
Training a Spiking Neural Network with Equilibrium Propagation

Peter O’Connor
peter.ed.oconnor@gmail.com

Efstratios Gavves
egavves@uva.nl

Max Welling
m.welling@uva.nl

QUVA Lab, University of Amsterdam

Abstract

Backpropagation is almost universally used
to train artificial neural networks. However,
there are several reasons that backpropagation
could not be plausibly implemented by biolog-
ical neurons. Among these are the facts that
(1) biological neurons appear to lack any mech-
anism for sending gradients backwards across
synapses, and (2) biological “spiking” neurons
emit binary signals, whereas back-propagation
requires that neurons communicate continu-
ous values between one another. Recently
Scellier and Bengio [2017], demonstrated an
alternative to backpropagation, called Equi-
librium Propagation, wherein gradients are
implicitly computed by the dynamics of the
neural network, so that neurons do not need
an internal mechanism for backpropagation of
gradients. This provides an interesting solu-
tion to problem (1). In this paper, we address
problem (2) by proposing a way in which Equi-
librium Propagation can be implemented with
neurons which are constrained to just commu-
nicate binary values at each time step. We
show that with appropriate step-size anneal-
ing, we can converge to the same fixed-point
as a real-valued neural network, and that with
predictive coding, we can make this conver-
gence much faster. We demonstrate that the
resulting model can be used to train a spiking
neural network using the update scheme from
Equilibrium propagation.

1 Introduction

The human brain, a network of around 1011 neurons,
consumes around 20W [Ling, 2001]. For comparison,

Proceedings of the 22nd International Conference on Ar-
tificial Intelligence and Statistics (AISTATS) 2019, Naha,
Okinawa, Japan. PMLR: Volume 89. Copyright 2019 by
the author(s).

a Titan X GPU running real-time object detection
with YOLO [Redmon et al., 2016], a network of around
107 neurons, consumes 250W. In the quest for more
efficient hardware for deep learning, biology is a not a
bad place to start looking.

The “neurons” used in deep learning are so-named be-
cause of their loose correspondence to biological neu-
rons. There are however, a number of fundamental
differences between the types of neurons used in deep
learning and those we observe in biology [Crick, 1989].
Among them are :

1. Biological Neurons do not do Backpropa-
gation: Neurons used in deep learning emit two
types of signals - an activation on the forward pass,
and a gradient on the backward pass. Biological
neurons send signals down a one-way signalling
pathway called an axon. They appear to lack
any secondary signalling mechanism for sending
gradient backwards.

2. Biological Neurons communicate with
Spikes: Neurons in deep learning have contin-
uous, differentiable activation functions. This is
necessary in order to propagate useful gradients
back through the network. Biological neurons are
best understood as dynamical systems, which out-
put streams of all-or-nothing signals called “spikes”,
which are some function of recent inputs to the
neuron.

These two characteristics pose a conundrum to those
looking to reconcile theories in machine-learning with
how the brain might be reasonably expected to operate.
The recent successes in deep learning have been based
on achieving gradient-descent by propagating error-
gradients backwards through a network. But it is not
clear at all how biological neurons could achieve this.

To address the “no biological backprop” problem, Scel-
lier and Bengio [2017] proposed Equilibrium Propaga-
tion. This showed how one may propagate gradients
through a deep network in a setting where neurons only
produce one type of signal - the forward activation. The

Spiking Equilibrium Propagation

authors use a continuous Hopfield network [Hopfield,
1984] - a symmetrically-weighted neural network whose
dynamics are defined according to the gradient of an
energy function (@s

@t

/ �@E

@s

, where s is the state of
the neurons). Learning is based on allowing the net-
work to converge to a fixed-point conditioned on the
input data, then perturbing the output units towards
the target, letting the network settle again, and then
updating parameters to minimize a contrastive loss be-
tween the original fixed-point state and the perturbed
fixed-point. Their work showed a semi-plausible mech-
anism by which biological neural networks (or artificial
networks implemented as analog circuits) may be able
to achieve gradient descent.

