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Abstract

The focus of this paper is the linear model
with Gaussian design under convex con-
straints. Specifically, we study the perfor-
mance of the constrained least squares esti-
mate. We derive two general results char-
acterizing its performance — one requiring a
tangent cone structure, and one which holds
in a general setting. We use our general re-
sults to analyze three functional shape con-
strained problems where the signal is gen-
erated from an underlying Lipschitz, mono-
tone or convex function. In each of the ex-
amples we show specific classes of functions
which achieve fast adaptive estimation rates,
and we also provide non-adaptive estimation
rates which hold for any function. Our results
demonstrate that the Lipschitz, monotone
and convex constraints allow one to analyze
regression problems even in high-dimensional
settings where the dimension may scale as the
square or fourth degree of the sample size re-
spectively.

1 INTRODUCTION

Recently there has been a flurry of work on the shape
constrained Gaussian sequence model [see, e.g., Chat-
terjee et al., 2014, Bellec et al., 2018, Chatterjee et al.,
2015, Guntuboyina and Sen, 2015, Zhang et al., 2002,
among others]. These works study the model

}/1:9:—"627

for i € [n] = {1,...,n} where the vector 8* € R" is
known to belong to a convex set K. In the present
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paper we are interested in the related, but different
problem of linear regression

K:X:/B*+5m

for i € [n] where the vector 3* € RP is known to
belong to a convex set K. We study the constrained
least squares estimate given by

~

1

B := argmin — Z (Y; — X' 8)?, given that 8 € K.
B n

(1.1)

This model is also related to the works of Thram-
poulidis et al., Plan and Vershynin [2016], Plan et al.
[2017] where the authors consider a single index model
(SIM) formulation of the problem, i.e.,

i€[n]

Yi = F(X; 8%, &)

and let K be a star-shaped set'. In the latter model
one loses the scaling of the vector 3* for identifiability
(i.e., ||B*||2 can be absorbed in F'), and the nice proper-
ties of convexity for the larger generality of star-shaped
sets.

1.1 Convex Sets of Interest

Although in Section 2 we derive general results under
the assumptions of Gaussian design X;, we are specifi-
cally interested in three types of convex sets K. All of
our examples can be motivated by assuming that the
vector B* satisfies the following condition 8 = f (%)
for i € [p] = {1,...,p}, where f :[0,1] — R is a func-
tion, which is constrained to be Lipschitz, monotone
or convex. In this framework, one may think about
the vectors X; as compressing the discretized func-
tional values to a potentially lower dimensional space
(n < p), and the ¢; as noise occurring during trans-
mission of the compressed values. The goal then is to
recover the original functional values as closely as pos-
sible having the information (Y, X;);c[n). We will see

Tee., a set S such that AS C S for all A € [0,1]. Every

convex set containing 0 is star-shaped.
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that for the examples of convex sets K that we con-
sider, it is indeed possible to compress to a lower di-
mensional space and then accurately recover the func-
tional values. Such examples have not been previously
analyzed in a regression setting, and some of them are
more commonly associated with the Gaussian sequence
model.

The first example of such set is when f is an L-
Lipschitz function. In this case it is simple to see that

K:={BeR: |8 - Bia| <L ic{2,...,p}},

where the Lipschitz constant L is a tuning parameter.
Here the set K is convex, but it is not a cone unlike the
following two examples. It is noteworthy to mention
that the constraints on B* do take advantage of 5} =
f(%), i.e., that the points over which f is evaluated at
are equispaced on [0, 1].

The second example takes f as a monotone function.
The convex set K is

K := {BGRP:ﬂi—l §51,Z€ {2,,]7}}7

i.e., B* forms a monotone sequence in the given order.
Importantly, unlike in the Lipschitz case, this exam-
ple is independent of the underlying design where the
function f is evaluated, although one can still think of

8 = F().

The final example takes f as a convex function. The
set K is

K:={BeRP:8,—0i—1 <Bix1-8i,i€{2,...

Just as in the Lipschitz f example, the conditions on K
above assume that the design on which f is evaluated
is equispaced on [0, 1].

