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SUPPLEMENTARY MATERIAL

KL Method Relevance Measure Equations

Gaussian Observation Model

For a Gaussian observation model, the predictive dis-
tribution of a Gaussian process model at a single test
point is a univariate normal distribution. Let us de-
note the mean and variance of the predictive distri-
bution at test point x(i) as µi = E[y∗|x(i),y] and
σ2
i = Var[y∗|x(i),y], respectively. Analogously, denote

the mean and variance of the predictive distribution
at the perturbed point as µi,∆j

= E[y∗|x(i) + ∆j ,y]

and σ2
i,∆j

= Var[y∗|x(i) + ∆j ,y]. The KL divergence
between these distributions is
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The measure of predictive relevance in equation (2) is
then
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Binary Classification

Consider a binary classification problem modelled with
a Gaussian process. The predictive distribution at
test point x(i) is a Bernoulli distribution with success
probability denoted as π∗ = p(y∗ = 1|x(i),y). The
KL divergence between this distribution and the pre-
dictive distribution at a perturbed point, with success
probability π∗,∆j = p(y∗ = 1|x(i) + ∆j ,y), is then
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The measure of predictive relevance in equation (2) is
then
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Sensitivity of the KL Method to perturbation
size ∆

We repeated the toy example from Section 4.1 and com-
puted the KL relevance estimates with different values
of the perturbation size ∆. All of the independent in-
put variables have a uniform distribution U(−1, 1) and
thus have a standard deviation of 1/

√
3. Computed

relevance estimates of the eight variables averaged from

50 data realizations are plotted in Figure 7. For rea-
sonably small ∆ values the results are identical. The
results differ only when ∆ is smaller than 10−7 or larger
than 10−2. ∆ = 10−4 is a safe choice for most purposes
unless the inputs have very small length-scale. In that
case, one can make ∆ smaller but should be cautious
of numerical errors.
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Figure 7: Relevance estimates given by the KL method
for eight covariates in the toy example where each
variable is equally relevant. The results are averaged
over 50 data realizations and scaled so that the most
relevant covariate has a relevance of one.

In-depth Look at Ranking Variability

To see the effect of ranking variability more clearly,
we plotted markers for the variable ranks from each
training split based on 50 training sets from the four
regression data sets, and the results are presented in
Figure 8. The markers are jittered horizontally to
better illustrate the number of times each variable was
assigned a specific relevance rank. The variables are
ordered from left to right in terms of highest average
relevance given by the KL method. A similar plot for
the Pima Indians data set in shown in Figure 9.

For example, the plot of the Concrete data reveals the
fact that the improved predictive performance in the
chosen submodels is not only the result of being able to
identify linear but relevant variables, but is also partly
a result of less variation between different training sets.
For example, the better performance in the submodel
with six variables in Figure 3 is strictly the result of
choosing variable 5 more often than variable 6, because
all three methods always pick those two last, but ARD
is more unsure about their order. The Housing data
plot shows that while both the KL and VAR methods
pick variable 5 as the most relevant in a majority of
training samples, ARD is has more variability, choosing
variables 12, 7, and 4 almost equiprobably.
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Figure 8: A plot representing the variability in relevance ranks between different training sets in the four regression
data sets. Blue, red and cyan points represent ARD, KL and VAR ranking methods, respectively.
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Figure 9: A plot representing the variability in rel-
evance ranks between different training sets in the
Pima Indians binary classification data set. Blue, red
and cyan points represent ARD, KL and VAR ranking
methods, respectively.

Toy Example With Irrelevant Variables

In the toy model presented in the paper, all input
variables are equally relevant, thus it does not show
how the methods treat irrelevant variables. We also
tested an extension of the toy model with 50 variables,
42 of which had no impact on the target variable, and
8 equally relevant with each other. The 8 relevant
variables range from linear to nonlinear similarly as in
the original toy example in Section 4.1. The relevance
values for the 50 variables are presented in Figure 10.
The results show the same trend as the original toy
example, namely that ARD overly prefers variables
with a nonlinear response more than the KL and VAR
methods.

Rank One Update of Cholesky Decomposition

This section presents the method for obtaining the
Cholesky decomposition of a submatrix with one row
and one column removed. This is done by updating
the Cholesky decomposition of the full matrix with a
rank-one update (Hager, 1989). Denote the full matrix
and its Cholesky decomposition as Σ = LLT ∈ Rp×p.
The goal is to obtain the Cholesky decomposition of
the submatrix Σ−j,−j = L−j,−jL

T
−j,−j ∈ R(p−1)×(p−1),

where the row j and column j are removed from the
full matrix Σ. A direct Cholesky decomposition of the
submatrix has a computational complexity of O(p3),
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Figure 10: Relevance estimates for 50 covariates in the
toy model with 8 equally relevant covariates and 42
irrelevant covariates. The estimates are computed with
ARD (blue), KL (red), VAR (cyan) methods. The 8
relevant covariates are joined with a line, and range
from linear (variable 1) to nonlinear (variable 50). The
results are averaged over 50 data realizations and scaled
so that the most relevant covariate has a relevance of
one.

but a rank one update has only O(p2). If the parts of
the lower triangular matrix L are denoted as

L =

< j j > j( )< j LA 0 0
j lTB lj,j 0T

> j LC lD LE

∈ Rp×p, (7)

The corresponding triangular matrix of the submatrix
Σ−j,−j is obtained as

L−j,−j =

(
LA 0

LC L̃E

)
∈ R(p−1)×(p−1),

L̃EL̃T
E = LELT

E + lDlTD.

(8)

Because lD is a vector, the modification to the Cholesky
decomposition in equation (8) is a rank-one update.

Additional Predictive Performance Utilities
for the Real World Data Sets

This section shows the predictive performance of chosen
submodels in the real world data sets using different
performance utilities. Figure 11 is the same as Figure 3,
but shows mean squared error instead of mean log
predictive density. Figure 12 is the same as Figure 4,
but shows classification accuracy, precision, recall, and
the F1 score instead of the mean log predictive density.
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Figure 11: Mean squared errors (MSEs) of the test sets with 95% confidence intervals for submodels as a function
of variables included in the submodel. Blue depicts variables sorted using ARD, red and cyan depict the KL and
VAR methods, respectively. The dashed horizontal line depicts the MSE of the full model with hyperparameters
sampled using the Hamiltonian Monte Carlo algorithm.
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Figure 12: classification accuracy, precision, recall, and the F1 score of the test sets of the Pima indians data set
with 95% confidence intervals for submodels as a function of the number of variables included in the submodel. The
dashed horizontal line depicts the utilities of the full model with hyperparameters sampled using the Hamiltonian
Monte Carlo algorithm.


