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Abstract dubbed “extreme” multi-label learning problems (Bab;

We present a probabilistic framework for
multi-label learning based on a deep genera-
tive model for the binary label vector associ-
ated with each observation. Our generative
model learns deep multi-layer latent embed-
dings of the binary label vector, which are
conditioned on the input features of the ob-
servation. The model also has an interest-
ing interpretation in terms of a deep topic
model, with each label vector representing a
bag-of-words document, with the input fea-
tures being its meta-data. In addition to cap-
turing the structural properties of the label
space (e.g., a near-low-rank label matrix), the
model also offers a clean, geometric interpreta-
tion. In particular, the nonlinear classification
boundaries learned by the model can be seen
as the union of multiple convex polytopes.
Our model admits a simple and scalable in-
ference via efficient Gibbs sampling or EM
algorithm. We compare our model with state-
of-the-art baselines for multi-label learning on
benchmark data sets, and also report some
interesting qualitative results.

1 INTRODUCTION

Multi-label learning (Gibaja and Ventural [2014} |2015)
refers to the problem of annotating an object with a
subset of relevant labels from a potentially massive set
of labels. Multi-label learning problems in modern-day
applications such as recommender systems involve very
high-dimensional feature and label spaces, and also
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bar and Scholkopf, |2017; |Jain et all [2016; [Prabhu and
Varma), [2014]). Since, in such problem settings, the
labels tend to be related with each other, the naive
approach of learning a classifier for each label indepen-
dently is usually sub-optimal and suitable structural
assumptions need to be imposed, e.g., learning an em-
bedding of the label matrix with a low-rank (Rai et al.,
2015} [Yu et all |[2014) or near-low-rank (Bhatia et al.,
2015 [Xu et al., |2016]) assumption. Other notable ap-
proaches for multi-label learning include tree-based
methods (Jain et all 2016; Prabhu and Varmay, 2014)
and carefully regularized one-vs-all approaches (Bab-
bar and Scholkopf, |2017)). We provide a more detailed
discussion of prior work on multi-label learning in the
Related Work section.

While some of the recently proposed approaches to
multi-label learning have led to impressive results on
benchmark data sets, these methods still have some key
limitations. In particular, most of the existing methods
are based on linear models (e.g., linear embeddings of
label vectors, or linear classifiers for label prediction
models), which may not be sufficiently expressive to
learn complex classification boundaries if the underly-
ing problem requires nonlinear classifiers. Moreover,
most of the existing methods are non-probabilistic in
nature, and lack a proper generative model for the data,
which may be useful in exploiting the rich structure in
the high-dimensional features and label vectors. A prob-
abilistic, generative framework is also appealing since it
opens door to extensions such as semi-supervised learn-
ing (Kingma et al 2014)), or active learning (Kapoor
et al., |2012; [Vasisht et al.| 2014).

With these desiderata as our motivation, we present
a probabilistic, Bayesian framework based on a deep
generative model for the binary label vectors. Our
generative model is built using a Bernoulli-Poisson like-
lihood model (Rai et al., |2015; |Zhou, 2015) for each
entry of the label vector and constructs a deep hierar-
chy of gamma-distributed non-negative, interpretable,
low-dimensional embeddings for the label vector. This
construction is appealing due to several reasons: (1)
The deep generative model enables learning nonlinear
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embeddings of the label vector; (2) The model can be
seen as learning a set of topics over the label space,
which implicitly amounts to learning a (overlapping)
clustering of the labels, thereby imposing an additional
structural assumption into our multi-label learning
model; (3) As we show, the resulting classification rule
for our model can be seen as learning nonlinear classifier
for each label, with the decision boundaries having in-
tuitive geometric interpretation; (4) The model admits
efficient inference via Gibbs sampling or expectation
maximization, with a computational cost that scales
in the number of nonzeros in the label matrix.

