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A Proofs

A.1 Proof of Theorem 1 (Sufficient number
of samples)

Lemmas 1, 2, 3 together with Lemma 4 give the re-
quired number of samples for exact structure recovery
when observations from a hidden model are given. To
analyze the error event we use the "Two Trees Lemma”
of Bresler and Karzand [75, Lemmas 10.1, 10.2]. For
two different spanning trees on same set of nodes. In-
formally, if two maximum spanning trees T, T′ have a
pair of nodes connected in a different way then there
exist at least one edge in ET which does not exist in
ET′ and vice versa.

Lemma 1. Let f = (w, w̄) be an edge such that
f ∈ T and f /∈ TCL

† . Then there exists an edge
g ∈ TCL

† and g /∈ T such that f ∈ pathT (u, ū) and
g ∈ pathTCL

†
(w, w̄) and the following holds under the

error event T 6= TCL
† :( n†∑

i=1

Z
(i)
f,u,ū

)( n†∑
i=1

M
(i)
f,u,ū

)
< 0, (35)

where Zf,u,ū = YwYw̄ − YuYū and Mf,u,ū = YwYw̄ +
YuYū.

Proof. Using the same argument as the noiseless
case [75, Lemmas 9.6, 9.7] we see that

∣∣∣µ̂†f ∣∣∣ ≤ ∣∣µ̂†g∣∣
implies

0 ≥
∣∣∣µ̂†f ∣∣∣2 − ∣∣µ̂†g∣∣2

=
(
µ̂†f − µ̂

†
g

)(
µ̂†f + µ̂†g

)
=

1

n2
†

( n†∑
i=1

N (i)
w X(i)

w N
(i)
w̄ X

(i)
w̄ −N (i)

u X(i)
u N

(i)
ū X

(i)
ū

)

×

( n†∑
i=1

N (i)
w X(i)

w N
(i)
w̄ X

(i)
w̄ +N (i)

w X(i)
u N

(i)
ū X

(i)
ū

)

=
1

n2
†

( n†∑
i=1

Z
(i)
f,u,ū

)( n†∑
i=1

M
(i)
f,u,ū

)
. (36)

Notice that the random variables Z(i)
f,u,ū, M

(i)
f,u,ū are

functions of observations of the observable variables
(noisy observations). These differ from the corre-
sponding terms in the noiseless case and require a new
analysis.

In Lemmas 2, 3, we derive two concentration of mea-
sure inequalities for the variables Z(i)

f,u,ū and M
(i)
f,u,ū.

In fact, we have that the event EZ in (28) as

EZ ,
⋂

(w,w̄)∈E,u,ū∈V

E
(w,w̄),u,ū
Z , (37)

and

E
(w,w̄),u,ū
Z ,

{∣∣∣∣∣ 1

n†

n†∑
i=1

Z
(i)
e,u,ū − E [Ze,u,ū]

∣∣∣∣∣
≤ max

{
8ε2†, 4ε†

√
1− µ†A

}}
, (38)

happens with probability at least 1− δ′

2 and the event
EM , which is defined as

EM ,
⋂

(w,w̄)∈E,u,ū∈V

E
(w,w̄),u,ū
M , (39)

and

E
(w,w̄),u,ū
M ,

{∣∣∣∣∣ 1

n†

n†∑
i=1

M
(i)
e,u,ū − E [Me,u,ū]

∣∣∣∣∣
≤ max

{
8ε2†, 4ε†

√
1 + µ†A

}}
. (40)

happens with probability at least 1− δ′′

2 . The thresh-
old variable ε† is a decreasing function of n†, both
ε†, µA, which are defined below. Finally, we apply
union bound to guarantee that the event EZ∪EM hap-
pens with probability at least 1 − δ, where δ′

2 + δ′′

2 ≤
2 max{ δ

′

2 ,
δ′′

2 } , δ. Then, we can apply the union
bound over all pairs w, w̄, u, ū in Lemmas 2 and 3 and
finally for the events EZ and EM .
Lemma 2. For all pairs of vertices u, ū ∈ V and edges
e = (w, w̄) in the path pathT (u, ū) from u to ū, given
n† samples Z(1)

e,u,ū, Z
(2)
e,u,ū, ..., Z

(n)
e,u,ū of Ze,u,ū = YwYw̄−

YuYū we have

P

(∣∣∣∣∣
n†∑
i=1

Z
(i)
e,u,ū − n†E [Ze,u,ū]

∣∣∣∣∣
≤ n†max

{
8ε2†, 4ε†

√
1− µ†A

})
≥ 1− δ

2
,

where ε† =
√

2/n† log (2p2/δ) and A =
pathT (u, ū) \ {e}.

