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Abstract

This paper considers the following problem:
we are given n coin tosses of coins with
monotone increasing probability of getting
heads (success). We study the performance of
the monotone constrained likelihood estimate,
which is equivalent to the estimate produced
by isotonic regression. We derive adaptive
and non-adaptive bounds on the performance
of the isotonic estimate, i.e., we demonstrate
that for some probability vectors the isotonic
estimate converges much faster than in gen-
eral. As an application of this framework we
propose a two step procedure for the binary
monotone single index model, which consists
of running LASSO and consequently running
an isotonic regression. We provide thorough
numerical studies in support of our claims.

1 INTRODUCTION

Recently there has been a lot of interest [see, e.g., Chat-
terjee et al., 2014, Bellec, 2018, Chatterjee et al., 2015,
Guntuboyina and Sen, 2015, Zhang, 2002, among oth-
ers] in the shape constrained Gaussian sequence model
given by

Yi = ✓i + "i, (1.1)

for i 2 [n] = {1, . . . , n} where the vector ✓ 2 Rn is
known to belong to a convex set K, and the noise fol-
lows a Gaussian distribution "i ⇠ N (0,�2). A typical
example of a convex set K is the set of monotone se-
quences, i.e., it is often assumed that the means satisfy
✓1  ✓2  . . .  ✓n. Optimizing the least squares under
the latter constraint is often called isotonic (or mono-
tone) regression. Inspired by the recent work of Tian
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et al. [2017], in the present paper we consider a dis-
cretized version of this problem. Namely, we focus on
the binary sequence model

Oi = Ber(pi), i 2 [n] (1.2)

where we assume that 0  p1  p2  . . .  pn  1.

Our goal is to derive results for model (1.2) that mirror
those for the Gaussian model (1.1). To this end, we
would like to explain the di↵erence between the two
models, and why it is non trivial to go from one to the
other. Model (1.2) can be rewritten in the form

Oi = pi + ei,

where ei is a mean 0, asymmetric (unless pi =
1

2
) ran-

dom variable with variance equal to pi(1� pi). There-
fore the errors are independent but not identically dis-
tributed unlike in the Gaussian case. The majority of
the recent results for the Gaussian sequence model rely
heavily on two results from Bellec [2018], Chatterjee
et al. [2014] – Theorems 2.3 and Theorem 1.1 respec-
tively. Both of those results rely on the Gaussianity of
the error terms. While Proposition 6.4 of Bellec [2018]
relaxes the Gaussian assumption to a sub-Gaussian as-
sumption, only symmetric noise is allowed which is not
the case in model (1.2). In addition, Zhang [2002] has
given conditions allowing for more general error terms
(specifically for the isotonic regression case), but these
conditions remain hard to verify in practice. To the
best of our knowledge, although model (1.2) has been
previously studied in the literature [Ayer et al., 1955,
Banerjee and Wellner, 2001, Groeneboom and Wellner,
2012], rigorous results about adaptive and non-adaptive
convergence rates of the isotonic estimate have not been
established. In the present paper we extend results from
the Gaussian case to the binary case, using classical
symmetrization techniques.

As we mentioned, model (1.2) has been studied pre-
viously. It was motivated by di↵erent biological and
statistical applications such as bio-assays [Ayer et al.,
1955] and interval censoring [Banerjee and Wellner,
2001, Groeneboom and Wellner, 2012]. Here we will
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motivate it with two additional perspectives – applica-
tions to propensity score estimation and binary choice
models.

Suppose we observe the triple (Yi, Xi, Ai)i2[n] where
Yi indicates the outcome for the i

th patient, Xi 2 R
denotes a real valued covariate and Ai 2 {0, 1} indi-
cates whether the i

th patient was given a placebo or
a new drug. In this setting P(Ai = 1|Xi) is the so
called propensity score, which is of interest in a va-
riety of causal inference applications, such as inverse
probability weighting. Under the assumption that the
likelihood of assigning the patient to the new drug in-
creases as the covariate Xi increases, it is simple to see
that propensity score estimation can be achieved by
using model (1.2). This represents a non-parametric
alternative to the more commonly used logistic regres-
sion. For more details on this application see Section
4.1 where we present numerical comparison between
the two approaches.