In our experiments, our model compares favorably with
state-of-the-art methods and outperforms these meth-
ods especially on difficult multi-label learning tasks
for which linear models do not suffice. Moreover, our
model can also be used as a scalable deep topic model
for document collections, where each document also
has some associated meta-data given in the form of ar-
bitrary feature vectors (Mimno and McCalluml 2008).

2 DEEP GENERATIVE MODEL
FOR NONLINEAR MULTI-LABEL
LEARNING

In multi-label learning, we assume that we are given N
training examples {(x1,vy;),..., (xN,yy)} With x,, €
RP and y,, € {0,1}* = [y1.ny-- -, Y], n=1,...,N.
The goal is to learn a model that can predict the label
vector y, € {0,1}¥ for a new test input z. € RP.
Often, instead of the actual binary labels, we are just
interested in predicting the relative scores for the L
labels (or the probabilities of each binary label y; .,
¢=1,...,L being equal to 1).

We assume that each observation (z,,y,,) is associated

with a deep hierarchy of latent factors uﬁf ) ¢ th,
t =1,...,T, which generates y,, as follows: Layer 1
latent factor u%l) generates an L-dimensional latent
count vector m,, € Z{; from a Poisson distribution,
and we then generate the L x 1 binary label vector y,,
via a thresholding operation. These two steps can be

written as
myl|€,, ~ Poisson(€,) and y,,|m, =1Im, > 0] (1)

where I[m > 0] is equal to 1 if m > 0 and 0 other-
wise. The Poisson rate parameter &, is defined as

£, = 2511:1 /\Ecll)u(l) vl(cll) — V(I)A(l)ug),

ks which is a
weighted combination of K; “basis vectors” v =
IR ,v(lg], where V(1 € RE*51 Note that the
Poisson(.) and I[.] in Eq. [1] denote point-wise oper-
ations defined on vectors, i.e., myg, ~ Poisson(& )
and yp,, = I[myg, > 0]. The likelihood model given

by Eq. is known as the Bernoulli-Poisson (BP)

link (Rai et al., 2015; |Zhou, 2015) and is preferred over
the commonly used logistic/probit likelihood since it
only requires evaluating the likelihood for the nonzero
entries in y, (Rai et al. |2015; Zhou, 2015). This
is especially appealing for multi-label learning prob-
lems since the label vector tends to be highly sparse.
Also note that, for the BP likelihood, we can write

Yen|Ee,n ~ Bernoulli[l — exp(—&p,p)].

We can view VD = [v{!) 7'0(12] € RE*M as a set
of K; topics, with each of its columns representing
a (unnormalized) distribution over the L labels. As
we will show later, our model actually learns a deep
hierarchy of topics with V(1) denoting the set of layer-1
topics.

Fig. [1] shows the graphical model in plate notation.
For brevity, we do not show the global parameters
VO, AD that the latent count vector m,, depends on,
as well as the other global parameters that the latent
factors ug) € th, t=1,...,T in the deep hierarchy
depend on (we collectively denote those by {3®}7,).
We also condition the latent factors {ugf )}thl on the
input features x, € RP.

We now describe the rest of the generative model which
we showed concisely in Fig. [[] First note that the
latent factors {ugf )}thl form a deep hierarchy with the
following generative story:

ug,zT ~ Gamma (rkT, exp(a:/n'w,(;“))) (2)
kp=1,... Kp
U’Ezt,)kt ~ Gamma (V;f:l)A(Hl)uSH), (3)

n

exp(x, w,(iﬂ))) ki=1,..., K

ul), ~ Gamma (V) A® ), exp(a)wl) J4)
ki=1,...,K;

Note that, in the above generative model, the shape

parameter of the gamma prior on each component of the

latent factor ug )

on ugf +1), the latent factors of the layer above. The
gamma scale parameter is a function of the inputs x,,

via a regression model with weight vectors wgﬂ) €

RP, k, = 1,...,K,. For the top layer T, the shape
parameters are given by rr,. € Ry, kr = 1,..., K.

