✓
2max

uj

P
j+rk

i=u
"iOi

j + rk � u+ 1

◆p

+

 E"

✓
2max

uj

P
j+rk

i=u
"i

j + rk � u+ 1

◆p

+

.

where in the last inequality we used the contraction
principle (Theorem 11.6 Boucheron et al. [2013]). Im-
portantly, note that the sequence of random variables

(indexed by u)
Pj+rk

i=u "i

j+rk�u+1
forms a martingale.

Consider first the case 1 < p < 2. By Doob’s Lp maxi-
mal inequality for submartingales [Mörters and Peres,
2010] (which holds for p > 1) and Khintchine’s inequal-
ity we have

E"

✓
2max

uj

P
j+rk

i=u
"i

j + rk � u+ 1

◆p

+

 2p(
p

p� 1
)pE"

✓P
j+rk

i=j
"i

rk + 1

◆p

+

 2p(
p

p� 1
)pBp

p

✓
1

rk + 1

◆p/2

,

where Bp is the upper constant from Khintchine’s in-
equality. Therefore we conclude that:

E(bpj � pj)
p

+
 2p(

p

p� 1
)pBp

p

1

(rk + 1)p/2
.

Using similar arguments one can also argue that

E(bpj � pj)
p

�  2p(
p

p� 1
)pBp

p

1

(lk + 1)p/2
.

Combining the two inequalities above and summing
over all j we have

E
X

j2[n]

(bpj � pj)
p  2p+1(

p

p� 1
)pBp

p

mX

k=1

X

j2[|Nk|]

✓
1

j

◆p/2

 Cp

mX

k=1

2

2� p
|Nk|1�p/2

,

which is what we wanted to show for the case 1 < p < 2
(the last bound follows by simple integration).

When p = 1, Doob’s maximal Lp inequality does not
hold, and we need to slightly change the argument. We
have

E"2

✓
max
uj

P
j+rk

i=u
"i

j + rk � u+ 1

◆

+

 ⌧ +

Z 1

⌧

P"

✓
2max

uj

✓ P
j+rk

i=u
"i

j + rk � u+ 1

◆

+

� t

◆
dt,

where we set ⌧ =
q

1

rk+1
. Since

✓ Pj+rk
i=u "i

j+rk�u+1

◆

+

is a

submartingale (as a convex function of a martingale)
Doob’s weak maximal inequality [Mörters and Peres,
2010] gives

P"

✓
2max

uj

✓ P
j+rk

i=j
"i

j + rk � u+ 1

◆

+

� t

◆


E"

✓
2

✓Pj+rk
i=j "i

rk+1

◆

+

✓
2maxuj

✓ Pj+rk
i=u "i

j+rk�u+1

◆

+

� t

◆◆

t
.

We square the preceding display and apply Cauchy-
Schwartz, followed by an application of Khintchine’s
inequality to obtain

P"

✓
2max

uj

✓ P
j+rk

i=j
"i

j + rk � u+ 1

◆

+

� t

◆


4E"

✓Pj+rk
i=j "i

rk+1

◆2

t2


4B2

2

1

rk+1

t2
=

4B2

2
⌧
2

t2
.

Changing variables yields:

E"

✓
2max

uj

P
j+rk

i=u
"i

j + rk � u+ 1

◆

+

 ⌧ + 4B2

2
⌧

Z 1

1

1

t2
dt = (1 + 4B2

2
)⌧.

The rest of the proof goes through.

Lemma B.1. The KL divergence between P = Ber(p)
and Q = Ber(p+ c) (for some 0 < |c| < min(p, 1� p))
is bounded as

����DKL(P ||Q)� c
2

p(1� p)

���� 
|c|3

p(1� p)(1� p� |c|)(p� |c|) .

Proof of Lemma B.1. The proof is a simple calculation
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which we include for completeness.

DKL(P ||Q)

= �p log

✓
1 +

c

p

◆
� (1� p) log

✓
1� c

1� p

◆

= p

1X

i=1

(�1)ii�1

✓
c

p

◆i

+ (1� p)
1X

i=1

i
�1

✓
c

1� p

◆i

=
c
2

p(1� p)
+ c

X

i�3


(�1)ii�1

✓
c

p

◆i�1

+ i
�1

✓
c

1� p

◆i�1�
.

It immediately follows that
����DKL(P ||Q)� c

2

p(1� p)

����

 |c|
X

i�3

✓
|c|
p

◆i�1

+

✓
|c|

1� p

◆i�1�

=
|c|3

p2(1� |c|
p
)
+

|c|3

(1� p)2(1� |c|
1�p

)

 |c|3

p(1� p)(1� p� |c|)(p� |c|) .

