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A Proofs

Lemma A.1l. For any v € K we have the following
inequality

1 ~ 4 f Ly
%ux(ﬁ =v)l2 < WHX(B )2

+ ¢(4<X<ﬁ Ve X -Vl ) vo

n

Proof of Lemma A.1. Since we have that the set XK
is convex conditionally on the matrix X, for any v €
K, we have the inequality

1 ~ 1 1 ~
—|Y = XB|2 < =Y — Xv|2 — = |X(B - v)|3.
Y = XBI3 < Y - Xv]E - X3 - V)3
Expanding the square leads to
1 ~ 1
ZIX * 2 < ZIIX * 2
—IX(8" - B3 < - IX(8" — v)I3
2 ~ 1 ~ 9
+=(X(B = v),e) = —X(B - )|
n n
Next note that by the triangle inequality:

1 1 ~
SIX(B" =B+ CIX(B - V)3

92 .
— ZIX(8" — V)X (B - V)l

1 .
< —[X(8* - B)l3
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We obtain:
1 ~ ~
~IX(8 - V)|l < =IX(8* = v)|[2lIX(B = v)ll2

+2X@-v).e) - Lx@B -V,

\}

N3

Using ¢ < a + b implies ¢ < 2max(a V 0,0V 0) we get
1 N
2IX(8 = 2
L8 - vz
4, .
<max ( S1X(8" V)2 X(B - V)l
4 ~ 2 ~ 9
(=(X(B=v),e) = ~[X(B-V)[z) VO
n n
Equivalently, provided that || X(3 — v)||2 # 0, we have
1 .
ﬁ”x(ﬁ =)l
< max (= IX(8° — V)|
<[ = _
I \/ﬁ 25

JEXB-v.€) - 2ixB - vo)

The above also obviously holds when || X(3—v)|2 = 0.
Using ¢ < max(a,b) for a,b > 0 implies ¢ < a + b
completes the proof. O

Proof of Theorem 2.3. We start by controlling the em-
pirical process term appearing in Lemma A.1:

2 ~ 1 ~
I:=2(X(3- — —|IX(B - )3
Z(X(B-v).e) - IX(B-v)I3
Below we state a useful lemma which we take from the

classical work Gordon [1988].

Lemma A.2 (Gordon’s escape through mesh). Let
D C R" be a cone and X be an m x n standard Gaus-
sian matrix. Then

inf [ Xwlly > vm —1—wi (D) —t,

weDNS™—
sup || Xwll2 < vVm +wi(D) +t,

weDnsSn—1

with probability at least 1 — et/ each.

Note that the unit vector \Igi\fﬂ € Tkyv ={tu:t>
- 2

0,u € K — v}. By Gordon’s escape through a mesh
result we have

<=

||,§—V||2 i HXWHQ

> inf
2 weTx,vNSP—
>vn—1—w(Tky)—t,
—t?/2

with probability at least 1 — e Hence on this

event we have

[< (VST = on(Tiew) = 018 = v]ax

3

y < B—v XTe >
1B —v]l2" V=T —wi(Tky) —t
(V=1 = wi(Tew) = 02118 = VI3

n

2
1 T
(SupueTK,v>|u|2<1<u’\/ﬁX 5>>

n—1 _ wi(Tk,v)+t )2
n vn

<

n( 7

where we used —a2+2ab < b%. Note that conditionally
2

on the error term the vector ﬁXTe ~ N(O,I@).
Set )

7 = sup u, —X'e).

uETKY‘,r‘]S"_1< \/77 >

By Theorem 5.8 of Boucheron et al. [2013], we have
that

P(Z —EZ > V2i|[e]|2/v/n) < e™".

