Graph Embedding with Shifted Inner Product Similarity and Its
Improved Approximation Capability

Akifumi Okunof+*
okuno@sys.i.kyoto-u.ac.jp
tGraduate School of Informatics, Kyoto University,

Abstract

We propose shifted inner-product similar-
ity (SIPS), which is a novel yet very simple ex-
tension of the ordinary inner-product similar-
ity (IPS) for neural-network based graph em-
bedding (GE). In contrast to IPS, that is lim-
ited to approximating positive-definite (PD)
similarities, SIPS goes beyond the limitation
by introducing bias terms in IPS; we theoret-
ically prove that SIPS is capable of approx-
imating not only PD but also conditionally
PD (CPD) similarities with many examples
such as cosine similarity, negative Poincaré
distance and negative Wasserstein distance.
Since SIPS with sufficiently large neural net-
works learns a variety of similarities, SIPS
alleviates the need for configuring the simi-
larity function of GE. Approximation error
rate is also evaluated, and experiments on two
real-world datasets demonstrate that graph
embedding using SIPS indeed outperforms
existing methods.

1 INTRODUCTION

Graph embedding (GE) of relational data, such as texts,
images, and videos, etc., now plays an indispensable
role in machine learning. To name but a few, words
and contexts in a corpus constitute relational data,
and their vector representations obtained by skip-gram
model (Mikolov et al., 2013a) and GloVe (Pennington
et al., 2014) are often used in natural language process-
ing. More classically, a similarity graph is constructed
from data vectors, and nodes are embedded to a lower
dimensional space where connected nodes are closer to
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each other (Cai et al., 2018).
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Figure 1: Visualization of word feature vectors for
WordNet dataset computed by GE with our proposed
SIPS model. See Supplement A for details.

Embedding is often designed so that the inner prod-
uct between two vector representations in Euclidean
space expresses their similarity. In addition to its
interpretability, the inner product similarity has the
following two desirable properties: (1) The vector rep-
resentations are suitable for downstream tasks as fea-
ture vectors because machine learning methods are
often based on inner products (e.g., kernel methods).
(2) Simple vector arithmetic in the embedded space
may represent similarity arithmetic such as the “lin-
guistic regularities” of word vectors (Mikolov et al.,
2013b). The latter property comes from the distribu-
tive law of inner product {(a + b,c) = (a,c) + (b, c),
which decomposes the similarity of a+ b and ¢ into the
sum of the two similarities. For seeking the word vector
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Y = Yqueen: W MAXIMIZe (Yiing ~Ymman+ Ywomans ¥') =
(Y1ing> ¥') = Wman» ¥') + (Ywoman, ¥') I Eq. (3) of Levy
and Goldberg (2014). Thus solving analogy questions
with vector arithmetic is mathematically equivalent to
seeking a word which is similar to king and woman but
is different from man.

Although classical GE has been quite successful, it con-
siders simply the graph structure, where data vectors
(pre-obtained attributes such as color-histograms of im-
ages), if any, are used only through the similarity graph.
To fully utilize data vectors, neural networks (NNs)
are incorporated into GE so that data vectors are con-
verted to new vector representations (Kipf and Welling,
2016; Zhanga et al., 2017; Hamilton et al., 2017; Dai
et al., 2018), which reduces to the classical GE by tak-
ing 1-hot vectors as data vectors. While these methods
consider 1-view setting, multi-view setting is considered
in Probabilistic Multi-view Graph Embedding (Okuno
et al., 2018, PMvGE), which generalizes existing mul-
tivariate analysis methods (e.g., PCA and CCA) and
NN-extensions (Andrew et al., 2013, DCCA) as well as
graph embedding methods such as Locality Preserving
Projections (He and Niyogi, 2004; Yan et al., 2007,
LPP), Cross-view Graph Embedding (Huang et al.,
2012, CvGE), and Cross-Domain Matching Correlation
Analysis (Shimodaira, 2016, CDMCA). In these meth-
ods, the inner product of two vector representations
obtained via NNs represents the strength of association
between the corresponding two data vectors. The vec-
tor representations and the inner products are referred
to as feature vectors and Inner Product Similarities
(IPS), respectively, in this paper.

IPS is considered to be highly expressive for represent-
ing the association between data vectors due to the Uni-
versal Approximation Theorem (Funahashi, 1989; Cy-
benko, 1989; Yarotsky, 2017; Telgarsky, 2017, UAT) for
NN, which proves that NNs having many hidden units
approximate arbitrary continuous functions within any
given accuracy. However, since IPS considers the in-
ner product of two vector-valued NNs, the UAT is
not directly applicable to the whole network with the
constraints at the final layer. Thus the approximation
capability of IPS is yet to be clarified.

