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Abstract

Bayesian optimisation (BO) has been a suc-
cessful approach to optimise functions which
are expensive to evaluate and whose obser-
vations are noisy. Classical BO algorithms,
however, do not account for errors about the
location where observations are taken, which
is a common issue in problems with phys-
ical components. In these cases, the esti-
mation of the actual query location is also
subject to uncertainty. In this context, we
propose an upper confidence bound (UCB)
algorithm for BO problems where both the
outcome of a query and the true query loca-
tion are uncertain. The algorithm employs
a Gaussian process model that takes prob-
ability distributions as inputs. Theoretical
results are provided for both the proposed
algorithm and a conventional UCB approach
within the uncertain-inputs setting. Finally,
we evaluate each method’s performance ex-
perimentally, comparing them to other input
noise aware BO approaches on simulated sce-
narios involving synthetic and real data.

1 Introduction

Bayesian optimisation (BO) (Shahriari et al., 2016) is a
technique to find the global optimum of functions that
are unknown, expensive to evaluate, and whose out-
put observations are possibly noisy. In this sense, BO
has been applied across different fields to a wide class
of problems, including hyper-parameter tuning (Snoek
et al., 2012), policy search (Wilson et al., 2014), en-
vironmental monitoring (Marchant and Ramos, 2012),
robotic grasping (Nogueira et al., 2016), etc. Although
taking into account that we might have a noisy obser-

Proceedings of the 22nd International Conference on Ar-
tificial Intelligence and Statistics (AISTATS) 2019, Naha,
Okinawa, Japan. PMLR: Volume 89. Copyright 2019 by
the author(s).

vation of the function’s output, conventional BO ap-
proaches assume that the function has been sampled
precisely at a specified query location. While this is
true for many applications of BO, there are certain
problems, especially in areas of robotics and process
control, in which this assumption typically does not
hold.

As an illustration, consider a problem where we are
interested in finding the peak of an environmental pro-
cess f(x) over a region S ⊂ Rd. To this end, we send
a mobile robot to different target locations xt ∈ S to
observe the process. Unfortunately, due to localisation
uncertainty and motion control errors, execution noise
prevents the robot from reaching the planned target
location exactly. Instead, after each query, the robot
provides us with an estimate of its actual location x̃t
via a probability distribution PLt , which takes into ac-
count localisation noise, as depicted in Figure 1. From
each query, we obtain a noisy observation of the en-
vironmental process yt = f(x̃t) + ζt, where ζt is an
independent noise term. In this scenario, both the
function inputs x̃t, i.e. query locations, and outputs
f(x̃t) are not directly observable.

This paper investigates optimisation problems where
input noise affects both the execution of a query and
the estimation of its true location. In particular,
we analyse the standard BO approach when employ-
ing the improved Gaussian process upper-confidence
bound (IGP-UCB) (Chowdhury and Gopalan, 2017)
algorithm under input noise, and we propose the
uncertain-inputs Gaussian process upper confidence
bound (uGP-UCB) algorithm. The latter is equipped
with a GP model that takes probability distribu-
tions as inputs in a similar framework to Oliveira
et al. (2017). We apply kernel embeddings techniques
(Muandet et al., 2016) to obtain the first theoretical re-
sults for BO under uncertain inputs, bounding the re-
gret of both uGP-UCB and IGP-UCB. In addition, ex-
periments provide empirical performance evaluations
of different BO approaches to problems involving in-
put noise.
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Figure 1: At time t − 1, the robot is estimated to be
at some x̃t−1 ∼ PLt−1. It is then sent to target location
xt. However, due to uncertainty in the query execu-
tion, represented by PEx , the robot actually ends up at
another location x̃t, whose belief distribution, accord-
ing to the localisation system, is represented by PLt .
The robot’s true locations and true path are indicated
by the dashed lines.

2 Related work

Recently several BO approaches that deal with prob-
lems where the execution of queries to an objective
function is affected by uncertainty have been pro-
posed. Nogueira et al. (2016) presented a method that
applies the unscented transform (Wan and van der
Merwe, 2000) to query BO’s acquisition function. By
considering a stochastic query execution process, the
method is able to find robust solutions to robotics
problems such as grasping. Another approach to
handle query uncertainty is presented in Pearce and
Branke (2017) to optimise stochastic simulations. In
that case, query uncertainty refers to imperfect knowl-
edge about input variates for a simulation model (Lam,
2016). Pearce and Branke apply Monte Carlo inte-
gration to marginalise out input variates that are un-
known when querying BO’s acquisition function. In
broader terms, all of these problems can be described
as optimising an integrated cost function, where one
may instead use a GP prior over the integrated func-
tion (Beland and Nair, 2017; Toscano-Palmerin and
Frazier, 2018). Contrasted to uGP-UCB, however, the
approaches mentioned above only deal with indepen-
dent and identically distributed input noise and mostly
offer no known theoretical guarantees. In addition, the
data points in their GP datasets are only point esti-
mates, instead of distributions as used in this paper.

