Appendix: Stochastic Gradient Descent with Exponential Convergence Rates of Expected Classification Errors

In this appendix, we provide missing proofs in the paper.

A Proof of Proposition 1]

We show the convergence of g to the Bayes rule g, for £ in Hj.

Proposition A. Ler L£(g) be convex with respect to g. Suppose assumption (A5) holds. A minimizer gy of L converges
to the Bayes rule g, in Hy, as A — 0.

Proof. Let {)\;}i=1,2,... be a positive decreasing sequence tending to zero in R. Let 4, j be arbitrary indices such that

Ai—X;
3_[,6 > S5 Hg||§ik from

i < j,ie, A > ;. For g € Hy, satisfying ||g||2, < [|gx, |7, by subtracting %Hg)\

L(g) + % lgll3, = L(gx,) + 3o, 13, . we get

Aj Aj
£(9) + Zllglid, > £on) + Lllon e,

This implies that if ||g||5, < |lgx, ||7, . then g is not optimal point of £y, hence, ||gx, [, > |lgx, |7, - The boundedness
of this sequence is also confirmed because g, € Hj and for VA > 0,

A A A
L£(g4) + 5llorl3e, < £(0) + S ol < L(g2) + 519413 4))

which implies an inequality ||gx |7, < ||gx||%,. Namely, {||gx, |7, }i=1,2,... is a bounded increasing sequence and has
the limit. On the other hand, {£(g,)}i=1,2,... is a decreasing sequence with the limit corresponding to £(g.). Indeed,

. Y A
since £(gx,) + 3 l9x, 12, < L£(an) + 5 g I3, . we see
)\ .
0< 2L
- 2
Moreover, from the inequality (1), £(ga,) converges to L£(gs).
We next show that the convergence of a sequence {g,, }1:1,2,...- From the strong convexity of Ly, (g), we have

(lgx, 3, = Naxl3.,.) < L(ga,) — L(gx,)-

A\ A; A
L(on) + G llgnllFe, + 5 llgn, — oxillBe, < Llon,) + 5 o, l3e, -

Using L(gx,) < L(g»,), we get

lgn, — ax 3, < llgx, 13, — Nlan 3, < 2llgellae, (g, e — llgn ll2,)-

Since, {||gx, |7, }i=1,2,... is a convergent sequence, it is also a Cauchy sequence. As a result, a sequence {gy, }i=1,2,...
is Cauchy in Hy, and has a limit point go, € Hy. It follows from the continuity of £ that £(geo) = lim; 00 £(gn,)-
Recalling lim; o, £(gx,) = £(g.) and the uniqueness of the Bayes rule g, we conclude go, = g. up to zero measure
sets. O

We now give a proof of Proposition [I]

Proof of Proposition[l]. Noting that g(x) = (g, k(x,-)),, for arbitrary function g € Hj and k(z,-) € Hy, by the
definition of kernel function, we get

lgllre = Sgglg(x)l < gllae G, )l < Rllglla- @)

Since, g, converges to g, in Hj from Proposition@, there exists A > 0 such that

m(d)
— gy, < —=2.
Thus, for arbitrary g € H,, satisfying ||g — gall,. < —";(}g), we have

19 = g+llre < Bllg = gullr < B(llg = gallay + llgx = gella,) < m(9).

Since, m(d) < |g«(X)| almost surely, we get sgn(g.(X)) = sgn(g(X)) almost surely for g € Hy, such that ||g —
Iallu < ";ng), that is, ¢ is also the Bayes rule for R. O
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B Proof of Theorem|I]

In this section, we give proofs of auxiliary statements needed for the main theorem meaning the exponential convergence
of stochastic gradient descent. We here prove convergence of expected functions obtained by stochastic gradient descent.

Proposition[3] By (L + X)-Lipschitz smoothness £, we have

(L+X)

E[CA(0 — mGrlor,20)] < EC(90)] - HELTLr(90). O 7)) + LG o1, 20l

L+ \n?
LA g9, (90, + 0%)

(L +Nnjo®
2 )

< E[LA(g0)] — 0BV LA(g0) I3, +

< E[Lr(90)] — S EIVLA9) e, + ®

where we used 7; < 1/(L 4 )) for the last inequality. On the other hand, by the strong convexity of £, we have for
Vg € Hy,

A
Lx(gt) +(VLA(9t): 9 = )3, + §||9 = gell3, < Lalg)-
Minimizing both sides with respect to g in Hj, we have
1
L(gt) — 5||V5A(gt)||3{k < Lx(9x)- “)

By combining two inequalities (3)) and (4} and subtracting £ (gy), we get

(L + \n?o?