Note that conditionally on the error term EZ =
wl(TK,v)% It follows that

n

el

Z < (w1 (Tk~) + M) N

(A1)
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with probability at least 1 — e~%, and therefore

((CoTicw) + m'f')

n—1 _ wi(Tkv)+t )2
n vn

1<

)

n(

with probability at least 1 — e~* — e=t"/2. Therefore
by Lemma A.1 conclude that the following holds:

(B-v)la < %\\X(ﬂ* —V)ls

| V2 (Tie) + V2 15

n— w1 (Tx,v
Vn( Tl_‘l(f’ﬁw)

1
— X
7

. (A2)

Observe that both ,@—v and B8* — v belong to the cone
Tk ,v. Hence using Gordon’s escape through mesh once
again we obtain:

4(vn + w1 (Tr ) + 1)
(Vn=1-wi(Tkv) = t)
V(w1 (Tiev) + v20) 152
+

Vit - 2

18 = vll2 <

18" = vll2

on an event of probability at least 1 — e~ — 3¢=t"/2,
Finally, by Chebyshev’s inequality we have that

2 2
P(’HEQ_UQ 27&) < Vare .
n

nt?
Setting t = o completes the proof. O

(A.3)

Proof of Theorem 2.5. We need the following lemma
whose proof can be found in Plan and Vershynin
[2016].

Lemma A.3. Let S C R” be a star shaped set (i.e.,
AS C Sforall 0 <A< 1) Let x > 0 and suppose
that n > w2(S)/x?. Then with probability at least
1 —exp(—n/8)

inf || Xwll2 = Ven[lwllz,

weS,[lwl22x

for some absolute constant ¢ > 0.

By Lemma A.1 we have

%HX@ — V)2

= V)l2

4
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2

< —=[IX(B"
W {3x(B-v).e) - LIxB -3 | vo

Suppose that |3 — v||z > « otherwise the proposition

is clearly true. Let a = HEIVH <1 Since0<a<1
- 2

we have that u = a8+ (1 —a)v € K. This implies the

~

simple identity a(8 — v) = (u — v). Therefore

2(X(B - v)€) - IX(B - V)3
2~ X7 ~
< B v ) — B - Vi
_ 2 XTe,  Ju-vi3
_m<u—v,\/ﬁ>— e
XTe z?

2x+/c
< —F sup W, ——) —c
a\/ﬁx\ﬁ wEK—v,HszSm< ’ \/ﬁ > a?
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< SuprKfv,HwH2§x<wa%> 2
- Vnay/c

w, (K —v) e 4 o /aplele 2
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where we used —a?+2ab < b? in the next to last bound,
and the last bound holds on an event of probability at
least 1 — e~* by the same argument as in (A.1) in the
proof of Theorem 2.3. Next by Lemma A.3

<

1 ~ ~
—IX(8 ~ V)[3 > ¢llB - vI3,

and therefore we conclude

v =Bl < ==X (8" = V)l
llell2 liell2
+ \/iwI(K “V xmﬁ.
Vnxe

Using Chebyshev’s inequality as in (A.3) completes the
proof. O

Remark A.4. Observe that by Corollary 5.35 of Ver-
shynin [2012], we have

llX(ﬁ*ﬁvﬂlz < <1+ \/f+ ﬁ)m* — V]2,

with probability at least 1 — e .

Proof of Corollary 2.6. The proof is very similar to
that of Theorem 2.3. We omit the details. O

Proof of Corollary 2.7. The proof is very similar to
that of Theorem 2.5. We omit the details. O

Proof of Lemma 8.1. Let k = |p/¢] and r = p — kL.
Fix v1 = Bl- For 7 € {27,]{3} take v; = v1 + (’L*
1)%. Next for i € {k+1,...,2k} take v; = vy + (i —
k)% sign(Bx — vy,). Fori € {2k +1,...,3k} take v; =
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vok + (1 — 2k)% sign(fBar — var), and so on. We will now
show by induction that |v; — 8;| < Qk% for all ¢ € [p].
Note that the final result follows from this observation.
This is clearly true over the first £ numbers, so suppose
it is true for the first m — 1 > k numbers. Let g be the
largest integer such that ¢k < m. We have

|Um - /Bml
S |5m - ﬁqk| + |vm - ﬁqk|
= |ﬁm - ﬁqk|
1B = v = (m = gb) Y sign(B o)
(m — qk)L

L
< ——— +|[|Bgk — vgr| — (m — qk)—
) [|Bqr = vgr| = ( )pl

m —qk)L _ 2kL
< [0 — v v 2T < 2L

which completes the proof. O

Proof of Lemma 3.2. Take any vector u € K. Observe
that —% — (i —vi—1) < up —ui—1 — (v; —vimy) <
% — (v; —v;—1). It follows that when v; —v;_q = %
we have that u; — v; form a decreasing sequence. On
the other hand on stretches where v; — v;_1 = —% we
have an increasing sequence. Clearly, this conclusion
remains true even when we scale u—v by an arbitrary

positive constant. This completes the proof. O

Proof of Corollary 3.4. We start by showing the first
part. Take a v with ¢ + 1 < 2/ affine pieces which
approximates 3* as in Lemma 3.1. Using Corollary
2.4 we have