Proof. The proof is based on Bernstein’s inequal-
ity [78]. Expanding the definition of Ze,u,ū,

Ze,u,ū = XwNwXw̄Nw̄ −NuXuNūXū (41)
= NwXwNw̄Xw̄

× (1−NwXwNw̄Xw̄NuXuNūXū) . (42)
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Then

E [Ze,u,ū] = (1− 2q)
2 E [XwXw̄ −XuXū]

= (1− 2q)
2
µe (1− µA) (43)

and

Var (Ze,u,ū)

= E
[
(Ze,u,ū)

2
]
− E [(Ze,u,ū)]

2

= E
[
(XwNwXw̄Nw̄ −NūXuNūXū)

2
]

−
[
(1− 2q)

2 E [XwXw̄ −XuXū]
]2

= E [1 + 1− 2XwNwXw̄Nw̄NuXuNūXū]

− (1− 2q)
4 E [XwXw̄ −XuXū]

2

= 2− 2E [XwNwXw̄Nw̄NuXuNūXū]

− (1− 2q)
4 E [XwXw̄ −XuXū]

2

= 2− 2 (1− 2q)
4 E [XwXw̄XuXū]

− (1− 2q)
4 E [XwXw̄ −XuXū]

2

= 2− 2 (1− 2q)
4
µA − (1− 2q)

4
(µe (1− µA))

2

= 2− (1− 2q)
4
[
2µA + µ2

e (1− µA)
2
]
. (44)

Using the expressions for the mean and the variance,
we apply Bernstein’s inequality [78] for the noisy set-
ting: for all i ∈ [n†] we have

∣∣∣Z(i)
e,u,ū − E [Ze,u,ū]

∣∣∣ ≤ M

almost surely, that is, for any t > 0

P

[∣∣∣∣∣
n†∑
i=1

Z
(i)
e,u,ū − n†E [Ze,u,ū]

∣∣∣∣∣ ≥ t
]

≤ 2 exp

(
− t2

2n†Var (Ze,u,ū) + 2
3Mt

)
(45)

P

[∣∣∣∣∣
n†∑
i=1

Z
(i)
e,u,ū − n†E [Ze,u,ū]

∣∣∣∣∣ ≤ t
]

≥ 1− 2 exp

(
− t2

2n†Var (Ze,u,ū) + 2
3Mt

)
. (46)

Set

δ/2 = 2 exp

(
− t2

2n†Var (Ze,u,ū) + 2
3Mt

)
, (47)

then

log
4

δ
=

t2

2n†Var (Ze,u,ū) + 2
3Mt

. (48)

By solving with respect to t, we have

t1,2 =
2
3M log 4

δ

2

±
√(

2
3M log 4

δ

)2
+ 8n†Var (Ze,u,ū) log 4

δ

2

=
1

3
M log

4

δ

±

√(
1

3
M log

4

δ

)2

+ 2n†Var (Ze,u,ū) log
4

δ
.

(49)

Since t > 0, we have

t =
1

3
M log

4

δ

+

√(
1

3
M log

4

δ

)2

+ 2n†Var (Ze,u,ū) log
4

δ
. (50)

Since M = 4,

t =
4

3
log

4

δ

+

√(
4

3
log

4

δ

)2

+ 2n†Var (Ze,u,ū) log
4

δ
. (51)

This makes the probability of the union of events

⋃
u,ū,w,w̄:(w,w̄)∈pathT(u,ū)

{∣∣∣∣∣
n†∑
i=1

Z
(i)
e,u,ū − n†E [Ze,u,ū]

∣∣∣∣∣ ≥ t
}

to be at most δ
2p3 , then the union bound gives proba-

bility at most δ
2 . Also,

Var (Ze,u,ū) = 2− (1− 2q)
4
[
2µA + µ2

e (1− µA)
2
]

= 2− (1− 2q)
4

2µA

− (1− 2q)
4
µ2
e (1− µA)

2

≤ 2− (1− 2q)
4

2µA + 0

= 2
(

1− (1− 2q)
4
µA

)
= 2

(
1− µ†A

)
. (52)
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From (50) and (52)

t =
4

3
log

4p3

δ

+

√(
4

3
log

4p3

δ

)2

+ 4n†

(
1− µ†A

)
log

4p3

δ

≤ 8

3
log

4p3

δ
+

√
4n†

(
1− µ†A

)
log

4p3

δ
, and

t = n†

(
4

3n†
log

4p3

δ

+

√(
4

3n†
log

4p3

δ

)2

+
4

n†

(
1− µ†A

)
log

4p3

δ

)

≤ n†

(
8

3n†
log

4p3

δ
+

√
4

n†

(
1− µ†A

)
log

4p3

δ

)
. (53)

Define ε† =
√

log (2p2/δ) 2/n† (as following the defini-
ton by [28]), then we have

t ≤ n†
(

4ε2† + 2ε†

√
1− µ†A

)
≤ n†max

{
8ε2†, 4ε†

√
1− µ†A

}
. (54)

This completes the proof.

Lemma 3 gives the concentration of measure bound for
the event EM defined in (39).

Lemma 3. For all pairs of vertices u, ū ∈ V and
edges e = (w, w̄) in the path pathT (u, ū) from u to ū,
given n† samples M (1)

e,u,ū,M
(2)
e,u,ū, ...,M

(n)
e,u,ū of Me,u,ū =

YwYw̄ + YuYū, we have

P

(∣∣∣∣∣
n†∑
i=1

M
(i)
e,u,ū − n†E [Me,u,ū]

∣∣∣∣∣
≤ n†max

{
8ε2†, 4ε†

√
1 + µ†A

})
≥ 1− δ

2
,

ε† ,
√

2/n† log (2p2/δ) (55)

and

A , pathT (u, ū) \ {e} . (56)

.

