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A Lemmas and Proofs

A.1 Law of Large Numbers for Doubly-Indexed Partially-Dependent Random Variables

In this section, we first show and prove Theorem A.1, that is the law of large numbers, for doubly-indexed
partially-dependent random variables. Then, we apply Theorem A.l to the empirical probability S-score and
the empirical moment -score for proving Lemma A.2 and A.3 in which we show convergence
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as n — 00, respectively.

Theorem A.1l. Let Z := (Z;;) be an array of random variables Z;; € Z, (i,7) € Z, :== {(4,7) | 1 <1 < j < n},
and h : Z — R be a bounded and continuous function. We assume that Z;; is independent of Z; if (k1) €
Rin(ij) = {(k,1) €L, | k,l € {1,...,n}\ {i,j}}, and Ez(h(Z;;)*) < oo, for all (4,5) € Z,,. Then the average of
h(Z;;) over Z,, converges to the expectation in probability as n — co; that is
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Proof of Theorem A.1l. Regarding the variance of the average, we have
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where Ez,Vz represent expectation and variance with respect to Z. By considering Ez(|h(Z;;)]) <
Ez(h(Zij)*)'/? < 00, BEz(IMZij)h(Z)|) < \/Ez(W(Zij)?) Ez(h(Z1))? < o0, |T,| = O(n?) and |Z, \ Rn(i, 5)| =
O(n), the last formula is of order O(n=*-n?-n) = O(n~1!). Therefore,
‘ | Z h(Z ZJ = (nil)' (21)
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(21) and Chebyshev’s inequality indicate the assertion. O

The same assertion appears in Supplement B.1 of Okuno et al. (2018). We note that the convergence rate is only
Op(1/+/n) but not Oy (1/+/|Z,]) = Op(1/n), even though we leverage O(|Z,|) = O(n?) observations {Z;; } i j)ez, -

. indep. iid.
Lemma A.2. Let ® be a parameter set. Assuming that w;; | @;, x; TP g, @ g Q, suppl) C X where

X C RP is a compact set, > .y, q(w | T1,x2)pe(w | x1,12)° < 00, D wen, Po (W | x1,22)0 < oo for all
0> 0,xy,x2 € X. Then, it holds for all & € © that
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indicating (6) 2 E2 (d,(gwlz‘whwz)(q,pe)) (n — 00).
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Proof of Lemma A.2. Applying Theorem A.1 to

6 wlmhmj) 1+A
1+8 ’

po(wij | x4, ;) p
Zij = (wij, @i, x;), h(Zsj) = — o(wy | 3 J + )

wENy

immediately proves the assertion, as Ez(h(Z;;)?) < oo follows from the assumptions; the convergence limit is,
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Thus proving the assertion. O

Lemma A.3. Let ©® be a parameter set. Assuming (9)—(11), it holds for all 8 € ® that
Ly.n(8) = uf™ (g, po; v) + Op(1/v/n),
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Proof of Lemma A.3. Applying Theorem A.1 to
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immediately proves the assertion, as Ez(h(Z;;)?) < oo follows from the assumptions; the convergence limit is,
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Thus proving the assertion. O
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A.2 Evaluation of M(0) in Theorem 3.1

Lemma A.4. Suppose that ¢ > ¢,, 8 € O, := {0 € O | Ex2(n.(x1, x2)po(x1,22)%) < €}, and 3 € (0, Bo], it
holds for
M(8) := B Ex2 (n(@1, x2)po(z1, 22)7) 677/ o i= Exe(n. (1, 22)),

that
M(8) < a'=F/Popg=t (Vg c ©,).
Proof of Lemma A.4. Proof is based on Lyapunov’s inequality, that is, F(Z?) < E(Z%0)P/% for any non-

negative real-valued random variable Z and 0 < 8 < By < oco. For applying this inequality, we first fix 8 € O,
and expand M () with the probability density function (pdf) v of the random variable (a1, z2) as
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In eq. (22), P(x1,x2) := v(x1, T2)ns (1, X2) /@ can be regarded as a pdf, since (x1,x2) > 0 for all (x1,x2) and
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As U can be regarded as a pdf and pg is non-negative, Lyapunov’s inequality indicates that
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The assertion is proved. O

A.3 Proof of Theorem 3.2

We first verify that (19) is equivalent to Oh(8)/08 = 0. From the definition of h(Y)(8) and the assumption (i)
po(xy, x2) € CH(O) for all (zy,x2) € X2, we have
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We next verify the convergence E*(||0%) — 0, |2) — 0. From the assumption (ii), 6, is the unique minimizer of
h(6) over ©. Regarding the estimator 8 defined as (18) with the assumption (iii), Moulines and Bach (2011)

Theorem 2 asserts that £*(||0™) —6.,]|2) — 0 if the following conditions (C-1)-(C-3) hold: (C-1) E® (%) =

90) for all 6 € O, (C-2) h(8) is strongly convex on ©, i.e., I\ > 0 such that h(81) —h(2) > (2482) 9, —g,) +

A|61 — 62])3 for all 61,05 € O, and (C-3) H%HQ is bounded on ® for any (Wy(f), %t)). These conditions
(C-1)—(C-3) correspond to the conditions (H1), (H3), and (H5), that are required in Moulines and Bach (2011)
Theorem 2, respectively.

In case of Theorem 3.2, (C-1) holds as we have already seen for showing (19); note that h(Y)(8) € C*(®) from
the assumption (i). (C-2) is assumed as (ii), and (C-3) holds because h(Y (@) is C! on the compact set ® and

(W,gt),L(f)) is a random variable taking value in a finite set. Thus we have proved the convergence.

O
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