, for layers t =1,...,T — 1, depends

Also note that V,(ff:l) is a row vector of size K;i1,

A1*Y s a diagonal matrix of size Kyy1 x Kip1. We
assume the following priors on these parameters:

)\,(ft) ~ Gamma(af\t),l/bg\t))
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Figure 1:

(a) Our generative model in the plate notation. Note: Some of the global variables are not shown for brevity.

The {,B(t)};f:l collectively denote the global parameters that {ugf )};‘F:l depend on. The latent factors are also conditioned
on the input features @, (explained in more detail when we describe the full generative model). (b) Visualization as a

Bayesian network.

kk=1,...,K; (5)
v,i?_hkt ~ Gamma(ozg)7 l/bgf))

ktflzl,...,thl, ktzl,...,Kt (6)

Each of the regression weight vectors w,(ffl) € RP is
given a Gaussian prior with zero mean and a diagonal
precision matrix T**1). We assume a gamma prior
on the diagonal entries of the precision matrix, which
allows us to learn the relevance of different features in

the input x,,.

We also place gamma priors on each of the gamma
shape parameters ri, needed at the topmost layer.
Note that the deep stacked construction of the latent
factors is similar in spirit to other deep Bayesian gen-
erative models, such as deep exponential family (Ran-
ganath et al.,|2015) and gamma belief networks (Zhou
et al., [2015]), that define a deep hierarchy of latent
variables using a top-down generative model.

The proposed deep hierarchy (Eq.-) of latent fac-
tors that eventually generates the binary label vector
y,, via Eq. is appealing as it enables learning a
nonlinear embedding of y,,. This is in contrast with

most of the existing methods that can only learn a
linear embedding (Rai et al., 2015; Yu et al.l 2014]).

In addition to learning a nonlinear embedding via a
deep hierarchy of latent factors, our model has several
other distinguishing properties: (1) It allows condition-
ing the latent factor in each layer on arbitrary features
(which in our case is @, where our goal is to learn a
multi-label learning model); and (2) The overall model
has a nice geometric interpretation (Sec.|3)) in terms of

defining nonlinear classification boundaries which can
be seen as the union of multiple convex polytopes .

For the architectural choice of the deep network, we
choose K; < K;_1 which leads to a pyramid-like struc-
ture of the deep network. The pyramid-like structure
of the network ensures low intrinsic dimensionality on
the label vectors and, at the same time, leads to parsi-
mony in terms of the number of model parameters to
be learned, while still being expressive enough.

Another appealing aspect of our framework is that it
is not limited to multi-label learning. Note that the
deep generative construction for the label vectors can
also be seen as learning a (deep) topic model over a
document collection, where the documents are also
associated with arbitrary meta-data (Mimno and Mc-
Callum| 2008). To see this connection, note that the
label vector y,, € {0,1}* can be thought of as a bag-of-
words representation of a document (labels being the
words) and x,, € RP can be thought of as additional
features or “meta-data” associated with this document.
Our generative model can leverage both the document
as well as the meta-data to infer a deep hierarchy of
topics and a deep topic based representation {ugf )}le
of each document y,,. The hierarchy of topics is given
by the matrices {V®}7_ | with V(") g RE =175 rep.
resenting a set of K; topics, with each topic being a
distribution over K; 1 “tokens”. At layer 1 (Ko = L),
these tokens are the L labels themselves, and at higher
layers, these token correspond to topics of a “super-
topic”. Deep topic models have been explored recently
using the idea of gamma belief networks (Zhou et al.,
2015)). However, a key difference is that our model is
able to additionally condition on the document meta-
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data x,, via a regression model.

3 MODEL PROPERTIES AND
GEOMETRIC INTERPRETATION

Our deep generative framework for multi-label learning
has several appealing properties. Firstly, predicting the
labels for a test example & does not require inferring
its latent factors {@¥}7_,. Instead, the expression for
the label probabilities can be obtained in closed-form
and it only depends on the test input & and the global
parameters of our model. This leads to faster inference
at test time.