We will reveal that in all three examples above, es-
timate (1.1) works in two vastly different regimes,
deemed the adaptive and non-adaptive regimes, de-
pending on the underlying vector B*. In all three ex-
amples there exist vectors B* with special structure
which admit fast (or adaptive), nearly parametric rates
of convergence, which adapt to the special structure
of B*. These adaptive rates are typically much faster
than the general non-adaptive rates which hold for any
arbitrary 8* € K. Furthermore, both the adaptive
and non-adaptive rates allow one to work in a high
dimensional setting where p > n. Specifically, for the
Lipschitz and monotone examples p can be nearly of
order n?, while for the convex functions example p can
be of order n*. The latter shows that it is possible to
effectively compress Lipchitz, monotone and convex
functional values and then recover them consistently.

1.2 Innovation and Related Work

As indicated earlier, our work is related to two sep-
arate branches of statistics and signal processing —
the Gaussian sequence model and compressive sensing.
On the compressive sensing side related works include
[Thrampoulidis et al., Oymak et al., 2013, Plan and
Vershynin, 2016, Plan et al., 2017, Cai et al., 2016].
Out of those works the most closely related work is
Plan and Vershynin [2016]. In contrast to Plan and
Vershynin [2016] however, we do not restrict the norm
of the vector 3*, and consider a convex set K, which
helps us to carry through a more refined analysis com-
pared to a star-shaped set.

Works on the Gaussian sequence model which are rel-
evant are [Chatterjee et al., 2014, Bellec et al., 2018,
Chatterjee et al., 2015, Guntuboyina and Sen, 2015,
Bellec and Tsybakov, 2015]. Specifically, they con-
sider a sequence model under convex constraints, and
examples which are similar to the type of examples
that we consider. In particular, they have focused on
the monotone and convex function cones.

The novelty of this paper is two-fold. First we derive
two general results regarding the performance of the
convex constrained regression in a Gaussian design set-
ting. Our results have advantages over existing works
in that they allow for selecting a target vector differ-
ent from the underlying true vector, and do not restrict
the norm of the parameter. Next we propose and an-
alyze the example of Lipschitz regression which to the
best of our knowledge has not appeared either in the
Gaussian sequence model or in the compressive sens-
ing literature. Furthermore, to the best of our knowl-
edge, the adaptive and non-adaptive rates derived for
the three examples of Lipschitz, monotone and con-
vex functions have not been analyzed in a regression
setting previously and are novel.

1.3 Notation

We now briefly outline some commonly used notation.
Other notation will be defined as needed throughout
the paper. For a vector v = (v1,...,v,)" let |v||,
denote the ¢, norm. For a set K and a given vector v,
the difference K —v := {u—v:u e K}. We often use
I, to denote a p x p identity matrix. For any integer
k € N we use the shorthand notation [k] = {1,...,k}.
We also use standard asymptotic notations. Given two
sequences {a,}, {bn} we write a,, < by, if there exists
an absolute constant C' < oo such that a,, < Cb,,. The
inequality 2 is similarly defined.
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1.4 Organization

For convenience of the reader here we outline the struc-
ture of the paper. In Section 2 we give our general
results for the case when X; have a Gaussian distri-
bution. In Section 3 we consider in detail the three
examples which we outlined above. Section 4 is ded-
icated to numerical experiments and the discussion is
left to the final Section 5.

2 MODEL BACKGROUND AND
GENERAL RESULTS

Suppose we have n independent and identically dis-
tributed (i.i.d.) observations from the model

Y, = X, B +¢

where 3* € RP is known to belong to a convex set
K, the noise ¢; is independent of X; with Ee; = 0,
variance Vare; = o2 > 0 and we assume Ee} < oo.
Let X be the matrix stacking X, into its rows, and
Y be the vector with entries equal to Y;. In view of
this notation the constrained least squares estimator
(1.1) can be rewritten compactly as:

B = argmin||Y — X3|2, given that 3 € K.2 (2.1)
B

There are multiple examples of convex sets K where
the above formulation is very meaningful. In the sim-
plest of examples, K can be taken a subspace of RP.
Another example is to take K = {8 € R? : ||3|; < L},
which produces the vanilla LASSO procedure as de-
fined by Tibshirani [1996]. Motivated by a scenario
where 3* takes discretized functional values, in Sec-
tion 3 we consider three examples of sets K restricting
the shape of the function generating 3* as we detailed
in Section 1.1.