Proof of Proposition 2.5. For simplicity suppose that
n/m = k 2 N. Fix a small 0 < � < 1 and take the
following base probability vector:

pi = � + ↵b(i� 1)/kc,

for i 2 [n], where ↵ = 1�5/2�

m�1
. In this way p1 = � and

pn = 1 � 3/2�. Using the Varshamov-Gilbert Lemma
[Tsybakov, 2009] construct a sequence on the cube
{0, 1}m: W = {wi}i20,1,...,M such that dH(wi,wj) �
m

8
and logM � m

8
, where dH denotes the Hamming dis-

tance. We perturb the probability vector p by adding
cw for w 2 W to the corresponding coordinates:

p
w

i
= pi + cwb(i�1)/kc+1,

where c < ↵ ^ �

2
and therefore keeps the relationship

p
w

i
 p

w

j
for i  j. For any twow andw

0 and 1 < p  2
we have the following bound

1

n
kpw � p

w
0
kp
p
� dH(w,w

0)cp
k

n
� c

p

8
.

Next, using Lemma B.1 the maximum KL divergence
between vector valued Bernoulli random variables with
probabilities equal to p

w and p
w

0
is bounded as

DKL(Ber(pw)||Ber(pw
0
))

 dH(w,w
0)k

c
2

�(1� �)

✓
1 +

2c

(1� 2�)�

◆

 dH(w,w
0)k

2c2

�(1� 2�)
 2nc2

�(1� 2�)
.

Using Fano’s inequality (Lemma A.2) in conjunction
with Markov’s inequality we obtain the lower bound

inf
bp

sup
p

E 1

n
kbp� pkp

p
� c

p

16

✓
1� 16nc2

�(1� 2�)m

◆
,

which is what we wanted to show after selecting c =q
�(1�2�)m

32n
.

Proof of Proposition 2.6. As in the proof of Theorem
2.2 we need to project onto the tangent cone T

S
"
n
(u).

The proof relies on symmetrization and the contraction
principle. Decompose the ith of the n binomials to sums
kOi =

P
j2[k]

Oij where Oij ⇠ Ber(pi). We need to
control the quantity

EO

⇥
sup

t2S"
l ,ktk21

X

i2[l]

P
j2[k]

(Oij � pi)

k
ti

⇤2
,

where using a slight abuse of notation we refer to S
"
|Nl|

with S
"
l
for brevity. Just as in Theorem 2.2, using sym-

metrization we obtain the following bound:

4EOE"

⇥
sup

t2S"
l ,ktk21

X

i2[l]

P
j2[k]

"ijOij

k
ti

⇤2
.

Using the contraction principle (Theorem 11.6
Boucheron et al. [2013]) we get

EOE"

⇥
sup

t2S"
l ,ktk21

X

i2[l]

P
j2[k]

"ijOij

k
ti

⇤2

 4E"

⇥
sup

t2S"
l ,ktk21

X

i2[l]

P
j2[k]

"ijp
k

ti

⇤2 1
k

Just as in the proof of Theorem 2.2 we can now substi-
tute the Rademacher random variables with Gaussians:

E"

⇥
sup

t2S"
l ,ktk21

X

i2[l]

P
j2[k]

"ijp
k

ti

⇤2

 ⇡

2
E"

⇥
sup

t2S"
l ,ktk21

X

i2[l]

P
j2[k]

⇠ijp
k

ti

⇤2
=

⇡

2

X

i2[l]

1

i
,

where the last equality is well known [see Amelunxen
et al., 2014, e.g.]. This completes the proof after apply-
ing Lemma 2.10.

Proof of Proposition 2.8. The proof follows closely
that of Theorem 2.3 hence we only sketch it. We need
to control the tails of the process:

Z = sup
v2S"

n,kv�uk2t

X

i2[n]

P
j
Oij � pi

k
(vi � ui).



Tossing Coins Under Monotonicity

We will first argue that Z is close to its expected value,
using Theorem 6.7 Boucheron et al. [2013], and in the
second step we will control the expected value of Z. To
this end define

Zrs =

inf
ors2{0,1}

sup
v2S"

n,

kv�uk2t

X

i,j:(i,j) 6=(r,s)

P
j
Oij � pi

k
(vi � ui)

+
(ors � ps)(vs � us)

k
,

and note that

(Z � Zrs)
2  (v⇤

s
� us)2

k2
,

where v
⇤ denotes the value where the

sup
v2S"

n,kv�uk2t

P
i2[n]

P
j Oij�pi

k
(vi � ui). is at-

tained. It therefore follows that

X

r,s

(Z � Zrs)
2 

X

r,s

(v⇤
i
� ui)2

k2
 t

2

k
.