To elaborate more on this, note that, given a new input
Z and global parameters, we can easily marginalize the
local variable ﬂgf’)kt of every node in the deep hierarchy,
in a recursive fashion, by using the moment-generating
function of Gamma distribution (Rai et al., 2015 |Zhoul,
2016|). The marginalization scheme associates a confi-
dence score (j,g?l to every node ﬁff,)kt that depends on
all its children nodes and corresponding outgoing edges.
The confidence score for a node in the first layer (t=1)

is given by

@iy = log (140 o[}, exp(@’wf?))  (7)

Confidence score of the nodes in the upper layers (¢t > 1)
can then be recursively defined as follows:

Ki1

O
kt 1,k kt 1,

ki—1=1

X exXp (ﬁ:/w,(é“)) ] (8)

4(t)

Gy, = log |1 —|—)\,(:t)

The predictive distribution of the i** label in the label
vector ¢ is then calculated by aggregating the confi-
dence scores of all the K nodes in the top layer as

P(g =1]2) =1 —exp ( Z TkquT 1) 9)

For the single layer case (T' = 1), the above expres-
sion is equivalent to the predictive distribution of the
Bernoulli-Poisson multi-label learning model from (Rai
et al., |2015). However, in the multi-layer construction
of our model, Eq. @ also has an interesting geometric
interpretations. It can be observed from the above
expression that if there exists atleast one confident path
from the top layer upto the label [, then the probability
of this label being 1 will be large. A confident path is
essentially a sequence of nodes [l, ky, K, ..., kp, mp | in
the deep hierarchy such that the model is confident at

each step t , that is, the edge weight ()\k/ Ukl kL) @S

V41

well as the regression model based score (& w,(jﬂ)) is
sufficiently large. Consequently, the region of the input
space satisfying & w,(cfl) > ¢ Vt, for the layer-specific
thresholds ¢, leads to a convex-polytope-like region in

the feature space that encloses positive labels.

Another interesting geometric interpretation and expla-
nation of our model’s ability to learn highly nonlinear
classification boundaries comes from the fact that the
model can be seen as a union of (HtT:o K,;) committees
of T experts where experts are shared across commit-
tees. Moreover, each expert uses a linear hyperplane
to generate a score. For predicting a specific label,
the model uses a union of (Hthl K;) committees of
experts. All the experts of at least one committee
must agree simultaneously to generate high probability
of success and therefore each committee resembles a
convex polytope-like region of positive labels. Note
that all the labels share (HtT:2 K}) experts in their
committees. Moreover, K; hyperplanes are shifted in
a parallel fashion to generate K * K label-specific ex-
perts. Sharing experts leads to a highly flexible model
without increasing the number of parameters.

4 INFERENCE

Although our deep generative model is not natively
conjugate, we are able to leverage auxiliary-variable-
augmentation techniques (Rai et al., [2015} |Zhou}, 2016;
Zhou et al.l |2015) to obtain a model that is locally
conjugate and admits simple inference via closed-form
Gibbs sampling or Expectation-Maximization . For
each training example (z,,y, ), we augment latent

t+1 : .
counts mgl L )ktﬂ corresponding to each edge in the

deep hierarchy (see Fig. [Ip). Using these latent

counts, we associate two latent counts with each node
(t)

un’kt :

1) outgoing latent counts m() 5 (2) in-
ke

coming latent counts mngl) . The outgoing latent

count is defined as the sum of latent counts asso-

ciated with all the outgoing edges from that node,
m® ZKt @

7L7 K ki—1=1 nkt 1,k
ing latent count associated with node u'", | that is

n,ky?
(t+1) K1 (t+1)
My ks is defined as Zkt+1:1 nee ein The latent

Similarly, the incom-

count, msg , described in Eq. |1/ can be thought of as
1)

an incoming latent counts m,,; ~ for a node ko of the

0" layer (i.e., the observed label vector layer).