For that reason, Okuno et al. (2018) incorporates UAT
into Mercer’s theorem (Minh et al., 2006) and proves
that IPS approximates any similarity based on Positive
Definite (PD) kernels arbitrary well. For example, IPS
can learn cosine similarity, because it is a PD kernel.
This result shows not only the validity but also the
fundamental limitation of IPS, meaning that the PD-
ness of the kernels is required for IPS.

To overcome the limitation, similarities based on spe-
cific kernels other than the inner product have received

considerable attention in recent years. One example is
Poincaré embedding (Nickel and Kiela, 2017) which is
an NN-based GE using Poincaré distance for embed-
ding vectors in hyperbolic space instead of Euclidean
space. Hyperbolic space is especially compatible with
computing feature vectors of tree-structured relational
data (Sarkar, 2011). While these methods efficiently
compute reasonable low-dimensional feature vectors by
virtue of specific kernels, their theoretical differences
from IPS is not well understood.

In order to provide theoretical insights on these meth-
ods, in this paper, we will point out that some spe-
cific kernels are not PD by referring to existing stud-
ies. To deal with such non-PD kernels, we consider
Conditionally PD (CPD) kernels (Berg et al., 1984;
Scholkopf, 2001) which include PD kernels as special
cases. We then propose a novel model named Shifted
IPS (SIPS) that approximates similarities based on
CPD kernels within any given accuracy. Interestingly,
negative Poincaré distance is already proved to be
CPD (Faraut and Harzallah, 1974) and it is not PD.
So, similarities based on this kernel can be approxi-
mated by SIPS but not by IPS. Although we can think
of a further generalization beyond CPD, this is only
touched in Supplement E by defining inner product
difference similarity (IPDS) model.

Our contribution is summarized as follows:

(1) We show that IPS cannot approximate a non-PD
kernel; we propose SIPS to go beyond the limita-
tion, and prove that SIPS can approximate any
CPD similarities arbitrary well.

(2) We evaluate the error rate for SIPS to approximate
CPD similarities, by incorporating neural networks
such as multi-layer perceptron and deep neural
networks.

(3) We conduct numerical experiments on two real-
world datasets, to show that graph embedding
using SIPS outperforms recent graph embedding
methods.

This paper is an extension of Okuno and Shimodaira
(2018) presented at ICML2018 workshop.

2 BACKGROUND

We work on an undirected graph consisting of n nodes
{vi}iz; and link weights {w;;}7';_; C Rx¢ satisfying
w;; = wj; and wy;; = 0, where w,;; represents the
strength of association between v; and v;. The data
vector representing the attributes (or side-information)
at v; is denoted as x; € RP. If we have no attributes,



Akifumi Okuno, Geewook Kim, Hidetoshi Shimodaira

we use 1-hot vectors in R” instead. We assume that the
observed dataset consists of {w;;}7;_; and {z;}];.

Let us consider a simple random graph model for the
generative model of random variables {w;;}}';_; given
data vectors {@;}? ;. The conditional distribution of
w;j is specified by a similarity function h(xz;,x;) of
the two data vectors. Typically, Bernoulli distribution
P(w;; = 1|z;, ;) = o(h(x;, x,)) with sigmoid function
o(x) := (1 + exp(—z))~* for 0-1 variable w;; € {0,1},
and Poisson distribution w;; ~ Po(exp(h(z;,z;))) for
non-negative integer variable w;; € {0,1,...} are used
to model the conditional probability. These mod-
els are in fact specifying the conditional expectation
E(wij|lzi, z;) by o(h(x;, x;)) and exp(h(x;, x;)), re-
spectively, and they correspond to logistic regression
and Poisson regression in the context of generalized
linear models.

These two generative models are closely related. Let
Wij ~ PO()\U) with )\ij = exp(h(:ci, .’B])) Then Supple—
ment B shows that

P(wy; =1|@i,x;) = o(h(zs, ;) + O(N;) (1)

and P(w;; > 2) = O()\};), indicating that, for suffi-
ciently small \;;, the Poisson model is well approxi-
mated by the Bernoulli model. Since these two models
are not very different in this sense, we consider only
the Poisson model in this paper.