Another BO approach is presented in Oliveira et al.
(2017), which employed a Gaussian process (GP)
model that takes probability distributions directly as
inputs (Girard, 2004; Dallaire et al., 2011). However,
Oliveira et al.’s method intent is to learn a model of

the objective function with a robot, while minimising
travelled distance, not as an optimisation framework.

Problems like the one illustrated in Figure 1 can also
be related to partially-observable Markov decision pro-
cesses (POMDPs) (Marchant and Ramos, 2014; Ling
et al., 2016). This paper, however, is concerned with
a general optimisation setup.

3 Problem formulation

We consider an optimisation problem where an algo-
rithm sequentially selects target locations xt within a
compact search space S ⊂ X at which to query a func-
tion f : X → R, seeking its global optimum. In addi-
tion, the query execution itself is a stochastic process,
leading the query to be made at some x̃t|xt ∼ PEx ,
instead.

How close the algorithm is to the global optimum can
be measured in terms of regret. In a bandits optimi-
sation setting, the instantaneous regret suffered by a
maximisation algorithm for a choice of target xt in our
problem is given by:

r̃t = max
x∈S

f(x)− f(x̃t) . (1)

In the deterministic-inputs case, the algorithmic de-
sign goal is to minimise cumulative regret, ensuring
that the algorithm eventually hits the global optimum
of f (Srinivas et al., 2010; Bull, 2011). However, as x̃t
is subject to noise, one can attempt to minimise the
expected regret, which is such that:

E[r̃t|xt] = max
x∈S

f(x)− E[f(x̃t)|xt] = ρE + r̂t , (2)

where:

ρE := max
x∈S

f(x)−max
x∈S

E[f(x̃)|x] (3)

r̂t := max
x∈S

E[f(x̃)|x]− E[f(x̃t)|xt] . (4)

Here ρE is a constant, representing the difference be-
tween the maximum of the function and the maximum
value any algorithm is expected to reach under the
query execution uncertainty. However, r̂t is control-
lable via the algorithm’s choices of xt and is associated
with the goal of finding:

x∗ ∈ argmax
x∈S

E[f(x̃)|x] , (5)

which defines a target location that maximises the
expected value of the function f under the query-
ing process noise. As defined, x∗ minimises the ex-
pected regret to a lower bound given by ρE and de-
fines an optimum location which is robust to execu-
tion noise. Therefore, we call r̂t the uncertain-inputs
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regret. Similarly, we also define the uncertain-inputs
cumulative regret R̂n =

∑n
t=1 r̂t. With these defini-

tions, an algorithm whose uncertain-inputs cumulative
regret R̂n grows sub-linearly achieves a minimum on
the expected regret:

lim
n→∞

min
t≤n

E[r̃t|xt] = ρE + lim
n→∞

min
t≤n

r̂t

≤ ρE + lim sup
n→∞

R̂n
n

= ρE .
(6)

Distribution assumptions: We are assuming that
the query location distribution PEx marginalises over
all other variables that could affect the querying pro-
cess, such as starting points and effects from the en-
vironment that the agent is in. In addition, the true
PEx might be unknown. However, after each query,
we assume that a distribution PLt estimating the true
query location is available. These probability distri-
butions are illustrated by the example in Figure 1 for
a robotics case.

For each xt, the algorithm is provided with observa-
tions yt = f(x̃t) + ζt, where ζt is σζ-sub-Gaussian
observation noise, for some σζ ≥ 0. Sub-Gaussian
random variables can be thought of as any random
variable whose tail distribution decays at least as fast
as a Gaussian. Both Gaussian and bounded random
variables fall in this category (Boucheron et al., 2013).

Regularity assumptions: We assume f : X → R
to be an element of Hk, which is a reproducing kernel
Hilbert space (RKHS) (Schölkopf and Smola, 2002).
For a given positive-definite kernel k : X × X → R,
a RKHS Hk is a Hilbert space of functions with in-
ner product 〈·, ·〉k and norm ‖·‖k =

√
〈·, ·〉k such that

f(x) = 〈f, k(·,x)〉k, for any f ∈ Hk and any x ∈ X .
We assume k is continuous and bounded on X × X ,
with k(x,x) ≤ 1,∀x ∈ X , and that ‖f‖k ≤ b for
the objective function in Equation 5, where b > 0 is
known.1 When not explicitly mentioned, assume an
Euclidean domain for f , i.e. X ⊆ Rd, d ∈ N.