The latent counts mE}LO

Poisson distribution as

1 1 1 1
011k 17) ~ vt ©Pois (S A0, ) (10)
k1

are drawn from a truncated
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The latent counts of the successive layer can be com-
oo . . (t+1)
puted recursively: In particular, given my, 1,

(t+1) . .
Rk sy USING Poisson and

Multinomial-Poisson equivalence (Zhou et al., [2015]):

) NMult(mEi—‘_nl)_‘ ceey

for a

layer t, we can obtain m

(cor o

ke ki1

(t+1) (t+1)
)\kt+1 Yk kegr Ynokega

. 11)
(t+1) (t+1) ) (
Zktﬂ ki1 U, i1 Un ks

The Eq. and Eq. hold trivially for ¢ = 0 and
it also holds for ¢t > 1 by using the Chinese Restaurant

Table-negative Binomial (CRT-NB) equivalence with
Poisson-SumLog(Zhou and Carin, [2015)).

(t+1)

The subsequent m{ +1,)€t+1 can be obtained by aggre-
gating the m{tD over k;. By using the additive

okekpn EEC M
property of the Poisson distribution, we have

D

. (1) (t1
n_,ktHNPOlS(“( ) g ))

n,kt+1 n;kt+1

(12)

(t+ )

where Dy ks

. can be thought of as a proportionality fac-

(t+1)
n,kt41

tor sumlar to q( ) in Eq. and is defined as: ¢

1) 1 1
Nelt T, v kiJrkt)ﬂ log (1 + 4k, exp(agu’ )))7

qu ;CO =exp(l) — 1 and w,(;)) =0.

Once the outgoing latent count ms) r, of a node is
available, its incoming latent count mgf:tl) can be

calculated as m(tH) CRT ( )n kt,rg)k ), where
t K t+1 (t+1) (t+1)
T, k’t IS D k121 Uy st Megss Unokey, When t < T and

Tk otherwise. This procedure is repeated to find latent
counts at each layer.

Given these latent counts, we can now leverage Poisson-

gamma conjugacy to find the posterior distributions
of the local variables uﬁf‘)kt

v,(:) , and )\,(ft), as follows:

and the global variables

ke

ugi)kt ~ Gamma (rﬁf)k + m(t)
exp (zc w,(ftﬂ))

(13)
exp (:c wl(:rl)) S)kt + 1)

_ (t)
’Ukt L kt| ~ Gamma(a + mn o1

n=1

(b(t) + g Z ul e

(tl

i) )

(14)

n) 7 7

)\(t)| ~ Gamma (a( )+ Z ()

n=1
—1

(t) (0,0 D)
b>‘ + Z Z Yky—1 ke nktwn kt,l)

ki1 n

(15)

| is equal to log(1+ qggtl)l exp(x], w,(:t) )

Although, the posterior of the regression weight 'w(t)
does not have any closed-form solution, Poisson- garnma
marginalization leads to a negative binomial distribu-
tion which can be transformed into a Gaussian likeli-
hood using Polya-Gamma augmentation (Polson et al.,
2013). Given the Polya-Gamma variables

(W, 1=) ~

where wg;l)

t t (t+1 t
(mi,)_,kﬂr?“() xwi )+ln(q£l>kt))

n,ke?
(16)
the posterior of w,(:fl) can be written as
N(ugzl) E(H_l)) where

N -1
Zg;’:l) = ((F(t“))_l—i—z%(z)ktxnw;) (17)

n=1
and
N
Wt =2 |3 (el +

n=1
055 (m , - 7’55,%))“’"} (18)

We omit the equations for hyperparameter inference
for the sake of brevity.