Proof.

E [Me,u,ū] = (1− 2q)
2 E [XwXw̄ +XuXū]

= (1− 2q)
2
µe (1 + µA) . (57)

Var (Me,u,ū)

= E
[
(Me,u,ū)

2
]
− E [(Me,u,ū)]

2

= E
[
(XwNwXw̄Nw̄ +NuXuNūXū)

2
]

−
[
(1− 2q)

2 E [XwXw̄ +XuXū]
]2

= E [1 + 1 + 2XwNwXw̄Nw̄NuXuNūXū]

− (1− 2q)
4 E [XwXw̄ +XuXū]

2

= 2 + 2E [XwNwXw̄Nw̄NuXuNūXū]

− (1− 2q)
4 E [XwXw̄ +XuXū]

2

= 2 + 2 (1− 2q)
4 E [XwXw̄XuXū]

− (1− 2q)
4 E [XwXw̄ +XuXū]

2

= 2 + 2 (1− 2q)
4
µA − (1− 2q)

4
(µe (1 + µA))

2

= 2 + (1− 2q)
4
[
2µA − µ2

e (1 + µA)
2
]
. (58)

By applying Bernstein’s inequality, for any t > 0

P

[∣∣∣∣∣
n†∑
i=1

M
(i)
e,u,ū − n†E [Me,u,ū]

∣∣∣∣∣ ≥ t
]

≤ 2 exp

(
− t2

2n†Var (Me,u,ū) + 2
3Mt

)
,

P

[∣∣∣∣∣
n†∑
i=1

M
(i)
e,u,ū − n†E [Me,u,ū]

∣∣∣∣∣ ≤ t
]

≥ 1− 2 exp

(
− t2

2n†Var (Me,u,ū) + 2
3Mt

)
. (59)

In the same way as done previously we get

t ≤n†

(
8

3n†
log

4p3

δ
+

√
2

n†
Var (Me,u,ū) log

4p3

δ

)
(60)

and

Var (Me,u,ū) =2 + (1− 2q)
4
[
2µA − µ2

e (1 + µA)
2
]

≤2 + (1− 2q)
4

2µA

=2
(

1 + µ†A

)
. (61)

By setting ε† =
√

log (2p2/δ) 2/n†, we derive the fol-
lowing bound on t

t ≤ n†
(

4ε2† + 2ε†

√
1 + µ†A

)
≤ n†max

{
8ε2†, 4ε†

√
1 + µ†A

}
. (62)

In Lemma 4, we derive the set of strong edges for the
hidden model. There is a threshold τ†

(1−2q)2 ≥ τ as in
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the case where there was no noise [75] and the thresh-
old was τ . Also we find a lower bound for the necessary
number of samples for exact structure recovery. In fact
we have n† ≥ n, as expected. By setting q = 0 (then
the probability to flip a bit equals to zero) we derive
the exact expressions for the threshold τ and the suf-
ficient number of samples defined in [75]. Under the
event Estrong

† (ε†) only the strong edges are guaranteed
to exist in the estimated structure TCL

† .

Lemma 4. Define the set of strong edges:{
(i, j) ∈ ET : |tanh θij | ≥ τ†

(1−2q)2

}
. Under the

events defined in Lemmas 2 and 3 all the strong edges
will be recovered from the Chow-Liu algorithm with
probability at least 1− δ. That is,

P
[
Estrong
† (ε†)

]
≥ 1− δ = 1− 2p2 exp

(
−
n†ε

2
†

2

)
.

Proof.

Lemma 1 gives( n†∑
i=1

Z
(i)
f,u,ū

)( n†∑
i=1

M
(i)
f,u,ū

)
< 0 =⇒

n†∑
i=1

Z
(i)
f,u,ū ≤ 0 or

n†∑
i=1

M
(i)
f,u,ū ≤ 0 =⇒

∣∣∣∣∣
n†∑
i=1

Z
(i)
f,u,ū − n†E

[
Z

(i)
f,u,ū

]∣∣∣∣∣ ≥ n†E [Z(i)
f,u,ū

]
or∣∣∣∣∣

n†∑
i=1

Y
(i)
f,u,ū − n†E

[
Y

(i)
f,u,ū

]∣∣∣∣∣ ≥ n†E [M (i)
f,u,ū

]

Lemmas 2 and 3
=⇒

(43),(57)

(1− 2q)
2
µf (1− µA) ≤ max

{
8ε2†, 4ε†

√
1− µ†A

}
or

(1− 2q)
2
µf (1 + µA) ≤ max

{
8ε2†, 4ε†

√
1 + µ†A

}
which implies that

∣∣∣µ†f ∣∣∣ ≤ (1− µA)
−1

max

{
8ε2†, 4ε†

√
1− µ†A

}
or∣∣∣µ†f ∣∣∣ ≤ (1 + µA)

−1
max

{
8ε2†, 4ε†

√
1 + µ†A

}

and the lasts yields to∣∣∣µ†f ∣∣∣ ≤ max

{
8ε2†

(1− µA)
,

8ε2†
(1 + µA)

,

4ε†

√
1− µ†A

(1− µA)
,

4ε†

√
1 + µ†A

(1 + µA)

}
=⇒

∣∣∣µ†f ∣∣∣ ≤ max

 8ε2†
(1− µA)

,
4ε†

√
1− µ†A

(1− µA)

 =⇒

∣∣∣µ†f ∣∣∣ ≤ 4ε†

√
1− µ†A

(1− µA)
. (63)

We get the last inequality for non trivial values of the
bound 8ε2†

(1−µ†
A)
≤ 1 and by using the following bound

8ε2†
(1− µA)

≤
16ε2†

(1− µA)
≤ 4ε†√

1− µA

=
4ε†
√

1− µA
(1− µA)

≤
4ε†

√
1− µ†A

(1− µA)
.