4 The uGP-UCB algorithm

This section describes a method for Bayesian optimi-
sation under uncertain inputs. The section starts by
presenting a Gaussian process that allows direct mod-
elling of objectives defined in terms of expectations.
This GP approach is then applied to derive a BO algo-
rithm named uncertain-inputs Gaussian process upper
confidence bound (uGP-UCB), presented in the second
part of this section.

1These assumptions are met by most of the popular ker-
nels in BO and are common in the regret bounds literature.

4.1 Gaussian process priors with uncertain
inputs

To extend BO to the case where query locations x are
uncertain, we can redefine the objective in Equation 5
as a function of the query probability distributions.
Let P denote the set containing all probability mea-
sures on X ⊆ Rd. With f ∈ Hk, we can define the
map:

ψ : P → Hk

P 7→
∫
X
k(·,x) dP (x) .

(7)

For any X -valued random variable x̃ distributed ac-
cording to P ∈ P, we then have that:

EP [f ] := E[f(x̃)] = 〈ψP , f〉k, ∀f ∈ Hk , (8)

where ψP := ψ(P ). If the kernel k is characteristic,
such as radial kernels (Sriperumbudur et al., 2011), ψ
is injective, defining a one-to-one relationship between
measures in P and elements of Hk. Therefore, ψ is
referred to as the mean map, and ψP as the kernel
mean embedding of P (Muandet et al., 2016).

Using ψ as defined in Equation 7, one can construct
kernels over the set of probability measures P. In par-
ticular, for any P, P ′ ∈ P, we have that:

k̂(P, P ′) := 〈ψP , ψP ′〉k =

∫
X

∫
X
k(x,x′) dP (x) dP ′(x′)

(9)
defines a positive-definite kernel over P (Muandet
et al., 2012). Notice that in this formulation, even
if we have inputs representing the same random vari-
able x̃ ∼ P , we have k̂(P, P ) = 〈ψP , ψP 〉 6= E[k(x̃, x̃)],
which is then different from other kernel formulations
for models with uncertain inputs (Dallaire et al., 2011).

The kernel in Equation 9 is associated with a RKHS
Hk̂ containing functions over the space of probability
measures P. Besides the linear kernel in Equation 9,
many other kernels on P can be defined via ψ, e.g.
radial kernels using ‖ψP − ψP ′‖k as a metric on P
(Muandet et al., 2012). However, the simple kernel
in Equation 9 provides us with a useful property to
model the objective in Equation 5, as presented next.

Lemma 1 (Expected function). Any f ∈ Hk is con-

tinuously mapped to a corresponding f̂ ∈ Hk̂, which is
such that:

∀P ∈ P, f̂(P ) = EP [f ]

‖f̂‖k̂ = ‖f‖k .
(10)

The mapping f 7→ f̂ constitutes an isometric isomor-
phism between Hk and Hk̂.
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Proof sketch. The proof follows from the fact that
Dirac measures Dx, for x ∈ X , are also probabil-
ity measures in P. Since k(x,x′) = k̂(Dx, Dx′),
∀x,x′ ∈ X , we can define a bijective linear map be-
tween Hk and Hk̂ that preserves norms. A complete
proof is presented in the appendix.

As a positive-definite kernel, k̂ defines the covari-
ance function of a Gaussian process GP(0, k̂) mod-
elling functions over P. This GP model can then be
applied to learn f̂ from a given set of observations
Dn = {(Pi, yi)}ni=1, as in Girard (2004). Under a zero-

mean GP assumption, the value of f̂(P∗) for a given
P∗ ∈ P follows a Gaussian posterior distribution with
mean and variance given by:

µ̂n(P∗) = k̂n(P∗)
T(K̂n + λI)−1yn , (11)

k̂n(P, P ′) = k̂(P, P ′)− k̂n(P )T(K̂n + λI)−1k̂n(P ′)
(12)

σ̂2
n(P∗) = k̂n(P∗, P∗) , (13)

where yn := [y1, . . . , yn]T, [K̂n]ij = k̂(Pi, Pj) and

k̂n(P∗) := [k̂(P∗, P1), . . . , k̂(P∗, Pn)]T. For a f̂ ∈ Hk̂,

we have that f̂ is generally not a sample from the GP
(Rasmussen and Williams, 2006, p. 131). However,
we always have µ̂n ∈ Hk̂ by definition, allowing the

GP to learn an approximation for f̂ . Therefore, in
these equations, λ ≥ 0 is simply a parameter that is
not necessarily related to the true observation noise as
in usual GP modelling assumptions (Rasmussen and
Williams, 2006).