5 RELATED WORK

A prominent class of methods for multi-label learning
has been based on learning low-dimensional embed-
dings of label vectors (Bhatia et al., |2015; Kapoor
et all 2012; Rai et al., [2015; |[Yu et al., [2014)). These
methods perform multi-label learning by assuming that
the label vectors have a low-dimensional representation
(label embeddings), which amounts to the label ma-
trix being a low-rank matrix. However, these methods
are usually limited to learning linear (or locally linear)
embeddings. Another way to incorporate nonlinearity
in the embeddings is by using kernel-based label em-
beddings (Li and Guo, [2015)). However, kernel-based
methods tend to be slow at training as well as test time,
due to the requirement of storing all the training data.

Probabilistic/Bayesian models for multi-label learn-
ing are relatively fewer. These are usually based on
latent factor models for the binary label vectors. How-
ever, the inference cost for these models is usually
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prohibitive (Kapoor et al., 2012) and these models do
not scale to large data sets. Since the label vectors
are high-dimensional but extremely sparse in nature
(i.e., have very few nonzeros), it is desirable to have
models whose computational cost scales in the num-
ber of nonzeros in the label matrix. In (Rai et al.,
2015), a Bayesian latent factor model (BMLPL) based
on a Bernoulli-Poisson-gamma generative model was
proposed, which exploited the label matrix sparsity
to design efficient inference algorithms for multi-label
learning. Our model is similar in spirit to the work
n (Rai et al., 2015)). However, it is significantly more
general and considerably more flexible due to the deep
generative model on the label vectors. The BMLPL
model proposed in (Rai et al.| 2015)) is a special case
of our model when the number of layers is equal to 1.
We use this model as one of the baselines in our exper-
iments. In contrast to the model in (Rai et al.l [2015]),
our deep generative model allows learning nonlinear
label embeddings, provides interesting geometric inter-
pretation/explanation for the nonlinearity of our model
(in terms of what kind of nonlinear decision boundaries
it learns), while still enjoying simplicity of the inference
procedure. The inference cost in our model still scales
in the number of nonzeros in the label matrix, which is
appealing for multi-label learning problems involving
large label matrices.

Among other related work, recently (Cissé et al., | 2016])
proposed a deep architecture for multi-label learning.
This model clusters the labels into a Markov Blanket
Chain and then leverages these clusters to train a deep
neural network. While this work is also similar in spirit
to our model, there are a few key differences: (1) It has
a feedforward architecture and lacks a proper generative
model for the labels; (2) It cannot leverage the label
matrix sparsity; and (3) It lacks the nice geometric
interpretability offered by our approach. Moreover,
unlike the model in (Cissé et al., [2016)), our model can
be applied to not only multi-label learning problems,
but also to topic modeling tasks where the documents
also have meta-data associated with them. Recent
work has also explored multi-label learning for text
documents using text CNN (Liu et al., [2017). However,
to the best of our knowledge, none of the existing deep
learning models, including (Cissé et al., |2016; |Liu et al.,
2017) are based on generative models.

Deep generative models based on the Poisson-gamma
latent factor model construction (Zhou et al.| [2015)
have also been proposed for modeling high-dimensional
count data (e.g., documents represented as vector of
word-counts). These models have also been extended
to multimodal settings (Henao et all 2016). Although
the model proposed in (Henao et al.,[2016]) can be used
in multi-label setting, it is (1) limited to count-valued

features and moreover, (2) difficult to do inference on
at test time, and (3) does not provide any geometric
interpretation unlike our model. Our framework can
be seen as a generarization of these models where we
condition the latent factors on arbitrary feature vectors,
and the deep architecture naturally leads to a nonlinear
classification model from the feature space to the label
space. To the best of our knowledge, ours is the first
fully Bayesian method, based on a deep generative
model for the problem of multi-label learning, that can
handle arbitrary type of features, while also leveraging
the sparsity of label matrix for computational speed-
ups.

