
Appendix: Stochastic Gradient Descent with Exponential Convergence Rates of Expected Classification Errors

In this appendix, we provide missing proofs in the paper.

A Proof of Proposition 1
We show the convergence of gλ to the Bayes rule g∗ for L inHk.

Proposition A. Let L(g) be convex with respect to g. Suppose assumption (A5) holds. A minimizer gλ of Lλ converges
to the Bayes rule g∗ inHk as λ→ 0.

Proof. Let {λi}i=1,2,... be a positive decreasing sequence tending to zero in R. Let i, j be arbitrary indices such that
i < j, i.e., λi ≥ λj . For g ∈ Hk satisfying ‖g‖Hk

< ‖gλi
‖Hk

, by subtracting λi−λj

2 ‖gλi
‖2Hk

>
λi−λj

2 ‖g‖2Hk
from

L(g) + λi

2 ‖g‖
2
Hk
≥ L(gλi

) + λi

2 ‖gλi
‖2Hk

, we get

L(g) + λj
2
‖g‖2Hk

> L(gλi) +
λj
2
‖gλi‖2Hk

.

This implies that if ‖g‖Hk
< ‖gλi

‖Hk
, then g is not optimal point ofLλj

, hence, ‖gλj
‖Hk
≥ ‖gλi

‖Hk
. The boundedness

of this sequence is also confirmed because g∗ ∈ Hk and for ∀λ > 0,

L(g∗) +
λ

2
‖gλ‖2Hk

≤ L(gλ) +
λ

2
‖gλ‖2Hk

≤ L(g∗) +
λ

2
‖g∗‖2Hk

, (1)

which implies an inequality ‖gλ‖Hk
≤ ‖g∗‖Hk

. Namely, {‖gλi
‖Hk
}i=1,2,... is a bounded increasing sequence and has

the limit. On the other hand, {L(gλi
)}i=1,2,... is a decreasing sequence with the limit corresponding to L(g∗). Indeed,

since L(gλj
) +

λj

2 ‖gλj
‖2Hk
≤ L(gλi

) +
λj

2 ‖gλi
‖2Hk

, we see

0 ≤ λj
2
(‖gλj

‖2Hk
− ‖gλi

‖2Hk
) ≤ L(gλi

)− L(gλj
).

Moreover, from the inequality (1), L(gλi
) converges to L(g∗).

We next show that the convergence of a sequence {gλi
}i=1,2,.... From the strong convexity of Lλi

(g), we have

L(gλi) +
λi
2
‖gλi‖2Hk

+
λi
2
‖gλj − gλi‖2Hk

≤ L(gλj ) +
λi
2
‖gλj‖2Hk

.

Using L(gλj ) ≤ L(gλi), we get

‖gλj
− gλi

‖2Hk
≤ ‖gλj

‖2Hk
− ‖gλi

‖2Hk
≤ 2‖g∗‖Hk

(‖gλj
‖Hk
− ‖gλi

‖Hk
).

Since, {‖gλi
‖Hk
}i=1,2,... is a convergent sequence, it is also a Cauchy sequence. As a result, a sequence {gλi

}i=1,2,...

is Cauchy in Hk and has a limit point g∞ ∈ Hk. It follows from the continuity of L that L(g∞) = limi→∞ L(gλi
).

Recalling limi→∞ L(gλi
) = L(g∗) and the uniqueness of the Bayes rule g∗, we conclude g∞ = g∗ up to zero measure

sets.

We now give a proof of Proposition 1.

Proof of Proposition 1 . Noting that g(x) = 〈g, k(x, ·)〉Hk
for arbitrary function g ∈ Hk and k(x, ·) ∈ Hk by the

definition of kernel function, we get

‖g‖L∞ = sup
x∈X
|g(x)| ≤ ‖g‖Hk

‖k(x, ·)‖Hk
≤ R‖g‖Hk

. (2)

Since, gλ converges to g∗ inHk from Proposition A, there exists λ > 0 such that

‖gλ − g∗‖Hk
≤ m(δ)

2R
.

Thus, for arbitrary g ∈ Hk satisfying ‖g − gλ‖Hk
≤ m(δ)

2R , we have

‖g − g∗‖L∞ ≤ R‖g − g∗‖Hk
≤ R (‖g − gλ‖Hk

+ ‖gλ − g∗‖Hk
) ≤ m(δ).