In addition to the above, we apply our results of model
(1.2) to study the following binary single index model
(SIM)

Yi = Ber(f(X>
i
�
⇤)), i 2 [n], (1.3)

where f is an unknown monotone increasing link func-
tion and �

⇤ 2 Rp is a high-dimensional s-sparse vector.
Model (1.3) is also known as the binary choice model
in the econometrics literature. Under the additional
assumption that Xi follows a standard Gaussian dis-
tribution and f is Lipschitz, we propose a two step
algorithm which is capable of estimating not only �

⇤

(up to a proportionality constant) but also the function
f . In the first step the procedure runs LASSO, and in
the second step runs isotonic regression. This applica-
tion has a similar flavor to SIM results with Gaussian
designs such as those of [Plan and Vershynin, 2016,
Plan et al., 2017, Neykov et al., 2016, Thrampoulidis
et al., 2015] but unlike those works which focus solely
on �

⇤ estimation, we are also able to estimate f thanks
to the isotonic regression step.

1.1 Summary of Results

In this section we informally state some selected re-
sults. The natural estimate for model (1.2) is the con-
strained likelihood estimator which solves the following
program:

bp := argmax
p

X

i2[n]

Oi log pi + (1�Oi) log(1� pi)

given that 0  p1  p2  . . .  pn  1.

We first note that this is equivalent to solving the iso-
tonic regression

argmin
p

X

i2[n]

(Oi � pi)
2 given that p1  p2  . . .  pn.

This is not a novel observation [see Part II Groene-
boom and Wellner, 2012, e.g.], but we attach a short
proof for completeness. We then study the estimation
rates kbp � pk2

2
. We show that depending on the un-

derlying probability vector p there are two regimes of
consistency for the isotonic estimate:

• In general

n
�1kbp� pk2

2
. n

�2/3

where . denotes inequality up to constants.
• More specifically, for vectors p consisting of blocks
of constant values, we show

n
�1kbp� pk2

2
. m(p) log(en/m(p))

n
,

where m(p) denotes the number of unique values
in the vector p.

These two results parallel results established in the
Gaussian sequence case [see Bellec, 2018, e.g.]. In addi-
tion to the above results, we derive a result regarding
estimation rates of kbp�pkp

p
for any 1  p < 2. We also

show that those rates are minimax optimal (up to log-
arithmic factors). We then apply our theory to study
model (1.3) where Xi’s are assumed to have standard
Gaussian design N (0, I) and f is assumed to be Lips-
chitz. We show that our two step procedure produces
an estimate of �⇤: b� 2 Rp, and an estimate of f : bf
which satisfy

n
�1

nX

i=1

(f(X>
i
�
⇤)� bf(X>

i
b�))2 . s log p

n
+

1

n2/3
.

The latter inequality shows an interplay between two
rates – the minimax rate of estimating �

⇤ and the
minimax rate of estimating a monotone function.

1.2 Notation

Here we outline some of the frequently used notation.
Other notations will be defined as needed through-
out the paper. For a sequence of numbers X1, . . . Xn

by Xuv we denote the average
Pv

i=u Xi

v�u+1
. For a vector

v 2 Rp we use kvkq to denote the `q norm (with the
usual extension for q = 1). For any integer k 2 N
we use the shorthand notation [k] = {1, . . . , k}. We
also use standard asymptotic notations. Given two se-
quences {an}, {bn} we write an . bn if there exists an
absolute constant C < 1 such that an  Cbn. We also
sometimes write an = O(bn) if an . bn.
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1.3 Organization

The paper is structured as follows. In Section 2 we
present our main findings regarding model (1.2). In
Section 3 we apply the results of Section 2 to the bi-
nary SIM setting. In Section 4 we present thorough
numerical studies. The discussion is deferred to the
final Section 5.

2 TOSSING COINS UNDER

MONOTONICITY

Suppose that we observe a single toss from each of n
coins Ber(pi) for i 2 [n], where it is given that 0 
p1  . . .  pn  1. Let Oi be the result of the ith
coin toss: 1 for heads (success) and 0 for tails (failure).
Consider the following natural estimate of the vector
p:

bp := argmax
p

X

i2[n]

Oi log pi + (1�Oi) log(1� pi)

(2.1)

given 0  p1  p2  . . .  pn  1.

Below we show that program (2.1) is in fact equiva-
lent to optimizing monotone constrained least squares,
which also known as isotonic regression.