Finally, the function f(µA) =
4ε†
√

1−µ†
A

(1−µA) =

4ε†
√

1−(1−2q)2µA
(1−µA) is increasing with respect to µA (for

all µA ≤ 1) and µA ≤ tanhβ < 1, thus we have

∣∣∣µ†f ∣∣∣ ≤ 4ε†

√
1− µ†A

(1− µA)
(64)

≤
4ε†

√
1− (1− 2q)

4
tanhβ

(1− tanhβ)
, τ †. (65)

Notice that τ † > τ = 4ε√
1−tanh β

when n = n† (or ε =

ε†).

The weakest edge should satisfy the following property
to guarantee the correct recovery of the tree under the
event Estrong

† (ε†)∣∣∣µ†f ∣∣∣ ≥ τ † =⇒

(1− 2q)
2

tanhα ≥
4ε†

√
1− (1− 2q)

4
tanhβ

(1− tanhβ)
=⇒

tanhα ≥
4ε†

√
1− (1− 2q)

4
tanhβ

(1− 2q)
2

(1− tanhβ)
. (66)

When there is no noise [75, Lemma 9.8], we can guar-
antee exact recover with high probability under the
event Estrong (ε) and the assumption that the weakest
edge satisfies the inequality

tanhα ≥ 4ε√
1− tanhβ

. (67)
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Notice that (67) can be obtained by (66) when q = 0
and n = n†. When q > 0 and n = n† it is clear
that the set of trees which can be recovered from noisy
observations is a subset of the set of trees that can
be recovered from the original observations. Also, we
have

ε ,

√
2 log (2p2/δ)

n
=⇒ n =

2

ε2
log
(
2p2/δ

)
and

ε† ,

√
2 log (2p2/δ)

n
=⇒ n† =

2

ε2†
log
(
2p2/δ

)
. (68)

By combining (66) with (68) we found the number of
samples that we need to recover the tree with probality
at 1− δ,

n† >
32
[
1− (1− 2q)

4
tanhβ

]
(1− tanhβ)

2
(1− 2q)

4
tanh2 α

log
2p2

δ
. (69)

On the other hand, when there is no noise [75] we need

n >
32

tanh2 α (1− tanhβ)
log

2p2

δ
. (70)

The last two inequalities give us how the number of
samples scales as a function of the probability q

n†
n
≥ 1− (1− 2q)

4
tanhβ

(1− tanhβ) (1− 2q)
4

=
1

2

[
e2β
(

(1− 2q)
−4 − 1

)
+ 1 + (1− 2q)

−4
]
. (71)

From the above we can distinguish specific cases for
values of q. For instance when q → 1

2

− then we need
n† = ∞ for exact structure recovery, when q → 0
then we need at least n number of samples for exact
structure recovery.

A.2 Proof of Theorem 2 (Necessary number
of samples)

In this section, we use a strong data processing in-
equality together with a family of models (considered
also by Bresler and Karzand [75]) to derive the proof of
Theorem 2. Specifically, we combine the proofs of The-
orem 3.2 by Bresler and Karzand [75, Lemma 8.1] and
a strong data processing inequality result by Polyan-
skiy and Wu [29]. First, we consider the following
variation of Fano’s inequality [76].
Lemma 5. [76, Corollary 2.6]: Assume that Θ is a
family of M + 1 distributions θ0, θ1, . . . , θM such that
M ≥ 2. Let Pθi be the distribution of the variable X
under the model θi, if

1

M + 1

M∑
i=1

DKL (Pθi ||Pθ0) ≤ γ logM, (72)

for any γ ∈ (0, 1
8 ), then for the probability of the error

pe the following inequality holds: pe ≥ log(M+1)−1
log(M) −

γ. We restrict the values of γ to (0, 1
8 ) because we

are interested in the case where pe ≥ 1
2 , in general

the above holds for all values of γ ∈ (0, 1), see [76,
Corollary 2.6].

At this point we consider Bresler and Karzand’s con-
struction [75, section 8.1] ofM+1 different Ising model
distributions {Pθi : i ∈ {0, . . . ,M}}. This family of
structured distributions is chosen such that the recov-
ery task is sufficiently hard. First, we define Pθ0 to be
an Ising model distribution with underlying structure
a chain with p nodes and parameters θ0

j,j+1 = α when
j is odd and θ0

j,j+1 = β when j is even. The rest of
family is constructed as follows: the elements of each
θi are equal to the elements of θ0 apart from two ele-
ments θii,i+1 = 0 and θii,i+2 = α for each odd value of
i. There are (p+ 1)/2 distributions in the constructed
family. Bresler and Karzand evaluate the upper bound
for the quantity SKL(Pθ0 ||Pθi) for all i ∈ [M ] under
this family of distributions and we have [75, Section
8.1]:

SKL(Pθ0 ||Pθi)
= 2α (tanh(α)− tanh(α) tanh(β))

≤ 4α tanh(α)e−2β . (73)

For each distribution Pθi and i ∈ {0, . . . ,M} we con-
sider the distribution of the noisy variable in the hid-
den model P †θi , PY|X ◦ Pθi and we would like to
find an upper bound for the quantities SKL(P †θ0 ||P

†
θi).