4.2 Upper-confidence bound

Coming back to the problem definition in Equation 5,
we consider a function f̂ : P → R, such that for any
x̃ ∼ P, f̂(P ) = E[f(x̃)]. The GP model proposed in
the previous section allows deriving a BO algorithm
to solve the problem in Equation 5. Given a set of
past observations Dt−1 = {(Pi, yi)}t−1i=1, the following
defines an upper confidence bound (UCB) acquisition
function:

h(P |Dt−1) = µ̂t−1(P ) + βtσ̂t−1(P ) , (14)

where βt is a parameter controlling the exploration-
exploitation trade-off. The theoretical results in the
next section will show that βt can be set accordingly
for h(P |Dt−1) to maintain a high-probability upper

bound on f̂ .

Querying the GP model with x 7→ PEx would allow
selecting points xt based on an estimate for EPExt [f ] :=

E[f(x̃t)|xt]. However, in general, the true mapping
x 7→ PEx is unknown. Instead, we use a model x 7→ P̂x

whose approximation error |EPEx [f ]−EP̂x
[f ]| is small.

Algorithm 1: uGP-UCB

Input: S: search space
n: total number of iterations

1 for t ∈ {1, . . . , n} do

2 xt = argmax
x∈S

µ̂t−1(P̂x) + βtσ̂t−1(P̂x)

3 (PLt , yt)← Sample f at x̃t|xt ∼ PExt
4 Dt = Dt−1 ∪ {(PLt , yt)}
5 x∗n = argmax

xt∈Dn
µ̂n(P̂xt)

Result: x∗n

Algorithm 1 presents the uGP-UCB algorithm.
Equipped with the acquisition function in Equation 14,
at each iteration t, the algorithm selects the target lo-
cation xt that maximises h(P̂x|Dt−1) (line 2). In line 3,
the function f is queried at some location x̃t|xt ∼ PExt .
After the query is done, the algorithm is provided with
an observation yt = f(x̃t)+ζt and an independent esti-
mate for x̃t given by PLt , as described earlier. In line 4,
the GP model is updated with the new observation
pair (PLt , yt). This process then repeats for a given
number of iterations n. As a result, the algorithm
finishes with an estimate of the optimum location x∗

given as the target location with the best estimated
outcome x∗n (line 5).

5 Theoretical results

This section presents theoretical results bounding the
uncertain-inputs regret of the uGP-UCB algorithm
and a standard BO approach, IGP-UCB (Chowdhury
and Gopalan, 2017), which was not originally designed
to handle input noise. The theoretical analysis pre-
sented in this paper is mainly based on Chowdhury
and Gopalan’s results, which are advantageous in the
uncertain-inputs setting due to mild assumptions on
the observation noise. However, the results in this sec-
tion also bring new insights into BO methods for prob-
lems with uncertain inputs. We refer the reader to the
appendix for complete proofs of the next results.

5.1 The uncertain-inputs regret of IGP-UCB

In the uncertain-inputs setting, IGP-UCB selects tar-
get locations xt by maximising µt−1(x) + βtσt−1(x),
where µt−1 and σ2

t−1 are respectively the poste-
rior mean and variance of the deterministic-inputs
GP(0, k) given observations {(xi, yi)}t−1i=1. For an
asymptotic analysis, both the targets {xt}∞t=1 and
the equivalent observation noise {νt}∞t=1, where νt :=
yt − E[f(x̃t)|xt] 6= ζt, can be treated as sequences of
random variables. At a given round t ≥ 1, the history
{xi, νi}ti=1 generates a σ-algebra Ft, and the sequence
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{Ft}∞t=0 defines a filtration (Bauer, 1981). The sub-
Gaussian condition on the sequence {νt}∞t=1 is then
formally defined as:

∀t ≥ 1, ∀λ ∈ R, E[eλνt |Ft−1] ≤ eλ
2σ2
ν/2 (a.s.) , (15)

which denotes an upper bound on a conditional expec-
tation (Bauer, 1981), so that the inequality above is
defined as holding almost surely (a.s.).

The results in Chowdhury and Gopalan (2017) bound
the cumulative regret of IGP-UCB in terms of the
maximum information gain:

γn := max
Q⊂S:|Q|=n

I(yn,gn|Q) , (16)

where I(yn,gn|Q) represents the mutual information
between yn = gn + ν′n and gn ∼ N(0,Kn), with
[Kn]ij = k(xi,xj), xi,xj ∈ Q and ν′n ∼ N(0, λI).
Here λ > 0 is the same parameter in Equation 11.
Considering these definitions, we derive the following.