The original formulation of Equilibrium Propagation,
however, still assumes continuous-valued units. In this
paper, we constrain neurons to emit binary-valued
signals, and look at how neurons can efficiently convey
their real-valued activations to other neurons despite
this bottleneck. Specifically, we show how a network
of neurons can efficiently minimize an energy function
when neurons are “spiking” - i.e. constrained to only
communicate binary values at each time-step.

This line of research may be of interest for designing
the next generation of neural network hardware. A
continuous-dynamical system can be implemented with
an analog circuits, but electrical issues such as capaci-
tance, inductance, and cross-talk make it difficult to
faithfully transmit analog values over a circuit. Dig-
ital signals, by comparison, can be transmitted with
ease. The brain appears to use a hybrid approach, with
neurons having analog internal dynamics but commu-
nicating with one another using digital “spikes”.

2 Background

2.1 A Neural Network as a Dynamical
System

Suppose we have a network of recurrently connected
neurons with symmetric weights (w

ij

= w

ji

). This
is known as a continuous Hopfield Network. Hopfield
[1984] proposed an energy-function for such a network,
which can be defined as:

E(s) =
1

2

X

u

s

2
i

�
X

i 6=j

w

ij

⇢(s
i

)⇢(s
j

)�
X

i

b

i

⇢(s
i

) (1)

Where s

i

is the activation of neuron i, w
ij

and b

i

are
model parameters, and ⇢ is a nonlinearity. Scellier and
Bengio [2017] use a hard sigmoid function: ⇢(s) = [s]10,
where [·]b

a

indicates that values outside the range of a
and b are clipped to these limits. Given this energy

function, we can define the temporal dynamics that
minimize this energy with respect to activations:

@s

j

@t

= �@E(s
j

)

@s

j

= �s

j

+ ⇢

0(s
j

)

X

i

w

ij

⇢(s
i

) + b

j

!

(2)
Where ⇢

0(s
j

) is the derivative of the activation function
about s

j

. For implementation in discrete time, this can
be expressed as a difference-equation (this is known as
the Forward Euler Method):

s

t

j

=

"
(1� ✏)st�1

j

+ ✏⇢

0(st�1
j

)

X

i

w

ij

⇢(st�1
i

) + b

j

!#1

0
(3)

Where [·]10 indicates clipping to range [0, 1] and ✏ 2 (0, 1)
can be seen either as the size of the time-step or as
the learning-rate of the activations. This update will
converge to the optimum for a sufficiently small ✏ (e.g.
✏ = 1

2).

2.2 Equilibrium Propagation

Scellier and Bengio [2017] proposed a method for using
a continuous Hopfield Network to implement gradient
descent on a loss defined over a subset of units in the
network. They propose a two-phase learning algorithm
called Equilibrium Propagation. In Equilibrium Prop-
agation, units are partitioned into input, hidden, and
output neurons, whose states we denote s

in

, s
hid

, and
s

out

, respectively. They define some loss function be-
tween some target variable y and output activations:
C(s

out

, y)

In the “Negative Phase”, we are given an input vector x,
and clamp the corresponding input units to that value:
(s

in

= x). The remaining units (s
hid

and s

out

) are
allowed to settle to an energy minimum s

� according
to Equation 3.

In the “Positive Phase”, the output units are “weakly
clamped” by the loss function. The “weak clamping” is
done by adding the loss to the energy function from
Equation 1: E

�(s) = E(s) + �C(s
out

, y) (where �

is some small scalar), and allowing the network to
briefly settle to a state s+. Finally, network parameters
are updated according to the difference between these
states:

�w =
⌘

�

✓
@E(s+)

@w

� @E(s�)

@w

◆
/⇠ �@C(s

out

, y)

@w

(4)

Where ⌘ is some learning rate. Scellier and Bengio
[2017] show that for small �, the resulting parameter

O’Connor, Gavves, Welling

update is proportional to @C(s
out

,y)
@w

. Intuitively, the
idea works by pulling the minima of E(s) closer to the
minima of E�(s) (when s

in

= x) so that the network
will gradually learn to naturally minimize the output
loss.