To do this we a use a strong data processing inequal-
ity result [29] for any binary symmetric channel. The
input random variable X is considered to have cor-
related elements while the noise variables Ni are i.i.d
Rademacher(q) which is equivalent to the hidden model
that we consider in this paper. In fact we have the fol-
lowing bound

ηKL ≤ 1− (4q(1− q))p. (74)

The quantity ηKL is defined as:

ηKL, sup
Q

sup
P :0<DKL(P ||Q)<∞

DKL
(
PY|X ◦ P ||PY|X ◦Q

)
DKL (P ||Q)

,

(75)

where PY|X is the distribution of the BSC and P,Q
are any distributions of the input variable X. Since
(75) has the supremum over all possible distributions
it covers any pair of distributions in the desired family
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{Pθj : j ∈ {0, . . . ,M}} and we have

DKL(P †θ0 ||P
†
θi)

DKL(Pθ0 ||Pθi)
(74),(75)
≤ 1− (4q(1− q))p =⇒ (76)

SKL(P †θ0 ||P
†
θi) ≤ [1− (4q(1− q))p]SKL(Pθ0 ||Pθi).

(77)

(73) and (77) give

SKL(P †θ0 ||P
†
θi) ≤ [1− (4q(1− q))p]4α2e−2β . (78)

Finally, from (78) and Lemma 5 we derive the bound
of Theorem 2.

A.3 Proof of Theorem 3, (Sufficient number
of samples for a noisy Gaussian model)

Let X = (X1, X2, . . . , Xp) be a Gaussian random vec-
tor with distribution N (0,Σ). We assume that the
Markov property holds such that the underlying graph
is a tree T = (V, E). Also assumption 2 holds;

Var (Xi) = E[X2
i ] = 1, ∀i ∈ V

0 < ρm ≤ |E[XiXj ]| ≤ ρM < 1, ∀(i, j) ∈ E .

We consider i.i.d. Gaussian noise N ∼ N (0, σ2I).
The noisy output variables of the hidden model are
Ỹ = X +N ∼ N (0,Σ + σ2I). Then

ρ†i,j ,
E[ỸiỸj ]√

E[(Ỹi)2]E[(Ỹj)2]
=

E[ỸiỸj ]
√

1 + σ2
2 (79)

= E

[
Ỹi√

1 + σ2

Ỹj√
1 + σ2

]
, ∀i, j ∈ V. (80)

The random variables Yi , Ỹi/
√

1 + σ2 are normalized
Gaussian with variance equal to 1. Instead of using Ỹ,
we use the normalized variable Y with distribution

Y ∼ N
(

0,
Σ + σ2I
1 + σ2

)
. (81)

Then

Var (Yi) = E[Y 2
i ] = 1, ∀i ∈ V, (82)

ρm
1 + σ2

≤ |E[YiYj ]| =
∣∣∣∣E[XiXj ]

1 + σ2

∣∣∣∣
≤ ρM

1 + σ2
, ∀(i, j) ∈ E . (83)

(83) shows that noise makes the edges "weaker", since
1+σ2 > 1 and for σ →∞ we have |E[YiYj ]| → 0 which
makes the structure learning task impossible.

The following Lemma provides upper bounds on the
probabilities of the sufficient events.

Lemma 6. Define

f
(1)
u,ũ,e

(
Y1:n

)
,

n∑
i=1

Z
(i)
f,u,ū

=

n∑
i=1

Y (i)
w Y

(i)
w̃ − Y (i)

u Y
(i)
ũ , (84)

f
(2)
u,ũ,e

(
Y1:n

)
,

n∑
i=1

Z̃
(i)
f,u,ũ

=

n∑
i=1

Y (i)
w Y

(i)
w̃ + Y (i)

u Y
(i)
ũ . (85)

Then

P

[ ⋂
u,ũ,e

{∣∣∣f (1)
u,ũ,e

(
Y1:n

)
− E[f

(1)
u,ũ,e

(
Y1:n

)
]
∣∣∣

≤ R
√

Var(f
(1)
u,ũ,e (Y1:n)) log2

(
p3e2

δ

)}]
≥ 1− δ

2
.

and

P

[ ⋂
u,ũ,e

{∣∣∣f (2)
u,ũ,e

(
Y1:n

)
− E[f

(2)
u,ũ,e

(
Y1:n

)
]
∣∣∣

≤ R
√

Var(f
(2)
u,ũ,e (Y1:n)) log2

(
p3e2

δ

)}]
≥ 1− δ

2
.

and R ∈ R+.