We write the similarity function as

Wi, x;) == g(f (@), f(2;)), (2)

where f : R? — RX is a continuous function and
g : REXK 5 R is a symmetric continuous function.
For two data vectors x; and x;, their feature vectors
are defined as y;, = f(x;) and y; = f(z;), thus the
similarity function is also written as g(y;, y;). In partic-
ular, we consider a vector-valued neural network (NN)
y = fun(x) for computing the feature vector, then
9(fan(xi), Fan(z;)) is especially called siamese net-
work (Bromley et al., 1994) in neural network literature.
The original form of siamese network uses the cosine
similarity for g, but we can specify other types of
similarity function. By specifying the inner product
9(y,y") = (y,y’), the similarity function (2) becomes

h(zi, @) = (Fan(@i), Fan(@)))- (3)

We call (3) as Inner Product Similarity (IPS) model.
IPS commonly appears in a broad range of methods,
such as DeepWalk (Perozzi et al., 2014), LINE (Tang
et al., 2015), node2vec (Grover and Leskovec, 2016),
Variational Graph AutoEncoder (Kipf and Welling,
2016), and GraphSAGE (Hamilton et al., 2017). Multi-
view extensions (Okuno et al., 2018) with views d =
1,...,D, are easily obtained by preparing a neural
network fl(\%zl for each view.

3 PD SIMILARITIES

In order to prove the approximation capability of IPS
given in eq. (3), Okuno et al. (2018) incorporates
the UAT for NN (Funahashi, 1989; Cybenko, 1989;
Yarotsky, 2017; Telgarsky, 2017) into Mercer’s theo-
rem (Minh et al., 2006). In this section, we review their
assertion that shows uniform convergence of IPS to any
PD similarity. To show the result in Theorem 3.2, we
first define a kernel and its positive-definiteness.

Definition 3.1 For some set ), a symmetric continu-
ous function g : Y2 — R is called a kernel on V2.

Definition 3.2 A kernel g on V2 is said to be Positive
Definite (PD) if satisfying > i) 377, cicjg(y;,y;) > 0
for arbitrary ci,co,...,cn € R,y;,Ys,...,y, €Y.

For instance, cosine similarity g(y,y’) := (m, ﬁ)
is a PD kernel on (RP \ {0})2. Its PD-ness im-
mediately follows from 371, 377 cicig(y;,y;) =
>, CZH;JWH% > 0 for arbitrary {¢;}"; C R and
{y;}~; C Y. Also polynomial kernel, Gaussian kernel,
and Laplacian kernel are PD (Berg et al., 1984).

Definition 3.3 A function h(z,z’) := g(f(x), f(z))
with a continuous function f : X — ) and a kernel
g: Y% = Ris called a similarity on X2.

For a PD kernel g, the similarity h is also a
PD kernel on X2, since 7| >0, cicih(mi,x;) =

doic1 2ojer cicig(f(®i), f(=5)) > 0.

Briefly speaking, a similarity h is used for measuring
how similar two data vectors are, while a kernel g is
used to compare feature vectors.

The following theorem (Minh et al., 2006) shows exis-
tence of a series expansion of any PD kernel, which has
been utilized in kernel methods in machine learning

(Hofmann et al., 2008).

Theorem 3.1 (Mercer’s theorem) For some com-
pact set Y € RX", K* € N, we consider a positive
definite kernel g, : V2 5 R. Then, there exist non-

negative eigenvalues {A\p}32,, A\ > Ay > -+, and
continuous eigenfunctions {¢y}72 ; such that
9+ (U L) = D> Mt (y.) ok (YL, (4)

k=1
for all y,,y’, € Y, where the series convergences abso-

lutely for each (y,,¥’) and uniformly for ).

Note that the condition (2) in Minh et al. (2006), i.e.,
fy fy 9+ (Y., y.) dy, dy’, < oo, holds since g, is contin-
uous and ) is compact. The theorem can be extended
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to closed set ), but we assume compactness for simpli-
fying our argument.

It is obvious that IPS is always PD, be-
cause P Z?=1 Cicj<fNN(mi)a fNN(mj)> =
| >0 cifan(®i)]|3 > 0. We would like to show the
converse: IPS approximates any PD similarities. This
is given by the Approximation Theorem (AT) for IPS
below, which is Theorem 5.1 (D = 1) of Okuno et al.
(2018). The idea is to incorporate the UAT for NN
into Mercer’s theorem (Theorem 3.1).

Theorem 3.2 (AT for IPS) For X = [-M,M]P,
M > 0, and some compact set )V C RE") K* € N,
we consider a continuous function f, : & — Y
and a PD kernel ¢ : Y2 — R. Let o(-) be
ReLU or an activation function which is non-constant,
continuous, bounded, and monotonically-increasing.
Then, for arbitrary € > 0, by specifying sufficiently
large K € N,my = my(K) € N, there exist A €
REXms B € R™ %P ¢ € R™ such that

g (fu@), £ (@) = (Fan (), Frn(@))| <€

for all (z,z') € X2, where fyn(z) = Ao(Bz + c) is
a 1-hidden layer neural network with m; hidden units
and K outputs, and o () is element-wise o(-) function.