I Bla 5 B2 LB/ ),y o

Setting £ = ¢ lf;(i Z) gives a rate

. 3. < log(ep)L]'/*p!/®
||/8 _ﬂ”QS nl/3

g
1 —.
(1+0)+ =

vn

The second part is a direct consequence to (3.1) and
Corollary 2.4. To elaborate, select v = 3* in Corollary
2.4. By (3.1), and the assumptions on 3* we have that

wi(Tr,g+) < \/(E + 1) log(ep/(£ + 1)).

Since /41 < 2¢ and log ep/(¢+1) < logep/{ the second
bound follows by Corollary 2.4. O

Proof of Corollary 3.5. Set v .= 3* in Corollary 2.4.
To obtain an upper bound on ws (7x g+) one may use
Proposition 3.1 of Bellec et al. [2018] and the same
logic as the bound on the tangent cone of Lipschitz
sequences. We omit the details. O

Proof of Corollary 3.6. Chatterjee et al.
showed (proof of Theorem 2.2) that

[2014]

we (K — B*) < /(B — Br)xp/* + Qpa?,

for some absolute constants 2; and 9. Plugging in
the bound of Theorem 2.5 (with v = 8*) we obtain:

(Bn - 61)37]91/4 + m2 + 33\/7E
o+

*_ 3|, <
18" = Bll2 S Jnz x,

and therefore

_ 1/4
(Bn — B1)p ot 4o,
holds with probability at least .99. Setting x such that
equates the two rates completes the proof.

18* = Bll2 <

O

Proof of Corollary 3.7. Set v.= B* in Corollary 2.4.
To obtain an upper bound on wi (7x g+) one may use
Proposition 4.2 of Bellec et al. [2018] and the same
logic as the bound on the tangent cone of Lipschitz
sequences. To elaborate, we have that

wh(Ti) < 0(Tica) < sa(6) e ( %),
a(B*)
where the final bound follows by Proposition 4.2 of
Bellec et al. [2018], and ¢(8*) = ¢ denotes the number
of affine pieces of 3*. Therefore by Corollary 2.4 (with
v = (3*), we have that

. o wy (Tx,3+) o Llogep/t o
_ < > <

18" = Bll2 < Jn TSN T, T
which is what we wanted to show. O

Proof of Corollary 3.8. We start by applying Proposi-
tion 3.1 of Chatterjee et al. [2016] which shows that

we (K — B%) < ((max B; — min ;) + 1)/ 4p!/823/4
2

x
+ /logpx + T

It is simple to see that setting

04/5((max B; — min 3;) + 1)1/5p1/10
- n2/5

and applying Theorem 2.5 completes the proof. O

A.1 Additional Numerical Simulations

In this section we present additional simulation stud-
ies. To verify our findings we simulated 100 repe-
titions of each of the 6 settings from Section 4, for
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Figure 4: Example of the adaptive rates vs the aver-
aged values of ||3* — 3|2 over 100 repetitions. In all
three examples we observe a linear alignment confirm-
ing our theoretical findings.
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Figure 5: Examples of the non-adaptive rates vs the
averaged values of ||3* — Bl|2 over 100 repetitions.
We observe linear alignment confirming our theoreti-
cal findings. The points appear to be more variable as
compared to those on Fig 4. We attribute that to the
greater variability of the estimates in the non-adaptive
setting (as is also evident on Fig 3).
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each of the following choices of n € {50, 75,100} and
p € {60,180, 360, 540, 720,900}. We then plot the av-
eraged values of [|3* — B”Q over the 100 simulations
vs the corresponding adaptive or non-adaptive func-
tion of n and p. The results for the adaptive and
non-adaptive rates can be found in Figs 4 and 5 re-
spectively. We observe linear alignment of the points
confirming our theoretical findings. In addition it ap-
pears that the non-adaptive rates appear to be more
variable than the adaptive rates, which is possibly due
to the greater variability of the estimates.