3 Binary Communication

Suppose we now operate under the constraint that
neurons can only output binary values at each time-
step. Our objective is to optimally converge to the
same fixed-points as the continuous-valued dynamical
system, under the constraint of binary communication
between neurons. In other words, we constrain our
neurons to obey the interface:

q

t

j

, s

t

j

, z

t

j

= f(qt�1
\j , s

t�1
j

, w\j,j , bj , z
t�1
j

) (5)

Where q

t

j

2 {0, 1} is the binary output of neuron j,
q\j 2 {0, 1}D are the binary signals of other neurons
in the network, st

j

2 R is the external state associated
with a neuron, w\j,j , bj are the parameters associated
with neuron j, and z

j

is the internal state of encoders
and decoders which we will discuss in the following sec-
tion. Note that the only values that are communicated
between neurons are the binary q

j

’s. Our goal is to
design our neurons so that despite being limited by
binary communication, the states s in our network to
converge to the same fixed point as they would when
following the real-valued dynamics of Equation 6.

We propose to design our neurons as follows:

u

t

j

=
X

i

w

ij

q

t�1
i

v

t

j

, z

t

dec,j

= dec(ut

j

, z

t�1
dec,j

)

✏

t

j

, z

t

anneal,j

= anneal(✏t�1
j

, v

t

j

, z

t�1
anneal,j

)

s

t

j

= [(1� ✏

t

j

)st�1
j

+ ✏

t

j

⇢

0(st�1
j

)
�
v

t

j

+ b

j

�
]10

q

t

j

, z

t

enc,j

= enc(⇢(st
j

), zt�1
enc,j

)
(6)

Where enc and dec are functions for encoding and de-
coding signals between neurons, anneal is a function of
updating the step size ✏, and the form of internal state
variables z

j

= (z
dec,j

, z

anneal,j

, z

enc,j

) will be defined
in the following sections.

In this work we show how various definitions of enc,
dec and anneal affect the convergence of our discrete
dynamics to the true minimum of the energy (Equation
1). In the following sections we propose a quantization
method that allows our neurons to efficiently settle
towards this fixed point.

3.1 Stochastic Approximation

One approach we could take is to look at this as a
Stochastic Approximation problem from the perspec-
tive of each neuron. The task of Stochastic Approx-
imation is to keep an online estimate ✓̂

t of a time-
varying parameter ✓

t from a stream of noisy samples
x

t = ✓

t + ⇣

t, where ⇣

t is some unbiased noise. When
✓

t is not constant in time, we stay the input is nonsta-
tionary.

Robbins and Monro [1951] showed that if the non-
stationarity is transient (✓t converges to a final value
over time), we can sequentially average out the noisy
samples to form estimates:

✓̂

t = (1� ✏

t)✓̂t�1 + ✏

t

x

t (7)

If we anneal the step-size (or learning rate) ✏

t in such
a way that

P1
t=0 ✏

t = 1 and
P1

t=0(✏
t)2 < 1, then

our estimator eventually converges to the true parame-
ter values (lim

t!1 ✓̂

t = ✓

t). For stationary problems,
when ✓

t = ✓

0 : 8t, the optimal annealing schedule is
✏

t = 1
t

, which corresponds to a simple moving aver-
age. For nonstationary signals (e.g. the activations in
our network, which undergo some transient dynamics
before settling), we can converge faster by forgetting
early samples, so that the average is not corrupted by
stale values. There are a number of ways to do this
[George and Powell, 2006]. A simple one is to schedule
the step-size as:

✏

t =
✏

0

(t)⌘
(8)

With the exponent ⌘ 2 (12 , 1). This guarantees that as
t ! 1, the inputs at t = 0 diminish to have zero weight
relative to the most recent inputs, but the average still
smooths over an ever-growing number of samples.

3.2 A Naive Approach: Stochastic Rounding
and the Robinson-Munroe Annealing

In our case, the “true” parameter ✓ corresponds to
the total pressure exerted on neuron j by the rest
of the network: ⇢

0(st�1
j

)
�P

i

w

ij

⇢(st�1
i

) + b

j

�
(from

Equation 3). The noise arises from trying to represent
real signals with a temporal stream of bits. The non-
stationarity arises from the fact that the rest of the
network has not yet settled to the fixed point. Note that
our estimate itself affects future inputs: Neurons are
connected recurrently in a network and the estimator
in neuron i affects the estimator in neuron j which in
turn affects the estimators in neuron i.