By Theorem 6.7 Boucheron et al. [2013] it follows that

P(Z � EZ + y)  e
�ky

2
/2t

2

,

and hence setting y =
p
2xt we obtain that with prob-

ability at least 1� e
�x we have

Z  EZ +
p
2x/kt.

Next, using symmetrization and changing to Gaussian
variables

EZ 
p
2⇡p
k
E⇠ sup

v2S"
n,kv�uk2t

X

i2[n]

⇠i(vi � ui), (B.3)

where ⇠ is a standard Gaussian random vector. In Chat-
terjee et al. [2014] it is proved that the above quantity
is  t

2
/16 for values of t � c

1p
k
(1 + V (u)

p
k)1/3n1/6

.

This completes the proof by Proposition A.1.

Proof of Lemma 3.1. We have the following identity

argmin
�

E(Y �X
>
�)2 = argmax

�
2EYX

>
� � k�k2

2
.

Recall that k�⇤k2 = 1 and represent � = c�
⇤ + �

?

where �
⇤>

�
? = 0. By the properties of the normal

distribution we have

EYX
>
�
? = EY EX>

�
? = 0.

Therefore by the Pythagorean theorem

argmax
�

2cEYX
>
�
⇤ � (c2 + k�?k2

2
)

 argmax
�

2cEYX
>
�
⇤ � c

2
.

The above parabola is maximized at c = c0 =
EYX

>
�
⇤, and therefore the population minimizer of

the least squares satisfies (3.3). Using Chebyshev’s as-
sociation inequality [Boucheron et al., 2013] it is not
hard to see that when f is strictly monotone increasing
and Y is given by (3.1) we have

c0 = EYX
>
�
⇤ = Ef(X>

�
⇤)X>

�
⇤

> Ef(X>
�
⇤)EX>

�
⇤ = 0,

and therefore argmin� E(Y �X
>
�)2 = c0�

⇤ is propor-
tional to �

⇤ with c0 > 0.

Lemma B.2. Suppose that np,s = o(1), np,s &
E(Y�c0X

>�⇤
)
2

�2s
for a su�ciently large constant and

EY 4
< 1. Then the solution e� coincides with the

solution:

e�S = argmin
�S2Rs

1

2n
kY �XS�Sk22 + �k�Sk1,

where S = supp(�⇤) (i.e., the set of non-zero coe�-
cients of �⇤) with high probability (i.e. at least .99).
Moreover we have

kb� � �
⇤k2 .

p
s�+ n

� 1
2

p,s ,

with overwhelming probability.

Proof of Lemma B.2. Theorem 2.3.4 i. of Neykov et al.

[2016] shows that under np,s & E(Y�c0X
>�⇤

)
2

�2s
our first

claim follows. We therefore focus on showing our second
claim below. Define

w := Y � c0X�
⇤ = Y � c0XS�

⇤
S
.

Furthermore define the quantities:

✓
2 := Var{(Y � c0X

>
�
⇤)2}, �

2 := Var(YX
>
�
⇤),

⇠
2 := E{(Y � c0X

>
�
⇤)2}.

Notice that the above quantities are well defined since
EY 4

< 1 by assumption. We will now show that the
vector e�S is close to �

⇤
S
in Euclidean distance. We start

by using the inequality:

1

2n
kY �XS

e�Sk22 + �ke�Sk1

 1

2n
kY � c0XS�

⇤
S
k2
2
+ �kc0�⇤

S
k1.

Expanding the norms leads to

1

2n
kXS(c0�

⇤
S
� e�S)k22 + �ke�Sk1

 1

n
w

>
XS(e�S � c0�

⇤
S
) + �kc0�⇤

S
k1

 1

n
kw>

XSk1kc0�⇤
S
� e�Sk1 + �kc0�⇤

S
k1
(B.4)
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The vector w
>
XS is mean 0. We will now control

n
�1kw>

XSk1. We have

n
�1kw>

XSk1  n
�1kP�⇤?

S
X

>
S
wk1

+ n
�1k�⇤

S
�
⇤>
S

X
>
S
wk1, (B.5)

where P�⇤?
S

= Is � �
⇤
S
�
⇤>
S

. Note that P�⇤?
S

XS and w

are independent. It is simple to check that conditionally
on w the vector n�1

P�⇤?
S

X
>
S
w ⇠ N (0,P�⇤?

S
n
�2kwk2

2
).

We now argue that the term n
�1kwk2

2
 2⇠2 with

probability at least 1� ✓
2

n⇠2
. Since w = Y � c0XS�

⇤
S
is

a vector with non-zero mean. However, by Chebyshev’s
inequality we have:

P
✓����

kwk2
2

n
� ⇠

2

���� � t

◆
 ✓

2

nt2
.