Proof. We apply a concentration of measure Theorem
by Schudy and Sviridenko [77, Theorem 1.10];

P
[∣∣f (Y1:n

)
− E[f

(
Y1:n

)∣∣ ≥ λ]
≤ e2e

−
(

λ

R
√

Var(f(Y1:n))

)1/q

, ∀λ > 0, (86)

where f
(
Y1:n

)
= f (Y1, . . . , Yn) is a q degree poly-

nomial and the random variables Y1, . . . , Yn are dis-
tributed according to a log-concave measure in Rn
and they are not necessarily independent. In our case
f (Y) =

∑n
i=1 Z

(i)
f,u,ū or f (Y) =

∑n
i=1 Z̃

(i)
f,u,ũ and we

have q = 2. Then we choose the probability to be at
least δ

2p(p2)
, since we apply union bound for all pairs of

nodes u, ũ and edges e = (w, w̃) ∈ pathT(u, ũ)

δ

2p
(
p
2

) = e2e
−
(

λ

R
√

Var(f(Y1:n))

)1/q

=⇒

λ = R
√

Var (f (Y)) log2

(
2pe2

(
p
2

)
δ

)

< R
√

Var (f (Y)) log2

(
e2p3

δ

)
. (87)
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Then we have to calculate the Var(f (Y)) for both
cases, when f (Y) =

∑n
i=1 Z

(i)
f,u,ū and f (Y) =∑n

i=1 Z̃
(i)
f,u,ũ. When f (Y) =

∑n
i=1 Z

(i)
f,u,ū, by using

Isserlis’ theorem [79] we can express the higher order
moments in terms of the covariates:

E[Y 2
i Y

2
j ] = E[Y 2

i ]E[Y 2
j ] + 2E2[YiYj ], (88)

E[YiYĩYjYj̃ ] = E[YiYĩ]E[YjXj̃ ] + E[YiYj ]E[YĩYj̃ ]

+ E[YiYj̃ ]E[YĩYj ], (89)

and we have

Var
(
f

(1)
u,ũ,e

)
i.i.d.
=

n∑
i=1

Var
(
Z

(i)
f,u,ū

)
= nVar (Zf,u,ũ)

= n
(
E[(YwYw̃ − YuYũ)

2
]− E2[YwYw̃ − YuYũ]

)
= n

(
E[Y 2

wY
2
w̃ ] + E[Y 2

u Y
2
ũ ]− 2E[YwYw̃YuYũ]

− E2[YwYw̃]− E2[YuYũ] + 2E[YwYw̃]E[YuYũ]

)
= n

(
2 + E2[YwYw̃] + E2[YuYũ]

− 2 (E[YwYu]E[Yw̃Yũ] + E[YwYũ]E[Yw̃Yu])
)

(90)

≤ n
(
6 + E2[YwYw̃] + E2[YuYũ]

)
= n

(
6 +

1

(1 + σ2)2
E2[XwXw̃] +

1

(1 + σ2)2
E2[XuXũ]

)

= 6n+
n

(1 + σ2)2
E2[XuXũ]

 ∏
e∈path(w,w̃)\(u,ũ)

µ2
e + 1

 ,

where (90) comes from (82), (88), (89) and the last
comes from the correlation coefficient decay property.

In a similar way,

Var
(
f

(2)
u,ũ,e

)
i.i.d.
=

n∑
i=1

Var
(
Z̃

(i)
f,u,ũ

)
= nVar

(
Z̃f,u,ũ

)
= n

(
E[(YwYw̃ + YuYũ)

2
]− E2[YwYw̃ + YuYũ]

)
= n(E[Y 2

wY
2
w̃ ] + E[Y 2

u Y
2
ũ ] + 2E[YwYw̃YuYũ]

− E2[YwYw̃]− E2[YuYũ]− 2E[YwYw̃]E[YuYũ])

= n(2 + E2[YwYw̃] + E2[YuYũ]

+ 2 (E[YwYu]E[Yw̃Yũ] + E[YwYũ]E[Yw̃Yu]))

≤ n
(
6 + E2[YwYw̃] + E2[YuYũ]

)
= n

(
6 +

1

(1 + σ2)2
E2[XwXw̃] +

1

(1 + σ2)2
E2[XuXũ]

)

= 6n+
6

(1 + σ2)2
E2[XuXũ]

 ∏
e∈path(w,w̃)\(u,ũ)

µ2
e + 1

 ,

and we have

λ < R
√

Var (f (Y1:n)) log2

(
e2p3

δ

)
≤R
√

7n+
n

(1 + σ2)2

∏
e∈path(w,w̃)\(u,ũ)

µ2
e log2

(
e2p3

δ

)
.