Lemma 2.1 (Likelihood is Equivalent to Isotonic Re-
gression). The above estimate coincides with the esti-
mate of

bp = argmin
p

X

i2[n]

(Oi � pi)
2 given p1  p2  . . .  pn,

(2.2)

and therefore

bpi = min
v�i

max
ui

Ouv = min
v�i

max
ui

P
v

j=u
Oj

v � u+ 1
. (2.3)

Lemma 2.1 shows that program (2.1) is equivalent to
running isotonic regression on Oi. Therefore (2.1) can
be fitted very e�ciently with the pool adjacent viola-
tors algorithm (PAVA) Mair et al. [2009]. We will now
give a result which shows that when the vector p con-
sists of blocks of constant values, then bp adapts to the
structure of p and attains nearly parametric rate of
convergence. To this end, define the set of monotone
sequences

S"
n
= {u 2 Rn : u1  . . .  un}.

Theorem 2.2 (Misspecified Adaptive Rate). We have
that

Ekbp� pk2
2

n
 inf

u2S"
n


kp� uk2

2

n
+

8⇡m(u) log( en

m(u)
)

n

�
,

where m(u) denotes the number of unique values in
the vector u.

In addition to showing the adaptivity of bp, Theorem
2.2 allows for model misspecification. The proof of The-
orem 2.2 is presented in the end of this section. All
other proofs are relegated to the supplement due to
space considerations. Next we argue that bp is consis-
tent with high probability even when the vector p does
not necessarily consist of blocks of constant values.

Theorem 2.3 (Misspecified Non-Adaptive Rate). Let
bp be the estimate of (2.1). Then for any u 2 S"

n
we

have

kbp� pk2
2

n
 ku� pk2

2

n
+

C(1 + V (u))2/3

n2/3
+

4x

n
,

with probability at least 1�e
�x, where C is an absolute

constant, and V (u) = maxi ui �mini ui.

Theorem 2.3 also allows for model misspecification. The
di↵erence between Theorems 2.2 and 2.3 is clear; when
p has a simple structure with equal coe�cients, the
nearly parametric rates of Theorem 2.2 hold, and are
much faster than the general rates attained by Theorem
2.3. Both Theorems 2.2 and 2.3 discuss the `2

2
loss. The

following result discusses the `
p
p
losses for 1  p < 2 in

the case when p consists of blocks of equal coe�cients.

Theorem 2.4 (Well-Specified Adaptive `p
p
Rates). Fix

p 2 S"
n
and a number 1  p < 2. Suppose that p consist

of m = m(p) blocks of equal coe�cients – N1, . . . , Nm.
Then

E
kbp� pkp

p

n
 Cp

n

mX

i=1

|Nm|1�p/2  Cp

✓
m

n

◆p/2

,

for some constant Cp depending solely on p.

In contrast to Theorem 2.2, Theorem 2.4 does not have
an extraneous logarithmic factor in the rate, which as
we will see below is the minimax optimal rate for the `p

p

loss. However, unlike Theorem 2.2, Theorem 2.4 does
not allow for model misspecification.

2.1 Minimax optimality

Minimax optimality in the Gaussian case has been
studied by Bellec and Tsybakov [2015] and Gao et al.
[2017]. In this section we would like to verify that the
same minimax bounds derived by Bellec and Tsybakov
[2015] continue to hold for coin tossing, and therefore
using isotonic regression is optimal (up to logarithmic
factors). Moreover, it turns out that the rate proved
in Theorem 2.4 is (constant) optimal for the `

p
p
loss in

the range 1  p < 2.
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Proposition 2.5 (Minimax Optimality). Let m <

8�n

1�2�
^ 3

q
n

32(1�5/2�)2

�(1�2�)
for some small fixed constant

� > 0. Then for any p � 1 the minimax risk is at least

inf
bp

sup
p2S"

n,�\S"
n(m)

E
kbp� pkp

p

n
� 1

32


�(1� 2�)m

32n

�p/2
,

where S"
n
(m) ⇢ S"

n
is the set of all monotone sequences

withm constant pieces, and S"
n,�

= {u 2 Rn : �  u1 
. . .  un  1� �}.