Spiking Equilibrium Propagation

Suppose each input neuron i in Equation 6 stochasti-
cally outputs bits q

t

i

⇠ Bernoulli(⇢(s
i

)), where ⇢(s
i

) 2
(0, 1) is the neuron’s activation. Since q

t

i

is an un-
biased estimator of ⇢(s

i

), a neuron j receiving this
signal should eventually average it out, along with
all its other inputs, to achieve a correct estimate of
⇢

0(st�1
j

)
�P

i

w

ij

⇢(st�1
i

) + b

j

�
, provided that its input

neurons do indeed converge to the correct fixed point
s

�
i

. A simple communication scheme can then be de-
scribed (with reference to the variables in Equation 6)
as:

q

t = Bern(⇢(st)) Stochastic Encoder (9)

v

t = u

t Identity Decoder (10)

✏

t =
1

(t)⌘
Annealer (11)

3.3 Better Averaging with Adaptive Step
Sizes

In choosing the step-size for stochastic optimization,
we face a trade-off. Small step sizes allow us to average
out noise, but also cause our current estimates to in-
clude outdated values of the time-varying parameter ✓t.
It can therefore be advantageous to adaptively adjust
our step size according to our estimate of how nonsta-
tionary ✓ is. George and Powell [2006] review several
existing step-size adaptation algorithms and propose
one of their own called Optimal Step-Size Adaptation
(OSA) which, similarly to a Kalman filter, adjusts its
step-size according to the ratio of the estimated drift in
the underlying parameter and the noise in the measure-
ment. OSA is “optimal” in the sense that it optimally
estimates the parameter ✓ if the drift and noise are
known. Since they are not - OSA also estimates these
quantities, and bases the step-size on these estimates.
OSA has only a single parameter, ⌫̄, which is the target
learning rate for estimating the drift and noise. The
full algorithm is included in Appendix A.

3.4 Better Encoding with Sigma-Delta
Modulation

There are more efficient ways to communicate a time-
varying real value than to send random bits centered
around that value. A simple method from signal pro-
cessing for encoding time-varying signals is Sigma-Delta
modulation [Candy and Temes, 1962]. Suppose we have
a time-varying input signal x1, ...xt

where x
⌧

2 (0, 1)8⌧ .
We then quantize x

t

into q

t

according to:

�

0 = �

t�1 + x

t

q

t =


�

0
>

1

2

�
Sigma Delta Encoder

�

t = �

0 � q

t

(12)

Where [a > b] evaluates to 1 if a > b and 0 otherwise.
By expanding Equation 12 recursively, we can verify
that if xt 2 (0, 1) and �0 = 0, the mean quantization
error is bounded: 1

T

���
P

T

t=0(x
t � q

t)
���  1

2T . So we

have O(1/T) convergence, compared to the O(1/
p
T)

convergence that we would get from averaging out a
stochastic estimator.

Note that this corresponds to an “integrate-and-fire”
quantization - inputs are added to a “potential” �,
and once that potential crosses a threshold a “spike”
(q(t) = 1) is sent out, and subtracted from the potential.
Sigma-Delta modulation has previously been used as a
model of the neural spiking mechanism: [Yoon, 2016],
Zambrano and Bohte [2016], O’Connor et al. [2017].

3.5 Better Bit-Economy with Predictive
Coding

When the signal is time-varying, it seems like a poor
use of bandwidth to simply communicate a stream of
bits that averages out to the current signal value. In-
stead, we can use an encoding scheme wherein neurons
primarily send temporal changes in the signal value
to downstream neurons, and downstream neurons inte-
grate these changes. This is an instance of Predictive
Coding, a widely used concept in the Signal Process-
ing literature. Predictive Coding has in the past been
proposed as a possible mechanism in neural communica-
tion. [Srinivasan et al., 1982], [Shin, 2001], [Tewksbury
and Hallock, 1978], [Bharioke and Chklovskii, 2015].