Before we proceed with our general results, we require
several definitions. We will first introduce the concept
of a tangent cone.

Definition 2.1 (Tangent Cone). For a convex set K
and a vector v € K, define the tangent cone of K at
v: Tk, as the closure of the set

Tevi=cl{tu:t>0,uec K —v}.

The tangent cone collects all possible directions at ar-
bitrary scales, along which centered at the vector v one
remains in the set K. Next we present the concept of
local Gaussian mean width, which is a (localized) mea-
sure of size for arbitrary sets in RP.

2If there exist multiple solutions, pick any of them.

Figure 1: A depiction of a tangent cone. The set K is
depicted in green. The tangent cone Tk, consists of
all vectors between the two rays (it is also marked by
a dotted line).

Definition 2.2 (Local Gaussian Mean Width). For a
set S C RP and a real number z > 0 define its local
Gaussian mean width as

wy(S):=FE sup v'E,

veSs,|vlz<=

where &€ ~ N(0,1) is a standard Gaussian vector.

We have the following result

Theorem 2.3 (Tangent Cone Bound). Let X; ~
N(0,T). Suppose that 8* € K and fix any v € K. Let
n 2 w?(Tk.y). Then the estimate of program (2.1)
satisfies

18" = B2
- ( 4(vn+wi(Tkv) +1)
T \NWn—-1—wi(Tgv)—t
V2(wi (Tk ) + V2t)o

+ n—1  wi(Tic~)+tN\2'
Vin(y/rt - )

2 2
b—3et/2 - Yare

S+ 1)Ilﬂ* -

with probability at least 1 —e™

In the above, we note that the parameter ¢ is a “free”
parameter and can be set to arbitrary values, where
higher values of t correspond to higher probabilities.
The assumption X; ~ N(0,I) is required for technical
reasons which help us relate bounds on the coefficients
to geometric characteristics of the underlying convex
set K. We show how this condition can be relaxed to
the more general condition X; ~ N (0,X) below. We
remark that Theorem 2.3 is related to Theorem 1 of
Oymak et al. [2013]. However, unlike the latter result,
our bound allows one to pick a different vector v in
place of B3* such that v is close to 8* but also has a
simple tangent cone structure. This is especially useful
in cases where the original signal 8* might not have
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a small tangent cone, and the Gaussian width of its
cone might approach its maximum value of order ,/p.
We would also like to stress that this result utilizes the
fact that K is convex, and we do not expect it to hold
for star-shaped sets as in Plan and Vershynin [2016],
Plan et al. [2017]. Below we give a direct Corollary to
Theorem 2.3 which ignores the precise constant terms
for the sake of readability.

Corollary 2.4 (Tangent Cone Bound). Let X; ~
N(0,I) and fix any v € K. Suppose that n >
w}(Tkv), and assume that 3* € K. Then condition-
ally on the error term with probability at least .99 we
have

w1 (T v) o
18" = Bll2 S 18" = vll2 + — K0 + .
IR
We will apply Corollary 2.4 to derive both the adap-
tive and non-adaptive rates for Lipschitz regression,
and the adaptive rates for monotone and convex re-
gressions. We can also give a bound without requiring

a tangent cone structure and without even requiring
that 8* € K.

Theorem 2.5 (Misspecified Estimation Bound with-
out Tangent Cone Structure). Let X; ~ N(0,I). Fix
v € K such that for some > 0 we have n 2

w2(K — v)/z%. Then, the estimate of program (2.1)
satisfies
v —Bll2

HX( *—V)||2+w( —V)+z\f

YT

(1+[ V5 )i -t

—v)+ x\/
\/ﬁm “
with probability at least 1 — exp(—n/8)

Var e?
not

—2exp(—t) —

We apply Theorem 2.5 (with v = 3*) to derive the
non-adaptive rates of monotone and convex regressions
utilizing calculations of the local mean width which
have appeared in the literature.