2.2 Binomials

The goal of this section is to analyze what happens
when instead of having individual Bernoulli observa-
tions Oi, we observe k coin tosses per each coin, i.e. we
have

Oij ⇠ Ber(pi), j 2 [k], i 2 [n].

Do the estimation rates change when one uses

Oi = k
�1

X

j2[k]

Oij

in the isotonic regression (2.2) as compared to using
Oij? We will show that indeed it is (slightly) better to
use the average values Oi instead of simply using the
original observations. First we will argue that while
Theorem 2.2 remains valid it gives a slightly worse
bound than the following proposition which uses the
average number of successes Oi in place of the binary
values Oij .

Proposition 2.6 (Binomials Misspecified Adaptive
Rate). The estimates obtained from solving (2.2) with
Oi instead of Oij satisfy

Ekbp� pk2
2

n
 inf

u2S"
n


kp� uk2

2

n
+

8⇡m(u) log( en

m(u)
)

kn

�
,

Remark 2.7. We remark that using the average prob-
abilities Oi instead of using the 0, 1 representation Oij

improves the rate by a log factor. Assume that the
vector bp is obtained via averaging the estimated prob-
abilities for each binomial after running an isotonic
regression with Oij . Note that by Jensen’s inequality
Theorem 2.2 guarantees that

Ekbp� pk2
2

n
 inf

u2S"
n


kp� uk2

2

n
+

8⇡m(u) log( ekn

m(u)
)

kn

�
,

if we use the individual values Oij in place of Oi.

We also have an equivalent to Theorem 2.3.

Proposition 2.8 (Binomials Misspecified Non-Adap-
tive Rate). For any u 2 S"

n
the estimates obtained

from solving (2.2) with Oi instead of Oij satisfy

kbp� pk2
2

n
 ku� pk2

2

n
+

C(1 + V (u)
p
k)2/3

kn2/3
+

4x

kn
,

with probability at least 1�e
�x, where C is an absolute

constant, and V (u) = maxi ui �mini ui.

Remark 2.9. Under the same assumptions as in Re-
mark 2.7, Theorem 2.3 guarantees that with high prob-
ability

kbp� pk2
2

n
 ku� pk2

2

n
+

C(1 + V (u))2/3

(kn)2/3
+

4x

kn
,

if we use the individual values Oij in place of Oi. Hence
the rate is improved when using the average values Oi

for large values of k when V (u) is small.

2.3 Proof of Theorem 2.2

Before we proceed with the proof we state a useful
lemma.

Lemma 2.10 (Proposition 2.1 Bellec [2018]). Let C
be a closed convex set in Rn. Let ✓ 2 Rn and suppose
that O = ✓ + e for some mean-zero random vector e
such that Ekek2

2
< 1. Let b✓ = argmin

v2C kO � vk2
2
.

Then

E[kb✓ � ✓k2
2
]  inf

u2C
{k✓ � uk2

2
+ E[k⇧TC(u)(e)k

2

2
]},

where ⇧TC(✓) denotes the Euclidean projection of e

onto the closed convex cone

TC(u) = {t(⌘ � u) : t � 0,⌘ 2 C}.

Proof of Theorem 2.2. Lemma 2.10 shows that one
needs to consider the projection on the cone TS"

n
(u). If

u has m = m(u) constant pieces – N1, . . . , Nm, Propo-
sition 3.1 of Bellec [2018] shows that

TS"
n
(u) = S"

|N1| ⇥ . . .⇥ S"
|Nm|,

where S"
l
= {t 2 Rl : t1  . . .  tl}. By (B.10) of

Amelunxen et al. [2014] we have that

k⇧TC(u)(e)k
2

2
=

X

l2[m]

k⇧S"
|Nl|

(eNl)k22,

where eNl = (Oi�pi)i2Nl is the restriction of the vector
e = (Oi�pi)i2[n] to the set of coordinatesNl. Therefore
the proof boils down to calculating the projection of
Oi � pi for i 2 Nl onto the set S"

|Nl|. Let
eOi be i.i.d.

copies of Oi, independent of Oi, and "i be a sequence
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of i.i.d. Rademacher random variables independent of
all other randomness. Using symmetrization have