See Supplement A of Okuno et al. (2018) for the proof.
It is based on the series expansion gﬁPD)(y*,y;) =
Y peq Ak (y,)or(yl) of Mercer’s theorem (Theo-
rem 3.1) for arbitrary PD kernel g,EPD). This expan-

sion indicates with a vector-valued function ¢y () :=

A201(F. (@), ... A 0x (f.(x))) that

(bx (@), brc(@) = o7 (f. (@), F.(2), K — o0,

for all z,&’.  Considering a vector-valued NN
fxn : RP — RE that approximates (}K, the TIPS
(Fan(@), fan(@')) = (@i (), di(2')) converges to
g,(kPD)(f*(w), f.(@)) as K — oo, thus proving the as-
sertion. In addition to the uniform convergence shown
in Theorem 3.2, the approximation error rate will be
evaluated in Section 5.

Unlike Mercer’s theorem which indicates only the exis-
tence of the feature map ¢ %, Theorem 3.2 shows that
a neural network fyy : R? — R¥ can be implemented
so that the IPS {fyn (), fan (') eventually approxi-
mates the PD similarity g,EPD) (f.(2), f.(x)) arbitrary
well.

Note that Theorem 3.2 is AT for IPS which shows only
the existence of NNs with required accuracy. Although
we do not go further in this paper, consistency of the
maximum likelihood estimation implemented as SGD

is discussed in Section 5.2 and Supplement B of Okuno
et al. (2018) for showing that IPS actually learns any
PD similarities by increasing n.

4 CPD SIMILARITIES

Theorem 3.2 shows that IPS approximates any PD sim-
ilarities arbitrary well. However, similarities in general
are not always PD. To deal with non-PD similarities,
we consider a class of similarities based on Condition-
ally PD (CPD) kernels (Berg et al., 1984; Scholkopf,
2001) which includes PD kernels as special cases. We
then extend IPS to approximate CPD similarities.

Someone may wonder why only similarities based on
inner product are considered in this paper. In fact,
it is obvious that a real-valued NN fyn(,2’) with
sufficiently many hidden units approximates any sim-
ilarity h(x,x’) arbitrary well. This is an immediate
consequence of the UAT directly applied to fxn(z,z').
Therefore, considering the form (fyn (), Fan(x')) or
its extension just makes the problem harder. Our moti-
vation in this paper is that we would like to utilize the
feature vector y = fyn () with nice properties such
as “linguistic regularities” which may follow from the
constraint of the inner product.

The remaining of this section is organized as follows.
In Section 4.1, we point out the fundamental limitation
of IPS to approximate a non-PD similarity. In Sec-
tion 4.2, we define CPD kernels with some examples.
In Section 4.3, we propose a novel Shifted IPS (SIPS),
by extending the IPS. In Section 4.4, we give inter-
pretations of SIPS and its simpler variant C-SIPS. In
Section 4.5, we prove that SIPS approximates CPD
similarities arbitrary well.

4.1 Fundamental Limitation of IPS

Let us consider the negative squared distance (NSD)
9(y,y') = —|ly — ¥'l|3 and the identity map f(z) = z.
Then the similarity function

h(z,a') = g(f(x), f(@') = [z — 2|3

defined on RP X RP is not PD but CPD, which is defined
later in Section 4.2. Regarding the NSD similarity,
Proposition 4.1 shows a strictly positive lower bound
of approximation error for IPS.

Proposition 4.1 For all M > 0,p, K € N, and a set
of all R¥-valued continuous functions &(K), we have

e 0 e,
inf ———
fes(K) (2M)?P Ji_pp e Ji—ar aapp

‘— e — 2|2 - (F(@). f(a) 2pM

dedx’ > .
xrar > 3
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The proof is given in Supplement C.1.

Since &(K) includes neural networks, Proposition 4.1
indicates that IPS does not approximate NSD similarity
arbitrary well, even if NN has a huge amount of hidden
units with sufficiently large output dimension.

4.2 CPD Kernels and Similarities

Here, we introduce similarities based on Conditionally
PD (CPD) kernels (Berg et al., 1984; Scholkopf, 2001)
in order to consider non-PD similarities which IPS does
not approximate arbitrary well. We first define CPD
kernels.

Definition 4.1 A kernel g on )? is called Condition-
ally PD (CPD) if 370, >0, cicjg(y;,y;) > 0 holds
for arbitrary c1,¢a,...,cn € R, Yy, ¥y, -, Y, €Y with
the constraint >\, ¢; = 0.