Theorem 2 (IGP-UCB uncertain-inputs regret). For
any f ∈ Hk, assume that:

1. the mapping x 7→ EPEx [f ] defines a function g ∈
Hk(S) and ‖g‖k ≤ b;

2. ∀x ∈ S,∆fPEx := f(x̃E) − EPEx [f ] is σE-sub-

Gaussian, for a given σE > 0, where x̃E ∼ PEx ;

3. and ζt is conditionally σζ-sub-Gaussian.

Then running IGP-UCB with σν :=
√
σ2
E + σ2

ζ and

βt := b+σν
√

2(γt−1 + 1 + log(1/δ)) leads to the same
bounds as Theorem 3 in Chowdhury and Gopalan
(2017) for the uncertain-inputs cumulative regret of
the algorithm. Namely, we have that:

P
{
R̂n ∈ O

(
b
√
nγn + σν

√
n(γn + log(1/δ))

)}
≥ 1−δ .

(17)

Proof sketch. Considering Theorem 3 in Chowdhury
and Gopalan (2017), the proof follows almost immedi-
ately from the assumptions above. The only detail
to notice is that νt := yt − g(xt) = ζt + f(x̃t) −
E[f(x̃t)|xt] = ζt + ∆fPExt

, which is a σν-sub-Gaussian

random variable for σ2
ν = σ2

ζ + σ2
E .

The result above states that, as long as σν is large
enough to accommodate for the additional variance in
the observations due to noisy-inputs, IGP-UCB main-
tains bounded regret. Theoretical results bounding
the growth of γn are available in the literature. For
the squared-exponential kernel on Rd, for example,
γn ∈ O((log n)d+1) (Srinivas et al., 2010, Thr. 5),

so that IGP-UCB obtains asymptotically vanishing
uncertain-inputs regret in this case. However, it is
possible that the resulting σν makes βt impractically
large, leading to excessive exploration. The following
result addresses these issues.

Proposition 3. Let k : Rd × Rd → R be an at least
twice-differentiable positive-definite kernel with finite

`2k ≥ sup
x∈Rd

sup
i∈[d]

∂2k(x,x′)
∂xi∂x′

i

∣∣
x=x′ . Then, for P ∈ P and

x̃ ∼ P , we have that ∆fP := f(x̃) − EP [f(x̃)] is σF -
sub-Gaussian with:

1. σF = ‖f‖k`ktr(Σ)1/2, if P is Gaussian with co-
variance matrix Σ;

2. σF = 1
2‖f‖k`k

√∑d
i=1 σ

2
i , if P has compact sup-

port, with |x̃i − x̂i| ≤ 1
2σi for each coordinate i,

where x̂ = EP [x̃].

Proof sketch. These results are derived from concen-
tration inequalities for Lipschitz-continuous functions
of Gaussian or bounded random variables. For the
given kernel, any f ∈ Hk is ‖f‖k`k-Lipschitz continu-
ous (Steinwart and Christmann, 2008).

Proposition 3 says that the second condition in The-
orem 2 is met if the execution noise is uniformly
bounded or Gaussian. What remains is to verify
whether the first assumption in Theorem 2 can be met.

When working with kernel embeddings of conditional
distributions, the assumption that x 7→ E[f(x̃)|x] is an
element of Hk is known to be met when the domain X
is discrete, while not necessarily holding for continuous
domains (Muandet et al., 2016). As most interesting
problems involving uncertain inputs have continuous
domains, the following result presents a case where
Theorem 2’s first assumption holds.

Proposition 4. Let x 7→ Px be a mapping such that,
for any x ∈ S ⊂ X , x̃ ∼ Px ∈ P is decomposable
as x̃ = x + ε, where ε is independent and identically
distributed, i.e. ε ∼ Pε ∈ P. Assume that k is trans-
lation invariant. Then we have that, for any f ∈ Hk,
the mapping x 7→ EPx [f ] defines a function g ∈ Hk(S),
and ‖g‖k ≤ ‖f‖k.

Proof sketch. The proof follows by interpreting ε as a
random translation on f ’s inputs, for any f ∈ Hk.
Since k is translation invariant, the norm of any
ε-shifted function fε is equivalent to the norm of
the original f . Then picking g as the restriction of
EPε [fε] ∈ Hk to S ⊂ X leads to the conclusion.