Ek⇧S"
|Nl|

(eNl)k22 = EO

⇥
sup

t2S"
|Nl|

,ktk21

X

i2Nl

(Oi � pi)ti
⇤2

= EO

⇥
sup

t2S"
|Nl|

,ktk21

X

i2Nl

(Oi � E eOi)ti
⇤2

 E
O,eO

⇥
sup

t2S"
|Nl|

,ktk21

X

i2Nl

(Oi � eOi)ti
⇤2

= E
O,eO,"

⇥
sup

t2S"
|Nl|

,ktk21

X

i2Nl

"i(Oi � eOi)ti
⇤2

 1

2
EOE"

⇥
sup

t2S"
|Nl|

,ktk21

2
X

i2Nl

"iOiti

⇤2

+
1

2
EeOE"

⇥
sup

t2S"
|Nl|

,ktk21

2
X

i2Nl

"i
eOiti

⇤2

= EOE"

⇥
sup

t2S"
|Nl|

,ktk21

2
X

i2Nl

"iOiti

⇤2
.

Next, for a vector of i.i.d. Gaussians ⇠i, i 2 [l] we have

E"

⇥
sup

t2S"
|Nl|

,ktk21

2
X

i2Nl

"iOiti

⇤2

 4E"

⇥
sup

t2S"
|Nl|

,ktk21

2
X

i2Nl

"iti

⇤2

= 8⇡E"

⇥
sup

t2S"
|Nl|

,ktk21

X

i2Nl

"iE|⇠i|ti
⇤2

 8⇡E",⇠

⇥
sup

t2S"
|Nl|

,ktk21

X

i2Nl

"i|⇠i|ti
⇤2

= 8⇡E⇠

⇥
sup

t2S"
|Nl|

,ktk21

X

i2Nl

⇠iti

⇤2

= 8⇡
X

i2[|Nl|]

1

i
,

where the first inequality follows by the contraction
principle [see Theorem 11.6 Boucheron et al., 2013, e.g.]
and last equality follows by a well known fact for the
monotone cone and Gaussian projections [Amelunxen
et al., 2014, see (D.12)]. Since by Jensen’s inequality

Ek⇧TC(u)(e)k
2

2
 8⇡

X

l2[m]

X

i2[|Nl|]

1

i
 8⇡m log(en/m),

the proof is complete.

3 APPLICTION TO BINARY

SINGLE INDEX MODELS

In this section we consider the following model

Yi = Ber(f(X>
i
�
⇤)), i 2 [2n] (3.1)

where Xi ⇠ N (0, I), �⇤ 2 Rp is an s-sparse unit vec-
tor, i.e., k�⇤k2 = 1, and f : R 7! [0, 1] is an unknown,
strictly monotone increasing and L-Lipschitz link func-
tion. Examples of f can be the logistic or probit link
functions which are given by

flogistic(x) :=
exp(x)

1 + exp(x)
, fprobit(x) := �(x), (3.2)

where � is the standard normal cdf. This model, also
known as the binary choice model, is similar in spirit
to 1-bit compressive sensing [Boufounos and Baraniuk,
2008], but the Bernoulli sampling introduces noise
and the unknown function f further complicates the
model. Our model assumptions and recent results [Plan
and Vershynin, 2016, Plan et al., 2017, Neykov et al.,
2016, Thrampoulidis et al., 2015] motivate running `1-
regularized least squares (i.e., LASSO) to obtain a pro-
portional estimate of �⇤. Before we proceed with for-
malizing our two step procedure (which also aims at
estimating f) we will first briefly sketch why one would
expect to obtain a proportional estimate after running
the least squares. To see why, it is convenient to con-
sider the population version of the problem. We have
the following simple result

Lemma 3.1 (Least Squares Proportionality). Sup-
pose we are given samples from model (3.1) with a
strictly monotone increasing f . Then we have

argmin
�

E(Y �X
>
�)2 = c0�

⇤
, (3.3)

where c0 := EYX
>
�
⇤ = Ef(X>

�
⇤)X>

�
⇤
> 0.

After obtaining a proportional estimate of �⇤ – b�, we
can approximately sort the observations according to
the monotonicity of X>

i
b�, since the function f is mono-

tone increasing. In view of our results from the previous
sections, this suggest running an isotonic regression on
the sorted values. We are now ready to state our two
step algorithm. The goal of the remainder of the sec-
tion is to prove that the following procedure works well
to recover both �

⇤ and f .

• Split the data. Run LASSO on the first half:

e� = argmin
�

nX

i=1

(Yi �X
>
i
�)2 + �k�k1,

and normalize

b� :=
e�

ke�k2
.