The difference between the definitions of CPD and PD
kernels is whether it imposes the constraint y " ; ¢; = 0
or not. According to these definitions, CPD kernels
include PD kernels as special cases. For a CPD kernel
g, the similarity h is also a CPD kernel on X2,

A simple example of CPD kernel is g(y,v') = —||ly —
y'||§ for 0 < a < 2 defined on RX x REX. Other exam-
ples are —(sin(y —3'))? and —1(g«)(y +4') on R x R.
CPD-ness is a well-established concept with interest-
ing properties (Berg et al., 1984): For any function
u(), 9(y,v’) = u(y) + u(y’) is CPD. Constants are
CPD. The sum of two CPD kernels is also CPD. For
CPD kernels g with g(y,y’) < 0, CPD-ness holds for
~(~9)* (a € (0,1]) and —log(1— g).

Example 4.1 (Poincaré distance) For open unit
ball B = {y € RE | |ly|2 < 1}, we define a dis-
tance between y,y’ € BX as

- ly — I3
dPoinc' r'(y7 y,) := cosh 1 (1 + 2 , 5
e T—wea-wn) ©

where cosh™'(2) = log(z + v22—1). Consider-
ing the generative model of Section 2 with 1-hot
data vectors, Poincaré embedding (Nickel and Kiela,
2017) learns parameters y,, ¢ = 1,...,n, by fitting
0(—dpoincaré(Y;,Y;)) to the observed w;; € {0,1}.
Lorentz embedding (Nickel and Kiela, 2018) reformu-
late Poincaré embedding with a specific variable trans-
formation, that enables more efficient computation.

Interestingly, negative Poincaré distance is proved to
be CPD in Faraut and Harzallah (1974, Corollary 7.4).
Proposition 4.2 —dpoincars is CPD on BX x BX,

—dpoincaré 18 strictly CPD in the sense that —dpoincars 1S
not PD. A counter-example of PD-ness is, for example,

= 2¢; = ¢ = Ly, = (1/2,1/2),y, =

Another interesting example of CPD kernels is negative
Wasserstein distance.

Example 4.2 (Wasserstein distance) Let Z be a
metric space endowed with a metric dz, which we call
as “ground distance”. For ¢ > 1, let ) be the space of
all measures p on Z satisfying [, dz(z,zo)%du(z) < oo
for some zy € Z. The g-Wasserstein distance between
y,y’ € ) is defined as

1/q
d(q (y,9): inf // (z,2")%dn(z,2) .
ﬂ'EH yy ZxZ

Here, I(y,y’) is the set of joint probability measures
on Z x Z having marginals y,y’. Wasserstein distance
is used for a broad range of methods, such as Genera-
tive Adversarial Networks (Arjovsky et al., 2017) and
AutoEncoder (Tolstikhin et al., 2018).

Some cases of negative Wasserstein distance are proved
to be CPD.

Proposition 4.3 d(l) is CPD on Y? if —dy is CPD
on Z2. —dg,) is CPD on )? if Z is a subset of R.

—d%l,) is known as the negative earth mover’s distance,
and its CPD-ness is discussed in Gardner et al. (2017).
The CPD-ness of a special case of _dg/lz/) is shown in
Kolouri et al. (2016) Corollary 1. However, we note
that negative Wasserstein distance, in general, is not
necessarily CPD. As Proposition 4.3 states, Z is re-
quired to be a subset of R when considering ¢ > 1.

4.3 Proposed Models

For approximating CPD similarities, we propose a novel
similarity model

h(zi, z;) = (Fan (@), Fan (@)
+ unn(x;) + unn(x;), (6)
where fyn @ R? — RX and uny : R? — R are

vector-valued and real-valued NNs, respectively. We
call (6) as Shifted IPS (SIPS) model, because the IPS
(fan(zs), fan () given in (3) is shifted by the offset
unn () +unn (). For illustrating how SIPS expresses
CPD similarities, let us consider the NSD discussed in
Section 4.1:

—llz; — ;113 = (V2mi, Vo) — Iz 13

is expressed by SIPS with fyn() V2z and
unn(z) = —||z||3. Later, we show in Theorem 4.1
that SIPS approximates any CPD similarities arbitrary
well.

[EAEES
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We also consider a simplified version of SIPS. By as-
suming unxn(z) = —v/2 for all &, SIPS reduces to

h(zi,xj) = (Fan(@i), Fan(@5)) — 7, (7)

where v € R is a parameter to be estimated. We call
(7) as Constantly-Shifted IPS (C-SIPS) model.

If we have no attributes, we use 1-hot vectors for x; in
R"™ instead, and fyn (i) = y; € RE, unn(zi) = u; €
R are model parameters. Then SIPS reduces to the
matrix decomposition model with biases

h(x;, x;) = (yi,’yj> + u; + uj. (8)

This model is widely used for recommender systems
(Koren et al., 2009) and word embedding such as
GloVe (Pennington et al., 2014), and SIPS is considered
as its generalization.