6 Experiments

In this section, we present the quantitative and qualita-
tive results of our model. First, inspired by the geomet-
ric interpretation of decision boundaries, we generate
a synthetic dataset to show that shallow models can’t
compete with deep models for a non-linear dataset.
Then, we benchmark our model with other state-of-the-
art models on the benchmark datasets. Moreover, we
illustrate the ability of our model to learn a hierarchical
topic model over the documents.

We have implemented an EM algorithm (Scott and
Sunl 2013)) to generate the results in the following ex-
periments. We use the fact that the simple closed-form
expressions of expectations of the local variables are
available including Polya-Gamma and Chinese Restau-
rant Table random variables. Note that a straight-
forward implementation to calculate the updates of
w,(CH' ) would require inversion of a D x D matrix.
We avoid this computationally heavy step by calcu-
lating the approximate solution to the following linear
system for w,(:fl) by using only a few iterations of
Conjuate Gradient Method (Bertsekas, [1999) (see Eq.

Z(tJrl) ](:,+1) _ d(t+1) d(thrl)
[25_1( o, 4055 (0, =il )]

t

We run our EM-CGS algorithm for 500 iterations an
the algorithm converged in all these cases.

where

—

o,

6.1 Synthetic Dataset

We generate a synthetic dataset to validate the claim
made in Section Bl that the model learns a union of
multiple convex polytopes. With a model of depth T,
each of the inferred polytope will be the intersection of
T half-spaces. Therefore, if the region (in the covariate
space R”) corresponding to [ = 1, for a label [, is inter-
section of multiple half-spaces, then the performance
of a shallow model would saturate after a particular
width. With this idea, we generate the synthetic data
that has L = 10, d = 50 and contains 5000 instances.
The label y,; is set to be 1 if z,, lies in the convex
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Table 1: Performance on synthetic data with varying depth and width of the deep architecture

Layer Sizes = [K1, K2, K3]

4]

[10] [4,2]  [4,2,1] [4,2,2]

AUC 0.898

0.909 0.930 0.930 0.935

Table 2: Statistics of the data sets. D and L denote the average number of non-zero elements per example in

features and labels respectively.

Data set D L N L D
bibtex 1836 159 4880 2.40 68.74

delicious 500 983 12920 19.03 18.17
eurlex 5000 3993 17413 5.30 236.69

Table 3: AUC-ROC scores on real datasets

Dataset CPLST BCS WSABIE LEML BMLPL ADIOS DBMLPL
T=1 T=2 T=3
bibtex 0.888 0.861 0.918 0.904 0.921 0.876 0.927 0.930 0.932
delicious 0.883 0.800 0.856 0.889 0.895 0.904 0.899 0.903 0.906
eurlex - - 0.865 0.946 0.952 0.877 0.956 0.961 0.962
polytopes defined by 3 hyperplanes w,(j)7w](;) and w,(;,) low-dimensional embeddings of the labels, that are

The hyperplanes are shared across labels such thelmt
number of distinct w,gl),w,(f) and w,(cg) are 4,2 and 2
respectively. The results are reported in Table [1| which
clearly shows that in absence of a sufficient deep model
that captures the intrinsic dimensionality of data, the

performance suffers adversely.

6.2 Real Datasets

We first report our results on standard benchmark
datasets for multi-label learning. We use three bench-
mark datasets(Yu et al., [2014) — Bibtex, Eurlex-4k,
and Delicious — to compare our model with other
state-of-the-art models. Note that all these datasets
have highly sparse features and labels (see Table .