Lossy Predictive Coding is a method for efficiently
encoding a real-valued signal as a bitstream, and de-
coding it again on the other end of a communica-
tion channel. At each time-step, a predictor attempts
to predict the current signal from past signal values,
and the prediction is subtracted from the signal be-
fore quantization. On the receiving end, the same
predictor is used to reconstruct the signal from the
stream of bits. In the case where the predictor is
a linear function of past inputs, we can exploit the
commutativity of the weight-multiplication and de-
coding operations [O’Connor et al., 2017] to sand-
wich a weight matrix between the encoders and de-
coders. Here, we formulate an extremely simple pre-
dictor Pred(xt�1

, ...x

0) = (1� �)xt�1 where � 2 (0, 1).
We write our encoder (with reference to the variables
in Equation 6) as:

O’Connor, Gavves, Welling

a

t =
1

�

�
⇢(st)� (1� �)⇢(st�1)

�
Predictive Encoder

q

t = Q(at)

(13)

Where Q is some (possibly stateful) quantization pro-
cedure, such Sigma-Delta modulation (Equation 12) or
Stochastic Rounding (Equation 9). On the decoding
side, we sum up the weighted quantized inputs and
invert the encoding function:

u

t

j

=
X

i

w

ij

q

t�1
i

v

t

j

= (1� �)vt�1
j

+ �u

t

j

Predictive Decoder
(14)

When � is close to 0, we have a system that only sends
changes in state, and accumulates these change in a
running sum. When � is 1, we recover the case with
no predictive coding.

3.6 Lambda-Annealing

As was the case with ✏, it is also possible to anneal the
prediction-factor �. Intuitively, we would like to start
the convergence process with a very short memory (�
close to 1), primarily using bits to communicate the
rapidly changing current state. Later, as we approach
a fixed point, we would like to lengthen the memory (�
close to 0) and use our bits to communicate increasingly
fine increments to the state.

3.7 The Resulting Model

Combining Sigma-Delta encoding from Equation 12
with the predictive encoder/decoder of Equations 13
and 14 by plugging them all into Equation 6 results
in a biologically-plausible model that applies double-
exponential smoothing to inputs and produces output
spikes with an integrate-and-fire mechanism:

v

t

j

= (1� �

t)vt�1
j

+ �

t

X

i

w

ij

q

t�1
i

s

t

j

= [(1� ✏

t)st�1
j

+ ✏

t

⇢

0(st�1
j

)
�
v

t

j

+ b

j

�
]10

a

t =
1

�

t

�
⇢(st)� (1� �

t)⇢(st�1)
�

q

t

j

= [�t�1
j

+ a

t

j

>

1

2
]

�

t

j

= �

t�1
j

+ a

t

j

� q

t

j

(15)

Figure 1 shows some example dynamics from our model.

Figure 1: An illustration of the evolution of a neu-
ron in response to converging inputs. Top: The val-
ues of three input neurons as they converge towards
a fixed point. Tick marks indicate the times where
the encoders of those neurons output a 1. Row 2:
The total weighted input from the input neurons to
a post-synaptic neuron. Row 3: the step size ✏ and
predictive-coding parameter � as they anneal. Bot-
tom: A comparison of the value of the post-synaptic
neuron under the continuous dynamics (Equation 3, red
curve) and our binary dynamics (Equation 15, black
curve).

4 Experiments

We explore several combinations of the hyperparam-
eters ✏

t

,�

t, introduced in Section 3. First in Section
4.1, we compare the rate at which these various hy-
perparameter settings converge to the fixed point for
randomly initialized networks. Then in Section 4.2 we
apply the more promising settings to train a neural
network on the MNIST dataset.

4.1 Convergence

To understand how our encoding/decoding parame-
ters affect the rate of convergence, we use a randomly
initialized network with 3 layers of [500-500-10] units,
where the first is considered the "input" layer and is
clamped to a random input vector (s

in

= x). We simu-
late the two-phase learning of Equilibrium Propagation
by running the network for a fixed number of steps

Spiking Equilibrium Propagation

Figure 2: A network is presented with a constant input
at t = 0, and allowed to settle. Then at t = 100 the
output layer is perturbed, and the network is allowed to
settle to the new fixed point. The y axis indicates the
log-mean-error between the true fixed-point sfixed, and
the current state of s of the quantized network. s

fixed

is calculated by running a continuous-valued network
(with the same parameters and input) to convergence.
Note that s

fixed is different for t < 100 and t � 100
due to the external perturbation at t = 100. Shaded
regions indicate the standard deviation over 20 runs
with randomly initialized networks.