• Sort the second half of the data. Specifically, let
⇡ be the permutation of {n + 1, . . . , 2n} so that

X
>
⇡i
b�  X

>
⇡i+1

b� for i 2 [n] (breaking ties ar-
bitrarily). Fit isotonic regression using Y⇡ =
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(Y⇡1 , . . . , Y⇡n)
>:

bf⇡ := argmin
f2S"

n

kY⇡ � fk2
2
.

Our goal is to show that the predicted estimate bf(X>
i
b�)

is close to f(X>
i
�
⇤) for i 2 {n+1, . . . , 2n}. To compare

how close is bf(X>
i
b�) to f(X>

i
�
⇤) we will use the “in-

sample” square loss function 1

n

P
2n

i=n+1
(f(X>

i
�
⇤) �

bf(X>
i
b�))2. Define the shorthand notation:

np,s :=
n

s log p
.

We have the following result, which shows that the
in-sample square loss is small provided that np,s is
su�ciently large, and the tuning parameter � is set
appropriately.

Theorem 3.2 (Binary SIM Two-Step Procedure Guar-
antee). Suppose that n�1

p,s
= o(1),

np,s &
E(Y � c0X

>
�
⇤)2

�2s
, (3.4)

and that EY 4
< 1 is fixed and does not scale with

n. Then, assuming that s ! 1 as n ! 1 with over-
whelming probability (i.e., at least .99) we have

1

n

2nX

i=n+1

(f(X>
i
�
⇤)� bf(X>

i
b�))2 . L

2(
p
s�+ n

� 1
2

p,s )2

+
1

n2/3
. (3.5)

Note that (3.4) is satisfied when we set � = C

q
log p

n
for

a su�ciently large constant C. Furthermore given that

� = C

q
log p

n
, (3.5) can be rewritten in the following

way:

1

n

2nX

i=n+1

(f(X>
i
�
⇤)� bf(X>

i
b�))2 . L

2
n
�1

p,s
+

1

n2/3
.

This shows the interplay between two rates: the non-
parametric rate for estimating a monotone function –
O( 1

n2/3 ), and the minimax rate for estimating the vec-
tor �

⇤ – O(n�1

p,s
). Although this result holds only on

half of the data, one can switch the two halves to obtain
the same bound for the second half.
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Figure 1: We give two examples of models (1.2) with
vectors p from (4.1) and (4.2). The true vector p is
depicted with a red curve, while the estimate bp is de-
picted with a black curve. We observe that the estimate
in panel (a) traces more closely the red curve. This is
to be expected in view of the results of Theorems 2.2
and 2.3

4 NUMERICAL EXPERIMENTS

In this section we briefly present results regarding the
performance of the estimates developed in Sections 2
and 3. We first begin with results from Section 2. We
consider the following two vectors

p =

✓
1

3
, . . . ,

1

3| {z }
n/2

,
2

3
, . . . ,

2

3| {z }
n/2

◆
, (4.1)

and

p : pi =
i

n
for i 2 [n]. (4.2)
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Figure 2: This figure shows the predicted estimation
rates vs estimation rates averaged over 100 simulations
for the two binary sequence models with probability
vectors given in (4.1) and (4.2). Here, each point corre-
sponds to sample size n which takes values in the set
Sn. We observe near perfect linear alignment.

On Figure 1 we show two typical results of estimates
using isotonic regression with n = 2000. We observe
that on panel (a), the estimate (black curve) is closer
to the truth (red curve) compared to the estimate in
the panel (b). This is expected in view of the results
of Theorems 2.2 and 2.3. In addition to these two
examples we simulate models (1.2) for the two exam-
ples of p for a range of sample size values n 2 Sn :=
{5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 45, 50, 100, 200, 500, 1000}
for a 100 simulations each. On Figure 2 we report the
averaged value of kp � bpk2

2
over the 100 simulations,

along with the theoretical value of the adaptive or non-
adaptive rate (panel (a) and panel (b) respectively).
We observe a near perfect linear alignment, confirming
the findings of Theorems 2.2 and 2.3.