2.1 What if there is a Covariance?

We have so far supposed that X; ~ N(0,I). We now
derive two corollaries which are useful in the more gen-
eral case when X; ~ N (0,3). We have

Corollary 2.6 (Tangent Cone Bound General Covari-
ance). Let X; ~ N(0,X) and fix any v € K. Let

n > w}(EY2Tg.,) and suppose 3* € K. Then condi-
tionally on the error term with probability at least .99
we have

=28 = B)ll2 < IEY2(8" = v)ll2
N 11)1(21/2TK,V)0_ 4+ 2
vn v
It is not hard to check (see Remark 1.7 [Plan and Ver-
shynin, 2016]) that

wi (BT y) < 27212 22 w1 (Ti ),

and therefore if 3!/2 is well conditioned the mean
width would be of the same order as the one without
using 3. On the other hand there could exist matrices
that are not well conditioned but do not change the
tangent cone too much in some examples; such matri-
ces will result in similar mean widths as in the one of
independent Gaussians.

Plugging in v = B* in Theorem 2.5 we state an anal-
ogous corollary below.

Corollary 2.7 (Estimation Bound without Tan-
gent Cone Structure General Covariance). Let X; ~
N(0,X). Suppose that 8* € K and that for some
x> 0 we have n > w?(2Y?(K — 8*))/2. Then the
estimate of program (2.1), satisfies

1/2 _ Ax*
wn(BK - ) i
Vnzx
with probability at least 1 — exp(—n/8) — exp(—t) —

Var 2
not

128" = B)ll2 S

3 EXAMPLES

One of the most well studied examples of the set K is
the LASSO, ie., K = {8 € RP : ||B]1 < L}. We will
not focus on this classical example since it has received
plenty of attention and results can be found in Oymak
et al. [2013] among others. Instead below we consider
three examples where the parameter 3 can be thought
of evaluating a function f : [0,1] — R at equispaced
partition of [0,1], i.e., 8 = f(é) for i € [p]. We will
focus on the independent Gaussian design setting for
the sake of a clear presentation.

3.1 Lipschitz Regression

Suppose that B* satisfies |8 —5;_;| < % for some fixed
constant L. This is equivalent to the setting where
B = f(%) for f : [0,1] — R being an L-Lipschitz
function. The convex set K therefore consists of the
following collection of vectors:

K:={BeR: |6 - Bia| <Lic{2...,p}},
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where L > 0 is a tuning parameter. The constraints
in K and the least squares objective (2.1) produce
a quadratic program which can be implemented ef-
ficiently via interior point methods.

Our goal for this section is to apply Corollary 2.4 to
derive both adaptive and non-adaptive bounds. In or-
der to derive the non-adaptive bound, we would like
to find a vector v which is close to any given vector
B € K but has a small tangent cone structure. Hence
we start by first showing a lemma regarding approxi-
mations of arbitrary 8 € K.

Lemma 3.1. Any vector 8 € K can be approximated
by a vector v € K with at most ¢+ 1 affine pieces and

slopes equal to :I:% and satisfying |v; — v;—1| = % for
all 7, so that
2L./p
18— vl < 22

Next we will upper bound the mean width of a tangent
cone of a vector v with £+1 affine pieces and satisfying

lv; — vi1] = % for all i. Before stating the result we
define the monotone sequence cone Sg = {v e RF:
v1 <vg <... < wp}. We have the following result

Lemma 3.2. Let v be a vector as described above,
and let T1,...,Ty41 be a disjoint partition of [p] such
that v is affine on each T; with sign of the slope
on T; equal to s;. Then Txy C (_SlslTTll) X ... X

(- 5€+1S|T1+1\)

We will now use Lemma 3.2 to derive an upper bound
of the mean width wq(7k,v). Before we do so let us
first introduce a closely related concept to the mean
width of a cone — the statistical dimension.

Definition 3.3 (Statistical Dimension). For a given
cone C define the statistical dimension as:

8(C):=E[( sup v'E)?],

vel,|lv][2<1

where &€ ~ N(0,1

) is a standard Gaussian vector.