Proposition 4 implies that Theorem 2 is applicable
whenever the execution noise is independent and iden-
tically distributed and k is translation-invariant, such
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as the squared exponential and other popular kernels.
However, in cases where the execution noise distribu-
tion changes significantly from target to target, algo-
rithms such as uGP-UCB can yield better results.

5.2 Bounding the regret of uGP-UCB

In this section, we analyse the case when uGP-UCB
has no access to location estimates PLt and uses in-
stead P̂xt with the observationsDn = {P̂xt , yt}nt=1. We
will firstly consider an ideal setting, where P̂x = PEx ,
∀x ∈ S, and then a non-ideal scenario. Recall that the
regret bounds presented so far depend on the maxi-
mum information gain γn. As an analogy, in the case
of uGP-UCB, given any {Pt}nt=1 ⊂ P, we have:

I(yn; f̂n|{Pt}nt=1) =
1

2
log |I + λ−1K̂n| , (18)

where [K̂n]ij = k̂(Pi, Pj), i, j ∈ {1, . . . , n}. Let’s as-
sume an arbitrary set Ps ⊂ P containing either the
query model or the estimated location distributions.
As the set Ps is not necessarily compact, a maxi-
mum for I(yn; f̂n|R) may not correspond to a given
set R ⊂ Ps. However, we can always define:

γ̂n(Ps) := sup
R⊂Ps:|R|=n

I(yn; f̂n | R) , (19)

The results presented next will use γ̂En := γ̂n(PE),
where PE ⊂ P is the image of S under the mapping
x 7→ PEx . Considering these definitions, the following
bounds the uncertain-inputs regret of uGP-UCB.

Theorem 5 (uGP-UCB regret). Let δ ∈ (0, 1), f ∈
Hk, and b ≥ ‖f‖k. Consider ζt as σζ-sub-Gaussian
noise. Assume that both k and PEx satisfy the con-
ditions for ∆fPEx to be σE-sub-Gaussian, for a given
σE > 0, for all t ≥ 1. Then, running uGP-UCB with:

βt = b+σν

√
2(I(yt−1; f̂ t−1|{PExi}

t−1
i=1) + 1 + log(1/δ)) ,

(20)

where σν :=
√
σ2
E + σ2

ζ , the uncertain-inputs cumula-

tive regret satisfies:

R̂n ∈ O
(√

nγ̂En

(
b+

√
γ̂En + log(1/δ)

))
(21)

with probability at least 1− δ.

Proof sketch. This theorem applies the fact that
k̂E(x,x′) := k̂(PEx , P

E
x′), for x,x′ ∈ S, defines a

positive-definite kernel on S (Steinwart and Christ-
mann, 2008, Lem. 4.3). By Lemma 1, we have that ex-

ists a f̂ ∈ Hk̂ with f̂(PEx ) = E[f(x̃)|x], for x̃|x ∼ PEx .

Then it follows that g : x 7→ f̂(PEx ) is inHk̂E . As γ̂En is

the maximum information gain of a model GP(0, k̂E),
the rest follows similarly to Theorem 2.

Theorem 5 states that uGP-UCB obtains similar
bounds for the uncertain-inputs regret to those of IGP-
UCB. However, notice that γ̂En , instead of γn, appears
in Equation 21. The next result shows that γ̂En ≤ γn,
which means smaller regret bounds, in the i.i.d. execu-
tion noise case considered previously (Proposition 4).

Proposition 6. Consider a compact set S ⊂ X , a
distribution Pε ∈ P, with EPε [ε] = 0, and a set:

Pε := {P ∈ P | x̃ = x̂ + ε, x̂ ∈ S, ε ∼ Pε, x̃ ∼ P} ,
(22)

which is the set of location distributions with mean in
S and affected by i.i.d. Pε-noise. Assume that k : X ×
X → R is translation invariant, and let k̂ : P×P → R
be defined according to Equation 9. Then we have that:

∀n ≥ 1, γ̂n(Pε) ≤ γn , (23)

where γ̂n is defined by Equation 19, and γn is the max-
imum information gain for GP(0, k).

Proof sketch. One can prove that Kn− K̂n is positive
definite for a Kn built with {x̂t}nt=1 ⊂ S. The infor-
mation gain is a function of the determinant of these
matrices, so that the inequality above follows.

The result above indicates that the uncertain-inputs
information gain shrinks as the input noise variance
grows. While that might indicate that the optimisa-
tion problem becomes easier, if one recalls Equation 2,
the constant ρE grows, making the problem harder.