(corresponding to the negative phase), then adding
a perturbation to the output layer, and allowing the
network to settle again (corresponding to the positive
phase). We compare scheduled and adaptive (OSA)
step-size annealing with and without predictive coding.
For each annealing scheme we compare, we take the
optimal hyper-parameters as found by a Gaussian Pro-
cess optimizer which attempts to minimize the error
after 250 steps of convergence. We find that the best
convergence is obtained by combining OSA step-size
annealing with a predictive coding (with parameter �).
The results can be seen in Figure 2.

4.2 Equilibrium Propagation on MNIST

We applied our quantization methods to train our
binary-valued network on the MNIST dataset us-
ing Equilibrium Propagation. We compare to our
implementation of continuous-valued Equilibrium-
Propagation by Scellier and Bengio [2017] for a network
with [784-500-10] units in each layer. Unlike the au-
thor’s implementation, we did not use the trick of
keeping persistent activations per training sample be-
tween epochs. This trick would have improved the
performance of both the continuous and binary net-
work but would not be useful in drawing conclusion

Figure 3: Learning curves on the MNIST dataset, on an
equilibrium propagation network with one hidden layer
(with OSA step-size adaptation and a fixed � = 0.275
predictive coding parameter. Blue Curves: Train-
ing/Test set Learning curves of our implementation
of “Continuous-Valued” Equilibrium propagation by
Scellier and Bengio [2017]. Orange Curve: Scores
from our Binary-Values implementation with the best-
performing quantization hyperparameters from Figure
2.

about the performance of the binary network relative
to the continuous one.

In order to reach similar performance to the continuous-
valued network, we had to extend the positive and nega-
tive phases to (100, 50) steps respectively, compared to
the (20, 4) steps used in real-valued equilibrium propa-
gation. We found no significant difference between the
networks trained with OSA and with annealing sched-
ules (after finding the optimal annealing-parameters
for each model with a Gaussian-Process parameter
search - see Appendix C). In the remainder of this
section, we report the results for the OSA model with
a constant � = 0.275 predictive-coding coefficient. Our
binary-network performed similarly on the test set to
the continuous-valued-network (see Figure 3), achiev-
ing a (2.37% test / 0.15% training) error, compared to
the continuous network’s (2.51% test / 0.25% training)
error.

We also ran our model on a deeper network with 3
hidden layers [784-500-500-500-10], and found that
our network slightly underperformed the continuous-
valued network, achieving (3.65% test/, 3.02% train-
ing) error vs (2.42% test/ 0.27 % training) error for
the continuous-valued network. The discrepancy is
likely due to the quantized network needing longer
negative/positive convergence phases. The learning
curves and details on the paremetrizations of these
experiments can be found in Appendix C.

O’Connor, Gavves, Welling

5 Discussion and Related Work

Much of the work in the stochastic approximation liter-
ature is about how to adapt step-sizes according to the
statistics of the incoming sample stream [Chau and Fu,
2015], [George and Powell, 2006]. It is unclear whether
we can transfer adaptive step-size algorithms to the
similar task of choosing optimal predictive coding co-
efficients (�). The difficulty is that if the encoder of
neuron i has a different predicitve coefficient � than
the decoder of neuron j, the signal will not be correctly
transmitted, but the binary-communication constraint
prohibits us from directly transmitting predictive cod-
ing coefficients between neurons. It may be possible to
define an adaptive predictive coding rule where the pre-
dictive coefficients of different neurons tend to converge
so that the network reaches the correct fixed point in
the end, but this needs more work. [Bharioke and
Chklovskii, 2015] suggested that including a nonlinear-
ity in the predictor can have the effect of rapid online
adaptation of prediction coefficients. Adaptive predic-
tive coding could allow us to perform efficient inference
on nonstationary data. We can imagine constructing a
network where neurons use their bits to communicate
fine changes in state when the network is near a fixed
point but then adapts itself to take larger, coarser steps
when it sees the input has started changing rapidly (e.g.
during a saccade).

Mesnard et al. [2016] also implemented Equilibrium
Propagation with spiking neurons. Their model was
primarily built to mimic the leaky-integrate-and-fire
dynamics of biological neurons. There was no annealing
and their neurons do not converge to a fixed point when
presented with a constant input. They demonstrate
that the model can train on a toy dataset, but it is not
clear if this approach would scale to a more standard
machine learning task.