4.4 Interpretation of SIPS and C-SIPS

Here we illustrate the interpretation of the proposed
models by returning back to the setting in Section 2.
We consider a simple generative model of independent
Poisson distribution with mean parameter E(w;;) =
exp(h(z;,z;)). Then SIPS gives a generative model

indep.

wij " Po(B(@i)B(a;) exp(Frn (@) Frn (@), (9)

where B(x) := exp(unn(x)) > 0. Since S(x) can be
regarded as the “importance weight” of data vector x,
SIPS naturally incorporates the weight function S(x)
to probabilistic models used in a broad range of existing
methods. Similarly, C-SIPS gives a generative model

wi " Po(aexp((fax(@i), Fxn(e;)),  (10)

where « := exp(—y) > 0 regulates the sparseness of
{w;;}. The generative model (10) is already proposed
as 1-view PMvGE (Okuno et al., 2018).

It was shown in Supplement C of Okuno et al. (2018)
that PMvGE (based on C-SIPS) approximates CDMCA
when w;; is replaced by d;; in the constraint (8) therein,
and this result can be extended so that PMvGE with
SIPS approximates the original CDMCA using w;; in
the constraint.

4.5 Approximation Theorems

It is obvious that SIPS is always CPD, be-
cause D 2 CiCy ((Fan(@), Fun(zy))  +
unn (i) + unn(x;)) = X afan(@)li +
20301 ) (X2 o1 cjunn(zy)) > 0 for any ¢;’s with
>, ¢ = 0. We would like to show the converse: SIPS
approximates any CPD similarities, and thus it

overcomes the fundamental limitation of IPS. This is
given in Theorem 4.1 below, by extending Theorem 3.2
of IPS to SIPS. Theorem 4.2 also proves that C-SIPS
given in eq. (7) approximates CPD similarities in a
weaker sense.

Theorem 4.1 (AT for SIPS) For X = [—M, M]P,
M > 0, and some compact set ) € RE" | K* € N,
we consider a continuous function f, : X -+ ) and a
CPD kernel ¢'“"® : Y2 s R. Let o(-) be ReLU or
an activation function which is non-constant, contin-
uous, bounded, and monotonically-increasing. Then,
for arbitrary € > 0, by specifying sufficiently large
K € Nymy = my(K) € Nym, € N, there exist
A € REX" B € RWXP ¢ € R™,e € R™ F €
R™u*P o € R™ such that

P (F (@), fo ()

— ((Fan(@), Fan (@) + unn (@) + unn(@)) | <e

for all (z,z’) € X2, where fyn(z) = Ao(Bzx +c¢) €
RX and unn(z) = (e,0(Fz + 0)) € R are one-hidden
layer neural networks with my and m, hidden units,
respectively, and o (x) is element-wise o(-) function.

The proof is in Supplement C.2. It stands on Lemma
2.1 in Berg et al. (1984), which shows the equivalence

of CPD-ness of gx((CPD) (y,y’) and PD-ness of

C C
90, ¥) =4 (y,9) + 9P (yo, yo)
C C
— g (g, y0) — TPy o) (11)

for any fixed y, € Y. Using go and h.(x) :=
c C .
g (Fu(@),y0) = 5957 (g0, o), we write

N (f @), £ o)
= 9o(f.(2), £.(2")) + ha(@) + ha(2).  (12)
AT for TIPS shows that (fyn(x), fan(2')) approxi-
mates go(f,(x), f.(x')) arbitrary well, and UAT for

NN shows that unn (@) approximates h.(x) arbitrary
well, thus proving the theorem.

Theorem 4.2 (AT for C-SIPS) Symbols and as-
sumptions are the same as those of Theorem 4.1. For
arbitrary € > 0, by specifying sufficiently large K € N,
mg = my(K) € N, r > 0, there exist A € RExms,
B e R™*P ¢ e R™, v = O(r?) such that

g (fu(@), fo(@)
—((Fan(@), Fan(®)) =) | <e+0(r?)
for all (x,z') € X2, where fyn(z) = Ao(Bx +c¢) €

RX is a one-hidden layer neural network with m hid-
den units.
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The proof is in Supplement C.3.

There is an additional error term of O(r~2) in The-
orem 4.2. A large r will reduce the error, but then
large v = O(r?) value may lead to unstable computa-
tion for finding an optimal NN. Conversely, a small r
increases the upper bound of the approximation error
. Thus, if available, we prefer SIPS in terms of both
computational stability and small approximation error.