4.1 Application to Inverse Probability

Weighting

In addition to the above examples in this subsection we
will illustrate how one can apply isotonic regression to
problems involving inverse probability weighting. Sup-
pose we observe (Yi, Xi, Ai)i2[n] where Ai 2 {0, 1} in-
dicates whether a patient was treated with a placebo

or a new drug, Y (a=0)

i
= f0(Xi) + "i and Y

(a=1)

i
=

f1(Xi) + "i are the responses given that the patient
was treated with placebo or the new drug resp., and
Xi 2 R is a covariate. For each patient exactly one of
Y

(a=0) or Y
(a=1) is observed, and the goal is to esti-

mate EY (a=0) and EY (a=1). According to our work, if
the propensity score, P(A = 1|X = x), is an increas-
ing function of x, one can use isotonic regression to
find a nonparametric estimate bP(Ai = 1|Xi) and then
calculate

X

i2[n]

Yi (Ai = 1)
bP(Ai = 1|Xi)

and
X

i2[n]

Yi (Ai = 0)
bP(Ai = 0|Xi)

,
1

to estimate EY (a=1) and EY (a=0). Below we show a nu-
merical study using n = 1000,Xi =

i

n
, P(Ai = 1|Xi) =

.1 + .8 (i > 500), f0(x) = x, f1(x) = 0, "i ⇠ N(0, 1).
In this setting the true means are EY (a=0) = .5 and
EY (a=1) = 0. In Figure 3 we plot 4 histograms of the
treatment e↵ect estimates over 200 repetitions – 2 of
them are using isotonic regression and 2 of them are us-
ing logistic regression to model P(A = 1|X = x). We ob-
serve that for EY (a=0), the logistic regression approach
gives heavily biased estimates centered at .8 while the
isotonic regression correctly estimates the true mean
of .5. In fact, the mean squared error of the logistic
regression is 0.054 vs 0.005 of the isotonic regression.
This is due to the failure of logistic regression to model
the complicated distribution of P(A = 1|X = x). Note
that in the above we can also use the SIM framework
in cases when Xi 2 Rp and P(A = 1|Xi) = g(X>

i
�)

for some increasing g.

4.2 Application to Binary Choice Models

We further provide a brief example of the performance
of the two step procedure in binary SIM developed in
Section 3. On Figure 4 we plot the results for model
(1.3) using the logistic and probit links as defined in

(3.2). We plot the curve f(X>
i
b�) in red and the curve

bf(X>
i
b�) in black. We see that in both the logistic and

in probit cases the estimates trace very well the corre-
sponding target function. In this particular example
the dimension p = 2000 the sparsity s = 10 and the
sample size equals n = 1000 (so that the total sam-
ple size is 2n = 2000). The unit vector �

⇤ has equal

1Here we exclude observations for which bP(Ai = 1|Xi)
is very 0 or 1 for numerical stability.
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Figure 3: Four histograms of the estimates of EY (a=0)

and EY (a=1) using logistic and isotonic regression re-
spectively. The logistic regression approach gives heav-
ily biased estimates for EY (a=0).

non-zero entries. The tuning parameter is selected via
10-fold cross validation.

5 DISCUSSION

In this paper we presented results on the estimation
of the monotone binary sequence model (1.2). We de-
rived adaptive and non-adaptive rates of convergence,
showing that akin to the Gaussian case, for probability
vectors which are piecewise constant the isotonic regres-
sion has near parametric rates of convergence, whereas
the rates of convergence for general probability vectors
are of the order 1

n2/3 . We used our results to develop
a procedure for estimating f and � in a binary SIM
with Gaussian design. We furthermore illustrated the
success of our theory with simulated examples.

In addition to monotonicity one may be interested in
other shape restrictions on the probability vector p,
such as convexity or unimodality. We believe that sim-
ilar techniques to those we used in the present paper
can be used to show that convexity and unimodality
in the binary sequence model behave similarly to the
Gaussian sequence model. We leave the details of this
analysis to future work.
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Figure 4: We give two examples of models (1.3) with
logit f(x) = flogistic(x) (panel (a)) and probit f(x) =
fprobit(x) (panel (b)). In red is the true curve evaluated

over the set X>
i
b�, i.e., f(X>

i
b�) while the black curve

is bf(X>
i
b�). In these examples we have set p = 2000,

s = 10, n = 1000. The tuning parameter � is selected
via 10-fold cross validation. We see that the black curve
traces well the red curve in both cases.
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