Then setting t = ⇠
2 brings the above probability to

0 at a rate ✓
2

n⇠4
. Next, conditioning on this event it

follows that the diagonal entries of the covariance

matrix n
�2kwk2

2
P�⇤?

S
are less than n

�2kwk2
2
 2⇠

2

n
.

Hence by a standard Gaussian tail bound, on the event
n
�1kwk2

2
 2⇠2 we have that

P(n�1kP�⇤?
S

X
>
S
wk1 � t)  2se�cnt

2
/⇠

2

,

for some universal constant c. Therefore setting t �q
2⇠2 log p

cn
bounds the above probability by 2s

p2  2p�1.

We now move to the second term of (B.5). Since
k�⇤

S
k1  k�⇤

S
k2  1 we have

n
�1k�⇤

S
�
⇤>
S

X
>
S
wk1  n

�1k�⇤>
S

X
>
S
wk1.

Next we have the elementary inequality

P(n�1|�⇤>
S

X
>
S
Y � c0kXS�

⇤
S
k2
2
| � t)

 P(|n�1
�
⇤>
S

X
>
S
Y � c0| � t/2)

+ P(|n�1kXS�
⇤
S
k2
2
� 1| � t/(2c0)),

By Chebyshev’s inequality

P(|n�1
�
⇤>
S

X
>
S
Y � c0| � t/2)  4�2

nt2
, (B.6)

Setting t = 2�
q

log p

n
bounds the above probability by

(log p)�1. By Lemma 1 of Laurent and Massart [2000]

P(|n�1kXS�
⇤
S
k2
2
� 1| � t/(2|c0|))

 2 exp(�n
t

8|c0|
^ t

2

64c2
0

),

Setting t = 8|c0|
q

log p

n
bounds the above probability

by 2p�1. We conclude that with probability at least
1� 2p�1 � (log p)�1 � ✓

2

n⇠4

n
�1kw>

XSk1  C

r
log p

n
, (B.7)

where C(c0, c0, �, ⇠) = 8|c0|+ 2� + c0⇠ and c0 =
p

2/c
is a universal constant.

Going back to (B.4) we have established that with high
probability

1

2n
kXS(c0�

⇤
S
� e�S)k22

 C

r
log p

n
kc0�⇤

S
� e�Sk1 + �(kc0�⇤

S
k1 � ke�Sk1)

 (Cn
� 1

2
p,s +

p
s�)kc0�⇤

S
� e�Sk2,

where the inequality kvk1 
p
skvk2 for v 2 Rs. Corol-

lary 5.35 of Vershynin [2012] guarantees that

�min(X>
S
XS)

n
� (

p
n� 2

p
s)2

n
,

with probability at least 1� 2e�s/2. Hence, when the
above two events happen (with probability at least

1� 2p�1 � (log p)�1 � 2e�s/2 � ✓
2

n⇠4
) we have

kc0�⇤
S
� e�Sk2  (Cn

� 1
2

p,s +
p
s�)

n

(
p
n� 2

p
s)2

. (B.8)

Denote the RHS of (B.8) with R for brevity. We have

c0 �R  ke�k2  c0 +R.
�����

⇤
S
�

e�S

ke�Sk2

����
2


����
c0�

⇤
S
� e�S

ke�Sk2

����
2

+
|c0 � ke�Sk2|

ke�Sk2

 2
R

c0 �R
.

Proof of Theorem 3.2. Using Theorem 2.3 with a vec-
tor u with components ui = f(X>

⇡i
b�), we have with

probability at least 1� exp(�x):

1

n

2nX

i=n+1

(f(X>
i
�
⇤)� bf(X>

i
b�))2

 1

n

nX

i=1

(f(X>
⇡i
�
⇤)� f(X>

⇡i
b�))2 + C22/3

n2/3
+

4x

n

 L
2(b� � �

⇤)> b⌃(b� � �
⇤) +

C22/3

n2/3
+

4x

n
,

where b⌃ = 1

n

P
2n

i=n+1
XiX

>
i
. By Lemma B.2 we know

that the vector b� � �
⇤ is s-sparse, and therefore by

Corollary 5.35 of Vershynin [2012] we have

(b� � �
⇤)> b⌃(b� � �

⇤)  (1 +
p
s/n+

p
x/n)2kb� � �

⇤k2
2

. (
p
s�+ n

� 1
2

p,s )2,

with probability at least 1 � exp(�x), where in the
last inequality we used Lemma B.2 once again. This
completes the proof.