What remains to verify is the effect of the approx-
imation error between the model P̂x and the actual
PEx . To minimise r̂t, using uGP-UCB with a model
P̂x ≈ PEx is worth if the approximation error ρ̂t :=

maxx∈S

∣∣∣EPEx [f ]− EP̂x
[f ]
∣∣∣ is small. Ideally P̂x should

be an adaptive model P̂ tx that can be learnt from past
data in Dt−1 so that ρ̂t → 0 as t → ∞. However,
considering execution noise as marginally i.i.d. and
Gaussian has been a popular approach when dealing
with problems involving uncertain inputs (Mchutchon
and Rasmussen, 2011; Nogueira et al., 2016). In this
case, we provide an upper bound on ρ̂t.

Proposition 7. Let X = Rd, f ∈ Hk and ‖f‖k ≤ b.
Assume that, for any x ∈ S ⊂ X , the query distribu-
tion PEx is Gaussian with mean x and positive-definite
covariance ΣE. Then, using a Gaussian model P̂x with
same mean and a given constant positive-definite co-
variance matrix Σ̂, we have that for any x ∈ S:∣∣∣EPEx [f ]− EP̂x

[f ]
∣∣∣ ≤ b

2

√
tr(Σ̂

−1
ΣE)− d+ log

|Σ̂|
|ΣE |

.

Proof sketch. This result follows by applying Pinsker’s
inequality (Boucheron et al., 2013) to P̂x and PEx .
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6 Experiments

In this section, we present experimental results ob-
tained in simulation with the proposed uGP-UCB al-
gorithm comparing it against other Bayesian optimi-
sation methods: IGP-UCB, with adapted noise model
(as in Theorem 2), and the unscented expected im-
provement (UEI) heuristic (Nogueira et al., 2016),
which applies the unscented transform to the expected
improvement over a conventional GP model. Our
aim in this section is to evaluate the performance of
these methods in optimisation problems where both
the sampling of the objective function and the location
at which the sample is taken are significantly noisy.

6.1 Objective functions in the same RKHS

In this experiment, for each trial a different objec-
tive function f ∈ Hk was generated, where k is the
squared-exponential kernel with length-scale set to
0.1. The search space was set to the unit square
S = [0, 1]2 ⊂ R2. Each f =

∑m
i=1 αik(·,xi) was gener-

ated by uniformly sampling αi ∈ [−1, 1] and support
points xi ∈ S, for i ∈ {1, . . . ,m}, with m = 30. Ob-
servation noise was set as ζt ∼ N(0, σ2

ζ ) with σζ = 0.1.

As parameters to verify the theoretical results for
the UCB algorithms, we set δ = 0.4, and computed
b = ‖f‖k directly. The querying execution noise in PEx
was i.i.d. sampled from N(0, σ2

xI) with σx = 0.1. The
output noise parameters for the GP model were com-
puted according to Proposition 3, with each method
assuming execution noise coming from N(0, σ̂2

xI). To
verify robustness to noise-misspecification, we tested
σ̂x set according to different ratios with respect to the
true σx. Noise on the localisation estimates PLt was
set at half the standard deviation of the true execution
noise. We directly computed the current information
gain I(yt; f̂ t | {PLi }ti=1) to set βt. For all methods, the
GP covariance function was set as the RKHS kernel k.

Results: Figure 2 presents performance results, in
terms of mean uncertain-inputs regret, i.e. r̂avgt =
1
t

∑t
i=1 r̂i. This performance metric is an upper bound

on the simple regret, since mini≤t r̂i ≤ r̂avgt , and allows
verifying how close each method gets to the global op-
timum within t iterations. As the plots show, when
the execution noise model is correct, with σ̂x = σx,
uGP-UCB is able to outperform both IGP-UCB and
UEI, while every method’s performance degrades un-
der mismatch in the execution noise assumption. A
larger than needed execution noise variance leads to a
large βt for the UCB methods, promoting exploration.
Querying with a very noisy model P̂x also excessively
smoothes the GP prior and the acquisition function for
uGP-UCB and UEI, respectively. Consequently, each

Figure 2: Optimisation of functions in the same
RKHS. On the left, the UCB confidence-bound pa-
rameter βt was set according to the theoretical results.
The plot on the right shows the effect of execution
noise model mismatch on each method’s regret after
running for a total of 400 iterations. Results were av-
eraged over 10 trials, and the shaded areas and error
bars correspond to one standard deviation.

method’s model on f tends to a flat function, and none
of them is able to make significant improvements after
large mismatches, such as σ̂x ≥ 5σx, as Figure 2 shows.
Despite the loss of performance, uGP-UCB remains as
a general lower bound in terms of regret, showing that
the proposed method is relatively robust to the effects
of mismatch in the execution noise model.