Since, m(δ) ≤ |g∗(X)| almost surely, we get sgn(g∗(X)) = sgn(g(X)) almost surely for g ∈ Hk such that ‖g −
gλ‖H ≤ m(δ)

2R , that is, g is also the Bayes rule forR.
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B Proof of Theorem 1
In this section, we give proofs of auxiliary statements needed for the main theorem meaning the exponential convergence
of stochastic gradient descent. We here prove convergence of expected functions obtained by stochastic gradient descent.

Proposition 3. By (L+ λ)-Lipschitz smoothness Lλ, we have

E[Lλ(gt − ηtGλ(gt, zt))] ≤ E[Lλ(gt)]− ηtE[〈∇Lλ(gt), Gλ(gt, zt)〉Hk
] +

(L+ λ)η2t
2

E‖Gλ(gt, zt)‖2Hk

≤ E[Lλ(gt)]− ηtE‖∇Lλ(gt)‖2Hk
+

(L+ λ)η2t
2

(E‖∇Lλ(gt)‖2Hk
+ σ2)

≤ E[Lλ(gt)]−
ηt
2
E‖∇Lλ(gt)‖2Hk

+
(L+ λ)η2t σ

2

2
, (3)

where we used ηt ≤ 1/(L+ λ) for the last inequality. On the other hand, by the strong convexity of Lλ, we have for
∀g ∈ Hk,

Lλ(gt) + 〈∇Lλ(gt), g − gt〉Hk
+
λ

2
‖g − gt‖2Hk

≤ Lλ(g).

Minimizing both sides with respect to g inHk, we have

Lλ(gt)−
1

2λ
‖∇Lλ(gt)‖2Hk

≤ Lλ(gλ). (4)

By combining two inequalities (3) and (4) and subtracting Lλ(gλ), we get

E[Lλ(gt+1)]− Lλ(gλ) ≤ (1− ηtλ) (E[Lλ(gt)]− Lλ(gλ)) +
(L+ λ)η2t σ

2

2
. (5)

We now show the following convergence rate by induction on t.

E[Lλ(gt)]− Lλ(gλ) ≤
ν

γ + t
. (6)

For t = 1, it is clearly true from the choice of ν. We suppose that the inequality (6) is true for t. We denote t̂ = γ + t
for simplicity. Then, we have that from the inequality (5) and ηt = 2/λt̂,

E[Lλ(gt+1)]− Lλ(gλ) ≤
(
1− 2

t̂

)
ν

t̂
+

2(L+ λ)σ2

λ2t̂2

=
(t̂− 1)ν

t̂2
− ν

t̂2
+

2(L+ λ)σ2

λ2t̂2

≤ ν

t̂+ 1
,

where we used t̂2 > (t̂+1)(t̂− 1) and the definition of ν. Thus, the inequality (6) is true for all T ≥ 1. From the strong
convexity and Jensen’s inequality for Lλ, we have

‖E[gt]− gλ‖2Hk
≤ 2

λ
(Lλ(E[gt])− Lλ(gλ)) ≤

2

λ
(E[Lλ(gt)]− Lλ(gλ)).

This finishes the proof of the proposition.

As argued in the paper, the proof of Proposition 4 is reduced to bounding ‖gT+1 − gtT+1‖∞. The follow-
ing proposition is useful for that purpose. Let gts (s ≥ t ∈ {1, . . . , T + 1}) be the s-th iterate depending on
(Z1, . . . , Zt−1, Z

′
t, Zt+1, . . . , Zs).

Proposition B. Suppose Assumptions (A1) and (A2) hold. We consider Algorithm 1 without the averaging option and
with a decreasing learning rates ηt. We assume that ‖g1‖Hk

≤ (2η1 + 1/λ)MR and η1 ≤ min{1/L, 1/2λ}. Then, for
t ∈ {1, . . . , T}, it follows that
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1. ‖gt+1 − gtt+1‖Hk
≤ 6MRηt,

2. ‖gs+1 − gts+1‖Hk
≤ (1− ηsλ)‖gs − gts‖Hk

for s ≥ t+ 1.

Proof. By the assumptions, we find that the stochastic gradient of l inHk is bounded as follows:

‖∂ζ l(g(x), y)k(x, ·)‖Hk
≤MR.