E[Lx(gt+1)] = La(gx) < (1 = mA) (E[Lx(g¢)] = La(92)) + 5 o)
We now show the following convergence rate by induction on ¢.
1%
E — < .
[Lx(9¢)] = Lx(gx) < o (6)

For t = 1, it is clearly true from the choice of v. We suppose that the inequality (@) is true for ¢. We denote t =  + ¢
for simplicity. Then, we have that from the inequality (5) and 7, = 2/ ¢,

E[LA(gi1)] — La(gn) < (1 _ ?) v 2L +N)o?

t A2{2
_(E=Dr v 2L+ A)o?
o2 P2 A2¢2

v
S PR
t+1

where we used 2 > (£ + 1)(# — 1) and the definition of v. Thus, the inequality @) is true for all ' > 1. From the strong
convexity and Jensen’s inequality for £y, we have

(Lr(E[ge]) — La(gn)) < ~(E[Lx(g¢)] — Lx(gn))-

> o
>N

IE[ge] — gall3;, <

This finishes the proof of the proposition. O

As argued in the paper, the proof of Proposition EI is reduced to bounding ||g741 — g7, 1llcc. The follow-
ing proposition is useful for that purpose. Let ¢ (s > t € {1,...,T + 1}) be the s-th iterate depending on
(Zla RN Zt717 Zéa Zt+17 sy Zs)

Proposition B. Suppose Assumptions (A1) and (A2) hold. We consider Algorithm[I|without the averaging option and
with a decreasing learning rates 1. We assume that || g1||2, < (2m + 1/AN)MR and n; < min{1/L,1/2\}. Then, for
te{l1,...,T}, it follows that
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1. ||gi41 — !Jit-i-l”?-l;C < 6M R,
2. lgst1 = goprllre < (L= neM)llgs = gella, fors =t +1.
Proof. By the assumptions, we find that the stochastic gradient of [ in 7, is bounded as follows:
10¢U(g(x), y)k(x, )19, < MR.
Therefore, if [|g¢||,, > + MR, then
ge+1ll3e. = llge — mOl(g(Xe), Vi) k(X ) — meAgelln
< (X —neM)gellae, +mMR
< HgtHHk'

This means a generated sequence {gt}t=17.,_7T+1 is included in a closed ball centered at the origin with radius (27, +
1/A)MR as long as an initial function g; is contained in this ball. Thus, the norm of G(g:, Z;) is bounded by
2(14+ A1 )MR < 3MR.

The first statement can be shown as follows: since g; = g,

lgt11 — gr41llme = mlIGA(gt, Zt) — Ga(9ts Z}) |11, < 6mMR.

We next show the second statement. The Lipschitz smoothness of £ leads to the following inequality which can be
confirmed by naturally extending the proof of [Nes04] to the Hilbert space. Let 9,!(g, z) denote the gradient of {(g, z)
with respect to g in Hj,. Then, we have for Vg,Vg' € H,,

1
(0919, 2) = Ogl(g,2):9 = 93y, = F11051(9,2) = Dyl(d', 2) 3¢, - Q)
Thus, we have that for s > ¢ + 1,
lgst1 = gh1 30, = 11 = 0sX)(gs — 92) = 1s(0gl(gs, Zs) — Dgl(gt, Zo)) I3,
=(1- 7]5)\)2”95 - ng%{k —2ns(1 —nsA) <agl(gsa Zs) — 3;;1(927 Zs),9s — gi>
+0210g1(gs, Zs) — Dyl Zs) 5,
1
< (L= lge = B, e (7 = 00 ) 1000 22) = Oyttt 201,
< (1 =nM?llgs — 6114, »
where we used the inequality (7)) and conditions on learning rates. O
Utilizing this proposition, the stable property of stochastic gradient descent is shown.

Proof of Proposition[d} From Proposition|B| we immediately obtain the bound: for ¢ € {1,...,T},

T
lgr1 = g1l <6MRy ] (1—na). ®)
s=t+1
From the following inequality,
d T Y+s—2 v
1—nsA) = < ,

where the last inequality hold clearly by expanding the product, the right hand side of the inequality (8]) is upper bounded

as follows
T

6M Ry, [T (1—nad) < 6MRn,
s=t+1
We finally obtain the desired bound:

vy v+t 12MR
Y+T v Ay+T)

T 144M2R? 144M2R?