There are still several obstacles to doing truly biologi-
cally plausible deep learning. One subtle issue is that
we rely on “capturing” a negative state s� and a positive
state s

+ in order to do the parameter update (Equa-
tion 4). This requires holding onto two states at once -
something which biological neurons seem unlikely to
do. If we instead take the approach of using the rate of
change of the postsynaptic neuron at the beginning of
the positive phase, as suggested in Bengio et al. [2015],
Scellier and Bengio [2017], (i.e. �w

ij

/ ⇢(s
i

)@sj
@t

) we
have the problem that we get very noisy updates due
to the quantization.

Another lingering biological-implausibility that is not
specific to our algorithm is that we still use symmet-
ric weights. Learning with symmetric weights implies
an additional communication channel to synchronize
synapse w

ij

of neuron j to synapse w

ji

of neuron i.

However recent work by [Scellier et al., 2018] and Lilli-
crap et al. [2014] seems to suggest that this may not be
a problem, because weights tend to align themselves to
be approximately symmetrical through learning any-
way. Another obstacle is that biological networks do
not appear to have distinct forward/backward passes,
or negative/positive phases (except perhaps on the very
slow timescale of the sleep/wake cycle). It is still not
clear how one could do learning in a setting where new
data is continuously coming in and we do not have the
luxury of pausing our sensory input while we wait for
our brains to do a forward/backward pass or settle to
an energy minimum. Even if we could, we face the prob-
lem of Catastrophic Forgetting, wherein deep networks
tend to forget old training data when presented with a
nonstationary stream of training samples (though Kirk-
patrick et al. [2017] have done some work addressing
this). Finally the question of how to learn temporal se-
quences without doing backpropagation-through-time
remains an open one, though recent works such as Ol-
livier et al. [2015] and Tallec and Ollivier [2017] have
begun to address this.

6 Conclusion

We demonstrate that we can train a network with Equi-
librium Propagation even when neurons are constrained
to only communicate binary values. To achieve efficient
communication between neurons, we use ideas from
Stochastic Approximation and Predictive Coding.

We believe that this work is relevant to designing of
the next generation of neural computing hardware. In
modern computers, most of the energy cost is not spent
on computation (in terms of adds and multiples), but
in moving data around Horowitz [2014]. It seems likely
that future neural computing hardware will consist of
neurons implemented as physical circuits, with com-
putation co-located with memory, so that parameter
values never need to be moved. The main energetic
bottleneck will then be the communication between
neurons. In the brain, Attwell and Laughlin [2001]
estimate that 81% of metabolic energy is spent on
sending signals between neurons. It makes sense then,
that neurons should have evolved to use the minimum
number of spikes to communicate what they need to
communicate. If the brain is doing something similar
to Equilibrium Propagation, then neurons compute by
collectively trying to find the fixed point of a dynam-
ical system. Our work addresses the question of how
we can efficiently find this fixed point when there is a
communication bottleneck between neurons.

Code is available at https://github.com/quva-lab/
spiking-eqprop

https://github.com/quva-lab/spiking-eqprop
https://github.com/quva-lab/spiking-eqprop

Spiking Equilibrium Propagation

Acknowledgements

This work was funded by Qualcomm.

References
David Attwell and Simon B Laughlin. An energy budget

for signaling in the grey matter of the brain. Journal
of Cerebral Blood Flow & Metabolism, 21(10):1133–
1145, 2001.

Yoshua Bengio, Thomas Mesnard, Asja Fischer,
Saizheng Zhang, and Yuhuai Wu. Stdp as presy-
naptic activity times rate of change of postsynaptic
activity. arXiv preprint arXiv:1509.05936, 2015.

Arjun Bharioke and Dmitri B Chklovskii. Automatic
adaptation to fast input changes in a time-invariant
neural circuit. PLoS computational biology, 11(8):
e1004315, 2015.

James C Candy and Gabor C Temes. Oversampling
delta-sigma data converters: theory, design, and sim-
ulation. University of Texas Press, 1962.