Therefore, if ‖gt‖Hk
≥ 1

λMR, then

‖gt+1‖Hk
= ‖gt − ηt∂ζ l(g(Xt), Yt)k(Xt, ·)− ηtλgt‖H
≤ (1− ηtλ)‖gt‖Hk

+ ηtMR

≤ ‖gt‖Hk
.

This means a generated sequence {gt}t=1,...,T+1 is included in a closed ball centered at the origin with radius (2η1 +
1/λ)MR as long as an initial function g1 is contained in this ball. Thus, the norm of Gλ(gt, Zt) is bounded by
2(1 + λη1)MR ≤ 3MR.

The first statement can be shown as follows: since gt = gtt ,

‖gt+1 − gtt+1‖Hk
= ηt‖Gλ(gt, Zt)−Gλ(gt, Z ′t)‖Hk

≤ 6ηtMR.

We next show the second statement. The Lipschitz smoothness of L leads to the following inequality which can be
confirmed by naturally extending the proof of [Nes04] to the Hilbert space. Let ∂gl(g, z) denote the gradient of l(g, z)
with respect to g inHk. Then, we have for ∀g,∀g′ ∈ Hk,

〈∂gl(g, z)− ∂gl(g′, z), g − g′〉Hk
≥ 1

L
‖∂gl(g, z)− ∂gl(g′, z)‖2Hk

. (7)

Thus, we have that for s ≥ t+ 1,

‖gs+1 − gts+1‖2Hk
= ‖(1− ηsλ)(gs − gts)− ηs(∂gl(gs, Zs)− ∂gl(gts, Zs))‖2Hk

= (1− ηsλ)2‖gs − gts‖2Hk
− 2ηs(1− ηsλ)

〈
∂gl(gs, Zs)− ∂gl(gts, Zs), gs − gts

〉
+ η2s‖∂gl(gs, Zs)− ∂gl(gts, Zs)‖2Hk

≤ (1− ηsλ)2‖gs − gts‖2Hk
− ηs

(
1

L
− ηs

)
‖∂gl(gs, Zs)− ∂gl(gts, Zs)‖2Hk

≤ (1− ηsλ)2‖gs − gts‖2Hk
,

where we used the inequality (7) and conditions on learning rates.

Utilizing this proposition, the stable property of stochastic gradient descent is shown.

Proof of Proposition 4. From Proposition B, we immediately obtain the bound: for t ∈ {1, . . . , T},

‖gT+1 − gtT+1‖Hk
≤ 6MRηt

T∏
s=t+1

(1− ηsλ). (8)

From the following inequality,
T∏
s=2

(1− ηsλ) =
T∏
s=2

γ + s− 2

γ + s
<

γ

γ + T
,

where the last inequality hold clearly by expanding the product, the right hand side of the inequality (8) is upper bounded
as follows

6MRηt

T∏
s=t+1

(1− ηsλ) ≤ 6MRηt
γ

γ + T

γ + t

γ
=

12MR

λ(γ + T )
.

We finally obtain the desired bound:

T∑
t=1

‖Dt‖2∞ ≤
T∑
t=1

144M2R2

λ2(γ + T )2
≤ 144M2R2

λ2(γ + T )
.
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C Proof of Theorem 2
In this section we provide auxiliary results for showing Theorem 2. Using them, we can show the theorem in the same
way as in the case of stochastic gradient descent without averaging.

We first give a convergence rate of expected functions obtained by averaged stochastic gradient descent. Recall that
gT+1 =

∑T+1
t=1

2(γ+t−1)
(2γ+T )(T+1)gt.

Proposition C. Let the loss function φ be convex, that is, let l(g(x), y) be also convex with respect to g. Consider
Algorithm 1 with the averaging option. Learning rates and averaging weights are ηt = 2/λ(γ + t) and αt =

2(γ+t−1)
(2γ+T )(T+1) , respectively. Then, it follows that

‖E[gT+1]− gλ‖2Hk
≤ 2

λ

(
18M2R2

λ(2γ + T )
+

λγ(γ − 1)

2(2γ + T )(T + 1)
‖g1 − gλ‖2Hk

)
.