Simple properties of the statistical dimension include
5(61) < 5(62) for Cl - CQ, and 5(C1 X Cg) = 5(C1) +
d(C2). For proofs of these statements we refer the
reader to Amelunxen et al. [2014]. Take a vector v
which consists of £+ 1 affine functions with slopes i%
as in Lemma 3.2. It follows that the statistical dimen-
sion

{41

Z 5(=3:S/r,)

é+1 £+1

—25 T <21°g e|Til)

< (4 +1) 10g(6p/(€ +1)).

7—Kv

The second bound comes from a known result on
the statistical dimension of the monotone cone [see
Amelunxen et al., 2014, e.g.], while the last bound is
due to Jensen’s inequality. Since by Cauchy-Schwartz
§(Tr~v) = wi(Tkv), we conclude an inequality on the
local mean width:

w1 (Ti.v) < /(04 1)log(ep/ (¢ +1)).

(3.1)

Using Lemmas 3.1 and the bound in the preceding dis-
play, we arrive at the following Corollary of Corollary
2.4.

Corollary 3.4 (Lipschitz Regression Adaptive and
Non-Adaptive Rates). Suppose that 3* satisfies |5 —

* < % for a fixed constant L. Let n > Lp/?log p.
Then conditionally on the error term with probability
at least .99 we have

[log(ep) L]'/*p!/

* -~ a
18" = Bl2 < s (1+0)+—=.

Vn
Furthermore if 3* consists of ¢ affine functions with
slopes :I:% as in Lemma 3.2, we have the following
adaptive rate

(3.2)

£log ep/ﬂ S
\f

with probability at least .99 given that n 2> ¢logep/?.

18* = Bll2 <

Corollary 3.4 makes it apparent that Lipschitz regres-
sion works in two major regimes in the high dimen-
sional setting when p > n. In the first regime, if one
has a function which consists of £ affine pieces of slopes
precisely equal to +% the rate is nearly parametric;
while in the second regime Lipschitz regression works
as long as n > Lp'/?logp. Importantly, the bound
(3.2) cannot be derived using results from previous
works such as [Oymak et al., 2013], since it requires
evaluation of a tangent cone which is not centered at
the true value B*. Finally we remark that it may be
possible to remove the log p factor from (3.2) via an ap-
plication of Theorem 2.5. Since this requires a delicate
calculation of the mean width we defer this improve-
ment for future work.

3.2 Monotone Regression

Monotone regression uses the set of vectors K := S; ,
where the set of monotone sequences Sg was defined in
the previous section. The monotone constraint com-
bined with the least squares loss function produce a
quadratic program which can be implemented via in-
terior point methods. Additionally, monotone regres-
sion can be implemented efficiently by using projected
gradient descent. This is so since at each step the
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projection boils down to running isotonic regression,
which can be done by the fast pool adjacent violators
algorithm (PAVA) [Mair et al., 2009].

Below we give a Corollary of Corollary 2.4.

Corollary 3.5 (Constant Pieces Adaptive Rate).
Suppose that the vector 8* € K consists of £ monotone
constant pieces. Then we have the following bound

= Llogep/t o
*_ < 228 L 9
18" = Bll2 < " o+ g

This is the same rate as the nearly parametric rate in
Lipschitz sequences from the previous section, however
it is achieved at different type of vectors 3*. Similar
adaptive to the number of constant pieces of B* phe-
nomenon has been observed in the Gaussian sequence
setting where the behavior of isotonic regression has
been well studied [Bellec et al., 2018, Chatterjee et al.,
2015]. Next, to obtain a sharp bound in the setting
where 8* need not consist of constant pieces, we will
derive a Corollary of Theorem 2.5.

Corollary 3.6 (General Non-Adaptive Rate). Sup-
pose that n > (8, — B1)p'/? with 8* € K. Then with
probability at least .99 we have

- (Bn - ﬂl)l/gpl/ﬁ 2 g
* __ < \Mm — F1) - P 2/3 =
H/B 6”2 ~ nl/3 g + \/ﬁ

The bound in the preceding display resembles closely
the one we obtained in (3.2). Even when p > n the
monotone constraint helps and one can obtain precise
estimate provided that n > (8, — f1)p'/2.