Similarly to the Ising model, we start by stating the
condition for the error event; Let f = (w, w̄) be an
edge: f ∈ T and f /∈ TCL

† then ∃ g ∈ TCL
† and g /∈ T:

f ∈ pathT (u, ū) and g ∈ pathTCL
†

(w, w̄), then for the
error event we have

0 ≥
∣∣∣ρ̂†f ∣∣∣2 − ∣∣ρ̂†g∣∣2

=
(
ρ̂†f − ρ̂

†
g

)(
ρ̂†f + ρ̂†g

)
(82)
=

1

n2

(
n∑
i=1

Y (i)
w Y

(i)
w̄ − Y (i)

u Y
(i)
ū

)

×

(
n∑
i=1

Y (i)
w Y

(i)
w̄ + Y (i)

u Y
(i)
ū

)

=
1

n2

(
n∑
i=1

Z
(i)
f,u,ū

)(
n∑
i=1

Z̃
(i)
f,u,ũ

)
=⇒

n∑
i=1

Z
(i)
f,u,ū ≤ 0 or

n∑
i=1

Z̃
(i)
f,u,ũ ≤ 0 =⇒
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n∑
i=1

Z
(i)
f,u,ū − E

[
n∑
i=1

Z
(i)
f,u,ū

]∣∣∣∣∣ ≥
∣∣∣∣∣E
[

n∑
i=1

Z
(i)
f,u,ū

]∣∣∣∣∣ or∣∣∣∣∣
n∑
i=1

Z̃
(i)
f,u,ũ − E

[
n∑
i=1

Z̃
(i)
f,u,ũ

]∣∣∣∣∣ ≥
∣∣∣∣∣E
[

n∑
i=1

Z̃
(i)
f,u,ũ

]∣∣∣∣∣ (91)

From Lemma 6 with probability at least 1− δ the fol-
lowing holds

R

√
7n+

n

(1 + σ2)2

∏
e∈path(w,w̃)\(u,ũ)

µ2
e log2

(
e2p3

δ

)

≥ R
√

Var(f
(1)
u,ũ,e (Y1:n)) log2

(
e2p3

δ

)
≥

∣∣∣∣∣
n∑
i=1

Z
(i)
f,u,ū − E

[
n∑
i=1

Z
(i)
f,u,ū

]∣∣∣∣∣ ,

R

√
7n+

n

(1 + σ2)2

∏
e∈path(w,w̃)\(u,ũ)

µ2
e log2

(
e2p3

δ

)

≥ R
√

Var(f
(2)
u,ũ,e (Y1:n)) log2

(
e2p3

δ

)
≥

∣∣∣∣∣
n∑
i=1

Z̃
(i)
f,u,ũ − E

[
n∑
i=1

Z̃
(i)
f,u,ũ

]∣∣∣∣∣ . (92)

We combine (91) and (92) and we have

R

√
7n+

n

(1 + σ2)2

∏
e∈path(w,w̃)\(u,ũ)

µ2
e log2

(
e2p3

δ

)

≥

∣∣∣∣∣E
[

n∑
i=1

Z
(i)
f,u,ū

]∣∣∣∣∣
or

R

√
7n+

n

(1 + σ2)2

∏
e∈path(w,w̃)\(u,ũ)

µ2
e log2

(
e2p3

δ

)

≥

∣∣∣∣∣E
[

n∑
i=1

Z̃
(i)
f,u,ũ

]∣∣∣∣∣ =⇒

R

√
7n+

n

(1 + σ2)2

∏
e∈path(w,w̃)\(u,ũ)

µ2
e log2

(
e2p3

δ

)

≥ n

∣∣∣∣∣∣E[XuXũ]

1 + σ2

 ∏
e∈path(w,w̃)\(u,ũ)

µe − 1

∣∣∣∣∣∣
or

R

√
7n+

n

(1 + σ2)2

∏
e∈path(w,w̃)\(u,ũ)

µ2
e log2

(
e2p3

δ

)

≥ n

∣∣∣∣∣∣E[XuXũ]

1 + σ2

 ∏
e∈path(w,w̃)\(u,ũ)

µe + 1

∣∣∣∣∣∣ =⇒

R

√
n
(

7 + 1
(1+σ2)2

∏
e∈path(w,w̃)\(u,ũ) µ

2
e

)
log2

(
e2p3

δ

)
1−

∏
e∈path(w,w̃)\(u,ũ) µe

≥ n
∣∣∣∣E[XuXũ]

1 + σ2

∣∣∣∣
or

R

√
n
(

7 + 1
(1+σ2)2

∏
e∈path(w,w̃)\(u,ũ) µ

2
e

)
log2

(
e2p3

δ

)
∏
e∈path(w,w̃)\(u,ũ) µe + 1

≥ n
∣∣∣∣E[XuXũ]

1 + σ2

∣∣∣∣ . (93)

From (93) we find the sufficient condition for the weak-
est edge: for exact structure recovery we need ρm to
be greater than the following term

R(1 + σ2)

√(
7 + 1

(1+σ2)2

∏
e∈path(w,w̃)\(u,ũ) µ

2
e

)
√
n
(

1−
∏
e∈path(w,w̃)\(u,ũ) µe

)
× log2

(
e2p3

δ

)
.

The function f(x) =
R
√

(7+x) log2
(
e2p3

δ

)
√
n(1−x)

is increasing

for all x ∈ [0, 1) and
∣∣∣∏e∈path(w,w̃)\(u,ũ) µ

2
e

∣∣∣ ≤ ρM .
Thus, it is sufficient to have

ρm ≥
R
√

7(1 + σ2)2 + ρM log2
(
e2p3

δ

)
√
n (1− ρM )

and the sufficient number of samples is given by:

n ≥
R2
[
7(1 + σ2)2 + ρM

]
log4

(
e2p3

δ

)
ρ2
m (1− ρM )

2 ,

where R is a positive constant.