Proof. Recall that the norm of the stochastic gradient Gλ(gt, Zt) can be upper-bounded by 3MR as shown in the proof
of Proposition B. Combining this with the strong convexity of Lλ, we have

E‖gt+1 − gλ‖2Hk
= E‖gt − gλ‖2Hk

− 2ηtE[〈gt − gλ, Gλ(gt, Zt)〉Hk
] + η2tE‖Gλ(gt, Zt)‖2Hk

≤ E‖gt − gλ‖2Hk
− 2ηtE[〈gt − gλ,∇Lλ(gt)〉Hk

] + 9η2tM
2R2

≤ E‖gt − gλ‖2Hk
− 2ηt

(
E[Lλ(gt)]− Lλ(gλ) +

λ

2
E‖gt − gλ‖2Hk

)
+ 9η2tM

2R2

Thus, we have

E[Lλ(gt)]− Lλ(gλ) ≤
9ηtM

2R2

2
+

1− ληt
2ηt

E‖gt − gλ‖2Hk
− 1

2ηt
E‖gt+1 − gλ‖2Hk

=
9M2R2

λ(γ + t)
+
λ(γ + t− 2)

4
E‖gt − gλ‖2Hk

− λ(γ + t)

4
E‖gt+1 − gλ‖2Hk

.

By multiplying γ + t− 1 and taking sum over t ∈ {1, . . . , T + 1}, we get

T+1∑
t=1

(γ + t− 1)(E[Lλ(gt)]− Lλ(gλ)) <
9M2R2T

λ
+
λ

4

T+1∑
t=1

{(γ + t− 1)(γ + t− 2))E‖gt − gλ‖2Hk

− (γ + t)(γ + t− 1)E‖gt+1 − gλ‖2Hk
}

≤ 9M2R2(T + 1)

λ
+
λ

4
γ(γ − 1)‖g1 − gλ‖2Hk

.

Thus, by dividing (2γ + T )(T + 1)/2 and applying Jensen’s inequality for Lλ, the following convergence rate is
obtained:

E

[
Lλ

(
T+1∑
t=1

2(γ + t− 1)gt
(2γ + T )(T + 1)

)
− Lλ(gλ)

]
≤ 18M2R2

λ(2γ + T )
+

λγ(γ − 1)

2(2γ + T )(T + 1)
‖g1 − gλ‖2Hk

.

Thus, the desired inequality is obtained by Jensen’s inequality and the strong convexity of Lλ.

Proposition D. Suppose the same assumptions as in Proposition B. Consider Algorithm 1 with the averaging option.
Learning rates and averaging weights are ηt = 2/λ(γ + t) and αt =

2(γ+t−1)
(2γ+T )(T+1) , respectively. Then, it follows that

T∑
t=1

‖Dt‖2∞ ≤
288M2R2

λ2(2γ + T )
,

where Dt = E[gT+1|Z1, . . . , Zt]− E[gT+1|Z1, . . . , Zt−1].
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Proof. Note that gt+1 ← (1− βt)gt + βtgt+1, where βt =
2(γ+t)

(t+1)(2γ+t) . Thus, we have

‖gT+1 − gtT+1‖Hk
≤ (1− βT )‖gT − gtT ‖Hk

+ βT ‖gT+1 − gtT+1‖Hk
.

By recursively expanding updates, we obtain the following upper-bound:

T∑
s=t

{
T∏

r=s+1

(1− βr)

}
βs‖gs+1 − gts+1‖Hk

.

Recall the proof of Proposition 4, it follows that

‖gs+1 − gts+1‖Hk
≤ 6MRηt

s∏
r=t+1

(1− ηrλ) ≤
12MR

λ(γ + s)
.

Since
∏T
r=s+1(1− βr) =

(s+1)(2γ+s)
(T+1)(2γ+T ) , we have

‖gT+1 − gtT+1‖Hk
≤

T∑
s=t

24MR

λ(T + 1)(2γ + T )
=

24MR(T − t+ 1)

λ(T + 1)(2γ + T )
.

Therefore, we have the following bound: since
∑T
t=1 t

2 = T (T + 1)(2T + 1)/6,

T∑
t=1

‖Dt‖2∞ ≤
242M2R2

λ2(T + 1)2(2γ + T )2

T∑
t=1

(T − t+ 1)2

≤ 24 · 4M2R2(2T + 1)

λ2(2γ + T )2

≤ 288M2R2

λ2(2γ + T )
.
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