T
D2 < < )
;H ! TN HT)? T (v +T)




Appendix: Stochastic Gradient Descent with Exponential Convergence Rates of Expected Classification Errors

C Proof of Theorem 2

In this section we provide auxiliary results for showing Theorem 2] Using them, we can show the theorem in the same
way as in the case of stochastic gradient descent without averaging.

We first give a convergence rate of expected functions obtained by averaged stochastic gradient descent. Recall that
_ T+l 2(y4t—1)
Ir41 = 2i—1 2+ T+ 9t
Proposition C. Let the loss function ¢ be convex, that is, let [(g(x),y) be also convex with respect to g. Consider
Algorithm |I| with the averaging option. Learning rates and averaging weights are n, = 2/\(v + t) and oy =

%, respectively. Then, it follows that

2 ( 18 M2 R? My(y—1)

— _ 2 2 _ 2
”E[QTJrl] g)\HHk = /\(2’Y+T) 2(2’}/—|—T)(T—|—1)Hgl g)\HHk) :

Proof. Recall that the norm of the stochastic gradient G, (g, Z;) can be upper-bounded by 3M R as shown in the proof
of Proposition B} Combining this with the strong convexity of £y, we have

Ellgi+1 — aall3, = Ellge — aall3s, — 2mE[{ge — gx, Ga(ge, Z1)) g, ] + 1B GA(g¢, Ze) |34,
< Ellge — gall3, — 20E (gt — 9x, VLA(g¢)) 7, ] + 907 M* R?

A
< Bl — s, — 20 (ELr(00)] — La(02) + 3l — snly, ) + 9 MR

Thus, we have

_ 9 M?R? Ll

1
IE[[,,\(gt)] — Lx(gx) < Ellg: — 9/\||3-Lk - TmE”gt+1 - gAH%{k

2 27’],5
IM2R?>  ANvy+t—2) Ay +1)
= E - 2 - ]E - A :
NCET) + 1 lge — gall3, —1 llger1 — gallz,

By multiplying v 4+ ¢ — 1 and taking sum over ¢ € {1,...,T + 1}, we get

= IM2R2T A\ =
D+t =DELg)] — Lalor) < ——+ 7 D A+t =D(r +1=2)E|g: — gall3,
t=1 t=1
— (v + (v +t = DE[ge+1 — 9all3, }
IM2R*(T +1 A
< METED L 2~ Dl — 92l
A 4
Thus, by dividing (2v + T)(T + 1)/2 and applying Jensen’s inequality for L, the following convergence rate is
obtained:

T+1
2(7+t*1)gt 18 M2 R? )\7(771) )
E|L e | = £ < + B '
A <; Gy ) P =3 an T nm 10T Pl
Thus, the desired inequality is obtained by Jensen’s inequality and the strong convexity of L. O

Proposition D. Suppose the same assumptions as in Proposition|B| Consider Algorithm[I|with the averaging option.

Learning rates and averaging weights are n; = 2/A(y + t) and oy = (25(1;% respectively. Then, it follows that

T
ZHDY‘/Hio < M7
2 SNyt 1)

where Dt = E[§T+1|Zly ey Zt] - E[§T+1|Z1, ey Zt—1]~
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Proof. Note that g, | < (1 — 3¢)g; + Bigt+1, where 3; = #Z)m Thus, we have

19711 — 71 llm. < (1= Bo)gr — Frlla, + Brllgrsr — 9541l

By recursively expanding updates, we obtain the following upper-bound:

T T
Z { H (1- ﬂT)} Bsllgs+1 — g§+1||yk.

s=t r=s+1

Recall the proof of Proposition[d] it follows that

S

12MR
sr1— gL <6MR 1=—mA) < -
lgss1 = gl < ”Z:ril( N S 3519
Since [],_ a1 =5r) = %,we have

Frs — T, < 24MR _ 24MR(T —t+1)
9T =9l = 2 NT 1 1) (2y +T) ~ T+ D)2y + 1)

Therefore, we have the following bound: since Zthl t2=T(T +1)(2T +1)/6,

S X(T+1)2(2y +T)2

24 -AM?R?(2T + 1)
(2 +T)?
288 M2 R?
A2+ T)°

T T

42M2 2
S IDi2 < S @ty
= t=1
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