B Additional Experiments

We define the distance between two tree structures
T = (V, E),T′ = (V, E ′) with identical node set and
possibly different edge sets as

DT (T,T′) ,
|E4E ′|

2
, (94)

where the symbol 4 denotes the symmetric differ-
ence between two sets. Note that 0 ≤ DT (T,T′) ≤
max{|E|, |E ′|}. The definition in (94) can be used as
an alternative of (10) for evaluating the performance
of the Chow-Liu algorithm. In particular, DT (T,TCL

† )
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counts the number of incorrect edges for the estimated
structure. Similar metrics can be found in the lit-
erature. A closely related one is "false positive and
false negative rates", which has been considered by
Liu et.al [80].

Synthetic Data. To demonstrate the performance of
the algorithm experimentally, we present the decay of
the error based on the metric DT (T,TCL

† ) (Figure 2)
and the probability of the error event {T 6= TCL

† } (Fig-
ure 3), while the number of samples increases, for fixed
values of the parameters α, β, p, while the crossover
probability q varies between 0 and 1/2. Specifically,
for the plots in Figures 2 and 3, we have chosen
α = arctanh(0.25), β = arctanh(0.75), p = 100. These
results illustrate how noisy observations can signif-
icantly degrade performance unless we increase the
sample size significantly. We consider synthetic Gaus-
sian data for the plots of Figure 4. These show how the
error DT (T,TCL

† ) and the probability of the not exact
recovery {T 6= TCL

† } varies as the number of observa-
tions increases and for different values of the signal to
noise ration (SNR).

Real Data. We consider as observations the increase
(spin up) or decrease (spin down) of the closing prices
for 10 stocks. The estimated tree structure TCL is
found by applying Chow-Liu’s algorithm, Figure 5.
Noisy data are generated by flipping each observation
with probability q. Then the structure TCL

† is esti-
mated by taking into consideration (semi-synthetic)
noisy data. The error DT (TCL,TCL

† ) is plotted as
function of q in figure 5. Notice that for hidden model
structure estimates, where q ∈ (0, 1/2), we see that
small noise levels lead to a modest increase in sample
complexity for a target error probability, but as the
channel gets worse, the sample complexity explodes.

C Connections with Differential
Privacy

One way in which a hidden model can arise in in in-
ference from data released under differential privacy.
Suppose that data about individuals can be modeled
as drawn from an Ising model: the j-th sample from
the population has data X(j) drawn according to p(·)
representing p correlated features characterizing the
individual. Because of privacy concerns, the analyst
is only given access to Y(j), where each feature is
randomly flipped with probability q. The noisy data
guarantees differential privacy [81]: we can think of
this process as a form of vectorized randomized re-
sponse. More formally, the noisy samples guarantees

D
T

(T
,T

C
L
†

)

number of samples ×100

Ising Model Synthetic Data

D
T

(T
,T

C
L
†

)

number of samples ×1000

Figure 2: DT (T,TCL
† ) as a function of number of sam-

ples. The upper graph is over 1000 independent runs
and up to 104 independent samples, while the down
over 100 independent runs and up to 105 independent
samples.

ε-diffferential privacy if for all c, c′, c′′ ∈ {0, 1}p,

P (Y = c|X = c′)

P (Y = c|X = c′′)
≤ eε. (95)

For our choice of q,

P (Y = c|X = c′)

P (Y = c|X = c′′)
=

(1− q)p−`q`

(1− q)p−`′q`′

=

[
1− q
q

]`′−`
, (96)

where `, `′ is the number of different elements of the
pairs c, c′ and c, c′′ respectively, for any c, c′, c′′ ∈
{−1,+1}p. Since `, ` ∈ {1, 2, . . . , p} and q ∈ [0, 1/2],
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P
( T

C
L
†
6=

T
)

number of samples ×1000

Ising Model Synthetic Data
P
( T

C
L
†
6=

T
)

number of samples ×1000

Figure 3: Estimating the probability of the error event,
P
(

TCL
† 6= T

)
, as a function of number of samples.

The upper graph is estimated through 100 indepen-
dent runs while the right through 1000 independent
runs.

we may write

P (Y = c|X = c′)

P (Y = c|X = c′′)
≤ max

`,`′

[
1− q
q

]`′−`
=

[
1− q
q

]p
. (97)

Thus for εo = p log ((1− q)/q) we guarantee εo-local
differential privacy.

We can interpret the main result of this paper, in terms
of differential privacy, as characterizing the tradeoff
between privacy and sample complexity in inference
from data protected by differential privacy. In this
simplified mechanism, however, each individual data
sample is perturbed, which is a form of local differen-
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Figure 4: Upper: DT (T,TCL
† ) as a function of num-

ber of samples. Down: Estimating the probability of
the error event. Both simulations are through 1000
independent iterations.

tial privacy or (alternatively) input perturbation. An
interesting question would be the tradeoff in standard
differential privacy, where the algorithm releases only
the estimated tree.
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Figure 5: Upper: Tree structure estimate TCL for
the closing prices of 10 different stocks. 105 number
of samples have been considered, data have been re-
trieved from https://finance.yahoo.com. Down:
DT (TCL,TCL

† ) as a function of q for different number
of samples.
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