5 APPROXIMATION ERROR RATE

Thus far, we showed universal approximation capabil-
ities of IPS and SIPS in Theorems 3.2 and 4.1. In
this section, we evaluate error rates for these approxi-
mation theorems, by assuming some additional condi-
tions. They are used for employing the theorems for
eigenvalue decay rate of PD kernels (Cobos and Kiihn,
1990, Theorem 4) and approximation error rate for
NNs (Yarotsky, 2018).

Conditions on the similarity function: We con-
sider the following conditions on the function f,
and the kernel g, for the underlying true similarity

g« (f (), f(x')).

(C-1) Eigenfunctions {¢x(y)}32,; of g.(y,y’) de-
fined in Theorem 3.1 are continuously dif-
ferentiable, i.e., C', and uniformly bounded

in the sense of sup |ék(y)] < oo and
keN,yey

sup  Ai[|0¢k(y)/dy|3 < oo
keN,yey

(C-2) g.(y,y') is C1.
(C-3) £, is C.

NN architecture: As we considered in Theorems 3.2
and 4.1, we employ a set of K-dimensional vector-
valued NNs for X = [-M, M]P. The activation function
is confined to ReLU o(z) := max{0, z}. Let L € N be
the number of hidden layers, i.e., depth, of the NN, and
let W € N be the total number of weights in the NN.
For example, L = 1 and W is the number of elements in
A, B, c in Theorems 3.2. Instead of the fixed network
architecture, here we consider a class of architectures
specified by W with a specific growing rate of the depth
L. For 0 < a < 1, define a set of all possible NNs with
the constraint as

Sa(W,K) = {frn : X = R | fyy has
W weights with depth L = O((W/K)®)}, (13)

where W/K — oo. This is a simple extension of the
case K = 1 considered in Yarotsky (2018), where & = 0
and a = 1 correspond to constant-depth shallow NNs
and constant-width deep NNs, respectively.

Theorem 5.1 (Approx. error rate for IPS)

Symbols and assumptions are the same as those of
Theorem 3.2 except for the additional conditions
(C-1) and (C-2) for gkaD) and (C-3) for f,. Instead
of the 1-hidden layer NN, we consider the set of
NNs fyn € 64(Wy,K) for Wy € N. Then the

approximation error rate of IPS is given by

inf sup
FNNESa (W K) g arex

"P(F (@), Fo@) — (Fan(®), fNN(cc’»’

=0(K*%+K5+ W), (14)

Proof is in Supplement D.3. In the above result,

O(K~Y5") is attributed to truncating (4) at K terms
1,14a _1fe

in Mercer’s theorem and O(K2" » W, 7 )is at-

tributed to the approximation error of fyy. The error

rate for SIPS is similarly evaluated, but it includes the

error rate for newly incorporated NN unn.

Theorem 5.2 (Approx. error rate for SIPS)
Symbols and assumptions are the same as those of The-
orem 4.1 except for the additional conditions (C-1) for

go of (11), (C-2) for g,(FCPD)7 and (C-3) for f,. Instead
of the 1-hidden layer NN, we consider the set of NNs
fun € 6o(Wy, K) for Wy € N and unn € 64(W,,, 1)
for W, € N. Then the approximation error rate of

SIPS is given by

inf sup
Fan€EGQ (W), K) z,x'eX
UNNES o (Wy,1)

‘giCPD’(f*(wa*(w’))

(Frn(@). P (@) + () + uNN@c'))\

1+a _14a _1+ta
S A ) (15)

1 lJr
:O(K*K* +E2Te W,

Proof is in Supplement D.4.

In Theorems 5.1 and 5.2, the commonly appearing
term O(K~Y%") may be a bottleneck when K* is very
p 1 1
large. We may specify W, = O(K1+1+a(K*+2)) ~
p P
O(K1+2(1+a)) and W, = O(K (1+0)K*) g0 that the
overall approximation error rate is O(K~/K7).

6 EXPERIMENTS

In this section, we evaluate similarity models (NSD,
Poincaré, IPS, SIPS) on two real-world datasets: Co-
authorship network dataset (Prado et al., 2013) in
Section 6.1 and WordNet dataset (Miller, 1995) in
Section 6.2. Details of experiments are shown in Sup-
plement A.
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Table 1: Experiments on Co-authorship network and WordNet evaluated by ROC-AUC score (higher is better).
Sample average and the standard deviation of 5 runs are shown.