In practice, the convergence rate in Figure 2 can be im-
proved by setting the UCB parameter βt at a fixed low
value. As the O notation indicates, cumulative regret
bounds are valid only up to a constant factor. Their
main focus is on guaranteeing asymptotic convergence,

i.e. lim
n→∞

R̂n
n = 0, as most theoretical results in the

UCB literature (Srinivas et al., 2010; Chowdhury and
Gopalan, 2017). To achieve no regret, the value of the
UCB parameter βt monotonically increases over itera-
tions, ensuring that the search space is fully explored.
The drawback, however, is that excessive exploration
decreases performance in the short term. In the next
section, we present results where βt is fixed.

6.2 Objective function in different RKHS

To verify uGP-UCB’s performance under incorrect
kernel assumptions, the next experiment performed
tests with an objective function in a space not match-
ing the GP squared-exponential kernel’s RKHS. In
particular, we chose the 4-dimensional Michalewicz
function, which is a classic benchmark function for
global optimisation algorithms (Vanaret et al., 2014),
over the domain S = [0, π]4.

Figure 3 presents performance results for fixed βt = 3
and a comparison of each algorithm’s sensitivity to the
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Figure 3: Optimisation of the Michalewicz function.
The plot on the left presents the mean expected re-
gret observed for each algorithm with βt = 3 for UCB
methods. On the right, we see how different settings
for βt affect each UCB method’s mean expected re-
gret after 300 iterations. Results were averaged over
10 (left) and 5 (right) trials with shaded areas and
error bars corresponding to two standard deviations.

choice of this UCB parameter. Input noise was set to
σx = 0.1, and output noise was absent. With βt fixed
across iterations, IGP-UCB served as a BO baseline
not accounting for input noise. As the results show,
uGP-UCB is able to outperform both baselines. In
addition, uGP-UCB shows consistently better perfor-
mance than IGP-UCB across varying settings for βt.
These results demonstrate that the uGP-UCB algo-
rithm is able to perform well in situations where its
modelling assumptions are not exactly met, such as in
scenarios involving physical systems.

6.3 Robotic exploration problem

This section presents results obtained in a simulated
robotic exploration problem. In this experiment, a
robot is set to explore an environmental process. The
underlying process is based on the Broom’s Barn
dataset2, consisting of the log-concentration of potas-
sium in the soil of an experimental agricultural area.
The robot is allowed to perform up to 30 measurements
on different locations. Each BO method sequentially
selects the locations where the robot should make a
measurement in the usual online decision making pro-
cess, based on the observations it gets. To simulate the
robot, an ATRV platform, we used the OpenRobots’
Morse simulator3. In this scenario, execution noise is
not following a stationary distribution due to the dy-
namic constraints of the robot, imperfections in mo-
tion control, etc. We applied Gaussian noise to the
pose information given by the simulator and used pure-
pursuit path-following control to guide the robot to

2Available at http://www.kriging.com/datasets/
3Morse: https://www.openrobots.org/morse

(a) Broom’s barn data (b) Robotics problem

Figure 4: Robotics exploration experiment: (a)
presents the Broom’s barn data as distributed over the
search space; and (b) shows the performance of each
BO approach, averaged over 4 runs.

the target locations. Location estimates were provided
by an extended Kalman filter (Thrun et al., 2006).
Hyper-parameters for each GP were learnt online via
log-marginal likelihood maximisation. The query noise
model for uGP-UCB was set with σ̂2

x = 2. We set βt
at a fixed value, again with βt = 3. Figure 4b presents
the performance of each algorithm in terms of regret.
The plots show that uGP-UCB is able to outperform
UEI, while performing still better than IGP-UCB in
the long run, and with less variance in the outcomes.
This result confirms that it is possible to obtain better
performance in practical BO problems by taking ad-
vantage of distribution estimates and by directly con-
sidering execution uncertainty.

7 Conclusion

In this paper we proposed a novel method to opti-
mise functions where both the sampling of the func-
tion as well as the location at which the function
is sampled are stochastic. We provided theoretical
guarantees for BO algorithms in noisy-inputs settings.
In experiments we demonstrated that the proposed
uGP-UCB shows competitive performance when com-
pared to other BO approaches to input noise. Our
method can be applied to problems where input vari-
ates or an agent’s state is only partially observable,
such as robotics, policy search, stochastic simulations,
and others. For future work, it is worth investigating
online-learning techniques for the approximate query-
ing distribution P̂x and other bounds for the uncertain-
inputs GP information gain.
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