Marie Chau and Michael C Fu. An overview of stochas-
tic approximation. In Handbook of Simulation Opti-
mization, pages 149–178. Springer, 2015.

Francis Crick. The recent excitement about neural
networks. Nature, 337(6203):129–132, 1989.

Abraham P George and Warren B Powell. Adaptive
stepsizes for recursive estimation with applications
in approximate dynamic programming. Machine
learning, 65(1):167–198, 2006.

John J Hopfield. Neurons with graded response have
collective computational properties like those of two-
state neurons. Proceedings of the national academy
of sciences, 81(10):3088–3092, 1984.

Mark Horowitz. 1.1 computing’s energy problem (and
what we can do about it). In 2014 IEEE Inter-
national Solid-State Circuits Conference Digest of
Technical Papers (ISSCC), pages 10–14. IEEE, 2014.

James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz,
Joel Veness, Guillaume Desjardins, Andrei A Rusu,
Kieran Milan, John Quan, Tiago Ramalho, Ag-
nieszka Grabska-Barwinska, et al. Overcoming catas-
trophic forgetting in neural networks. Proceedings
of the national academy of sciences, page 201611835,
2017.

Timothy P Lillicrap, Daniel Cownden, Douglas B
Tweed, and Colin J Akerman. Random feedback
weights support learning in deep neural networks.
arXiv preprint arXiv:1411.0247, 2014.

Jacqueline Ling. The power of a human
brain. https://hypertextbook.com/facts/2001/

JacquelineLing.shtml, 2001. Accessed: 2018-12-
10.

Thomas Mesnard, Wulfram Gerstner, and Johanni
Brea. Towards deep learning with spiking neurons
in energy based models with contrastive hebbian
plasticity. arXiv preprint arXiv:1612.03214, 2016.

Peter O’Connor, Efstratios Gavves, and Max Welling.
Temporally efficient deep learning with spikes. arXiv
preprint arXiv:1706.04159, 2017.

Yann Ollivier, Corentin Tallec, and Guillaume
Charpiat. Training recurrent networks online with-
out backtracking. arXiv preprint arXiv:1507.07680,
2015.

Joseph Redmon, Santosh Divvala, Ross Girshick, and
Ali Farhadi. You only look once: Unified, real-time
object detection. In Proceedings of the IEEE con-
ference on computer vision and pattern recognition,
pages 779–788, 2016.

Herbert Robbins and Sutton Monro. A stochastic
approximation method. The annals of mathematical
statistics, pages 400–407, 1951.

Benjamin Scellier and Yoshua Bengio. Equilibrium
propagation: Bridging the gap between energy-based
models and backpropagation. Frontiers in computa-
tional neuroscience, 11:24, 2017.

Benjamin Scellier, Anirudh Goyal, Jonathan Binas,
Thomas Mesnard, and Yoshua Bengio. Extending
the framework of equilibrium propagation to general
dynamics, 2018. URL https://openreview.net/

forum?id=SJTB5GZCb.

Jonghan Shin. Adaptive noise shaping neural spike
encoding and decoding. Neurocomputing, 38:369–
381, 2001.

Mandyam V Srinivasan, Simon B Laughlin, and An-
dreas Dubs. Predictive coding: a fresh view of inhi-
bition in the retina. Proceedings of the Royal Society
of London B: Biological Sciences, 216(1205):427–459,
1982.

Corentin Tallec and Yann Ollivier. Unbiased
online recurrent optimization. arXiv preprint
arXiv:1702.05043, 2017.

S Tewksbury and RW Hallock. Oversampled, linear
predictive and noise-shaping coders of order n> 1.
IEEE Transactions on Circuits and Systems, 25(7):
436–447, 1978.

Young C Yoon. Lif and simplified srm neurons encode
signals into spikes via a form of asynchronous pulse
sigma-delta modulation. 2016.

Davide Zambrano and Sander M Bohte. Fast and
efficient asynchronous neural computation with
adapting spiking neural networks. arXiv preprint
arXiv:1609.02053, 2016.

https://hypertextbook.com/facts/2001/JacquelineLing.shtml
https://hypertextbook.com/facts/2001/JacquelineLing.shtml
https://openreview.net/forum?id=SJTB5GZCb
https://openreview.net/forum?id=SJTB5GZCb