Co-authorship network WordNet
K =2 K=5 K =10 K =20 K =2 K=5 K =10 K =20
NSD 0.8220 +0.010  0.8655+0.014  0.8771+0.012  0.8651 £0.033  0.7924 £0.0072  0.8997 £+ 0.0009  0.9569 & 0.0005  0.9836 + 0.0001
Poincaré  0.7071 £0.021  0.8738 £0.001  0.88224+0.001  0.8835+0.001  0.8401 £ 0.0073  0.9792 £ 0.0006 0.9866 + 0.0003  0.9851 £ 0.0002
1PS 0.7802£0.005  0.8830 £0.001  0.8955+0.001  0.8956 +0.001  0.724540.0056  0.7604 £ 0.0055  0.7688 +0.0023  0.7918 £ 0.0018
SIPS 0.7811+£0.001  0.8853 £0.001 0.8964 +0.002 0.897440.001 0.963240.0008 0.9766 £ 0.0006  0.9825 % 0.0005 0.9865 £ 0.0004

6.1 Experiment on Co-authorship Network

Co-authorship network dataset (Prado et al., 2013) con-
sists of n = 42,252 nodes and 210, 320 undirected edges.
Each node v; represents an author, and data vector
x; € R3? (p = 33) represents the numbers of publica-
tions in 29 conferences/journals and 4 microscopic topo-
logical properties describing the direct neighborhood
of the node. Adjacency matrix W = (w;;) € {0,1}"*"
represents the co-authorship relations: w;; = w;; =1
if v; and v; have any co-authorship relation, and
w;; = wj; = 0 otherwise.

Preprocessing: We split authors into training set
(90%) and test set (10%). Co-authorship relations for
the test set are treated as unseen. We use 10% of the
training set as validation set.

Author feature vectors: Using the data vectors for
authors {x;}7; C RP, feature vectors {y,}7, C RE
are computed via a neural network y, = fyn(z;). We
employ 1-hidden layer perceptron with 10,000 hidden
units and ReLU activation function. For implementing
SIPS, one of the K output units of fyn(;) is used
for the bias term w; = unxn(x;), so actually the fea-
ture vector is computed as (y,,u;) = fan(x;) € RE
with y, € RE=1. Model parameters are trained by
maximizing the objective

Z w;; log

1<i#j<n

exp(h(x;, z;))

; 16
ZkEST(Nij) exp(h(z;, zr)) (16)

where h : X2 — R is a similarity function and Sr(Nij)
is a subset that consists of » = 10 entries randomly
sampled from N;; := {k|1 < k < n,w;; =0} U {j}.

Similarity models: (i) NSD uses h(z;, z;) = —|ly, —
y;lI3. (i) Poincaré embedding (Nickel and Kiela,
2017) uses h(w;,x;) = —dpoincare(yi,yj) defined in
(5). (iii) IPS uses h(z;, ;) = (y;,y;). (iv) SIPS uses
h@i, ;) = (Y;, ;) + ui + ;.

Results: Models are evaluated by ROC-AUC (Bradley,
1997) on the task of predicting unseen co-authorship
relations. ROC-AUC scores are shown on the left-hand
side of Table 1. Although NSD demonstrates a good
performance for K = 2, SIPS outperforms the other
methods for K = 5,10, 20.

6.2 Experiment on WordNet

WordNet dataset (Miller, 1995) is a lexical resource
that contains a variety of nouns and their relations. For
instance, a noun “mammal”’ represents a superordinate
concept of a noun “dog”, thus these two words have
hypernymy relation. We preprocess WordNet dataset
in the same way as Nickel and Kiela (2017). We used
a subset of the graph with n = 4027 nouns and 53, 905
hierarchical relations by extracting all the nouns sub-
ordinate to “animal”. Each noun is represented by
v;, and relations are represented by adjacency matrix
W = (w;j) € {0,1}"*", where w;; = wj; represents
any hypernymy relation, including transitive closure,
between v; and v;.

Word feature vectors: Since nodes have no at-
tributes, data vectors are formally treated as 1-hot
vectors in R™. Instead of learning neural networks, the
distributed representations {y,;}?_; C R¥ of words are
learned by maximizing the objective (16) with r = 20
for NSD, Poincaré and IPS, and {(y;,u;)}", C RE
are learned for SIPS. Similarity models are the same
as those of Section 6.1.

Results: Models are evaluated by ROC-AUC of re-
construction error on the task of reconstructing hier-
archical relations in the same way as Nickel and Kiela
(2017). ROC-AUC score is listed on the right-hand side
of Table 1. SIPS outperforms the other methods for
K = 2,20, and it is competitive to Poincaré embedding
for K = 5,10.

7 CONCLUSION

We proposed a novel shifted inner-product similar-
ity (SIPS) for graph embedding (GE), that is theo-
retically proved to approximate arbitrary conditionally
positive-definite (CPD) similarities including negative
Poincaré distance. Since SIPS automatically approxi-
mates a wide variety of similarities, SIPS alleviates the
need for configuring the similarity function of GE.
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