The choice of the number of layers and sizes of these
layers is the most important decision that has to be
made while using this model, which is further shown
in Section It is worth mentioning that between
two architectures with the same number of nodes, the
model with a higher depth will have a lower number of
parameters in our case. We restrict the size of t'! layer
for t € {2,3} to half of the size of the (t—1)" layer. The
results are only reported for DBMLPL with the total
number of nodes between 0.1L and 0.5L. On the other
hand, for the rest of the models we have picked their
best performance with the embedding size between
0.2L and L. We compare our model with the depth as
T=1, 2 and 3 with other state-of-the-art baselines in
Table 3

Among the baselines used in Table (3f BMLPL(Rai
et al., 2015]) is a Bayesian model based on learning

conditioned on the features (similar to our model). It
can be thought of as a special case of our model with a
single layer. LEML(Yu et al., [2014) minimizes various
loss functions like logistic, squared and hinge loss for
low dimensional embedding in an ERM framework.
WSABIE(Weston et all [2011]) tries to learn a joint
embedding of both the features as well as the labels.
BCS(Kapoor et al.l 2012) is also a Bayesian model
that uses random projection of labels and regression of
the features against that random projection in a single
probabilistic framework. CPLST(Chen and Lin| 2012)
also learns label embeddings, which are conditioned
on the features, but it uses hamming loss as its loss
function. We also compare our model with a state-of-
the-art deep learning architecture ADIOS (Cissé et al.)
2016)) which leverages the relationship among labels by
creating a deep output space to perform multi-label
learning. As shown in Table [3] our model outperforms
the various baselines on all the datasets. Also, the
classification accuracies improve as we increase the
number of layers.

We would like to highlight that our baselines consist of
very strong, state-of-the-art Bayesian models and deep
learning models for multi-label learning, and our model
yields moderate but consistent performance gains across
all the datasets. Moreover, our experiment on the
carefully simulated difficult nonlinear dataset (Table 1)
demonstrates that the model is able to learn difficult
nonlinear boundaries, which single-layer models like
BMLPL cannot.
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Figure 2: Topics and Super topics inferred from eurlex data

6.3 Qualitative Analysis: Deep Topic
Modeling

The model explicitly imposes a low-dimensional struc-
ture on labels through a factor-loading matrix VW A®),
Moreover, each layer (¢) learns an unnormalized dis-
tribution on the layer below (¢ — 1) through V(®A®)
with 0'F' layer being the observed labels. We use the
eurlex-4k dataset that contains about 5000 documents
related to European Union Law where each document
is annotated with possibly multiple tags. There are a
total of 3993 different labels, i.e. tags, spanning diverse
areas. We use this dataset to test efficacy of deep topic
modeling aspect of our model. We set the K; = 20
and Ky = 5 for our model and hence expect to learn 20
topics and 5 super-topics over the topics. The obtained
topics and super-topics are shown in Fig. [2] where we
show the top few labels for each topic as well as show
the top 4 topics for each super-topic. The model groups
semantically similar labels in each topic and is able to
learn super-topics such as “Health and Food”.

7 Conclusion and Discussion

We have presented a deep generative model for nonlin-
ear multi-label learning. Our Bayesian model is based
on learning a deep hierarchy of gamma-distributed la-
tent factors that represent the embeddings of binary
label vectors. The model is built using a clear, deep
generative model, and admits a simple and efficient
inference procedure due to full local conjugacy. More-
over, the sparsity of label vectors further reduces the
computational cost of inference. The model also of-
fers a nice geometric interpretation, which explains

its effectiveness in learning complex nonlinear decision
boundaries.

While multi-layer neural networks can also be tried for
multi-label learning (in fact, the ADIOS baseline we
compared against is precisely that!), taking a generative
approach enables us to construct a likelihood model
that is appropriate for high-dimensional binary label
vectors, and also leverage the sparsity of the label
vectors for computational efficiency via the Bernoulli-
Poisson link. Extensions to semi-supervised and active
learning would be an interesting future directions.

Although, in this paper, we used a Gibbs sampling
based inference procedure, other inference methods
such as stochastic variational inference can allow ap-
plying our model on very large-scale data sets. De-
veloping such inference algorithms for our model will
be an interesting direction of future work. Finally,
our fully Bayesian framework also opens the door to
other interesting extensions such as performing active
learning (Vasisht et al., 2014} to acquire the most in-
formative labels.
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