3.3 Convex Regression

Suppose the parameter 8* satisfies 5 = f( Z%) for i €
[p], where f is a convex function. Equivalently one can
express this constraint as 3] — 37, < 87, — 87 for all
1€{2,...,p—1}. Let the set K be

K:={BeRP:8;—Bi—1 <Bix1—Bi,i€{2,...

It is simple to check that K is indeed a convex set, and
hence (2.1) has efficient implementation. We first give
a Corollary of Corollary 2.4.

Corollary 3.7 (Affine Pieces Adaptive Rate). Sup-
pose that the vector 8* € K consists of ¢ affine pieces.
Then we have the following bound

~ Llogep/t o
*_ < 22T i

Finally we provide a Corollary to Theorem 2.5 which
discusses general convex functions.

,p—1}}.

Corollary 3.8 (General Non-Adaptive Rate). Let
n > ((max B; — min ;) + 1)*/2p/4. Then with proba-
bility at least .99 we have

BN o4/5 ((max ; —min ;) + 1 1/5,1/10
18— Bl 5 TG ) )

1
g ng.
n

It follows that convex regression with equispaced de-
sign can be consistent even when p is of the order of
n?. This contrasts the two previous examples, where

p could be of the order of n2.

4 NUMERICAL EXPERIMENTS

In this section we present numerical evidence in sup-
port of our theoretical findings. We consider six dif-
ferent scenarios of B* two per each example — one
adaptive and one general B*. Specifically, in the
Lipschitz example we take 8* as ] = fadapt(%) or

ﬁ: = fnonadapt ( é) where

fadapt(z) = 21(0 <z < §)

2 1 2 2
Z_ 1(= < )—-1(=<z<1
sin(10x)

fnonadapt(x) == T

Similarly for monotone regression we take,

fadapt(z) = 213 <2< 3)+1(2 <2 <),

fnonadapt (1’) =,

and for convex regression we take

fadapt(x) =, fnonadapt(x) = $2'
The noise is g; ~ N (0,1). We plot the examples of the
parameters B* along with typical estimates in Figs 2
and 3. Additional numerical simulations which verify
our results can be found in the supplementary mate-
rial.

5 DISCUSSION

In this manuscript we considered Gaussian linear re-
gression under convex constraints. We gave two types
of general results — one under the presence of tan-
gent cone structure and one without the need of such
structure. We analyzed three examples where the vec-
tor B* is generated by an underlying function whose
shape is constrained by the set K. The examples we
considered, showed that Lipschitz, monotone and con-
vex functions may be compressed to a low dimensional
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Figure 2: Three typical examples of signals 8* (in blue
solid line) which have “small” tangent cone structure
with their corresponding estimates ,3 (in red dashed
line). The dimension p = 900, the samples n = 100,
and we have linearly interpolated the 8* and B val-
ues. For Lipschitz regression, we have chosen a piece-
wise affine function with a fixed and known slope. For
monotone and convex regression we used a piecewise
constant and a linear function respectively.

.1

(a) Lipschitz Regression

.1

(b) Monotone Regression

[0.1]

(c) Convex Regression

Figure 3: Three examples of signals 8* which do not
have a “small” tangent cone with their corresponding
estimates 8. The dimension p = 900, the samples
n = 100, and we have linearly interpolated the 3*
and (3 values. We see that in comparison to Fig 2 the
estimates B are not as close to 8* and appear more
jagged. Convex regression seems to give a closer fit
as compared to the Lipschitz and monotone regres-
sions. This corroborates our finding that convex re-
gression with equispaced design has a faster rate of
convergence.
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space with a Gaussian matrix and then consistently re-
covered.

While our results are derived in a noisy setting, it is not
hard to see that in the noiseless setting exact recovery
is possible for vectors 3* with tangent cone structure
as long as n > w?(Tx g+). We leave for future work
the question of whether exact recovery is possible for
vectors lacking tangent cone structure. The conjecture
is that exact recovery is impossible, but the same rates
as we derived in the noisy setting continue to hold.
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