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A Proofs

A.1 Non-negative and monomial matrices

In this section, we show that if the inverse of a non-
negative matrix A exists and is itself non-negative,
then A has to be a monomial matrix. This is a known
linear algebra fact; we provide a proof for completeness,
adapted from (EuYu, 2012).
Definition 3. A matrix A is called a non-negative
matrix if all of its elements are ≥ 0, and a positive
matrix if all of its elements are > 0.
Definition 4. A matrix A is called a monomial matrix
if it has exactly one non-zero entry in each row and
each column. In other words, it has the same sparsity
pattern as a permutation matrix, though the non-zero
elements are allowed to differ from one.
Lemma 3. If A is an invertible non-negative matrix
and A−1 is also non-negative, then A must be a non-
negative monomial matrix.

Proof. Since A is invertible, every row of A must have
at least one non-zero element. Consider the i-th row
of A, and pick j such that Aij 6= 0. Since AA−1 = I,
we have that the dot product of the i-th row of A with
the k-th column of A−1 must be 0 for all i 6= k. As A
and A−1 are both non-negative, this dot product can
only be 0 if every term in it is 0, including the product
of Aij with A−1jk . However, Aij 6= 0 by construction, so
A−1jk must be 0 for all i 6= k. In other words, the j-row
of A−1 must be all 0 except for A−1ji .

Applying a symmetric argument, we conclude that the i-
th row of Amust be all 0 except for Aij . Since this holds
for all i, we have that A must have exactly one non-zero
in each row. Moreover, these non-zeros must appear
in distinct columns, else A would be singular. We thus
conclude that A must be a monomial matrix.

A.2 The Jacobians of monotone and order
isomorphic functions

We recall the definition of monotone and order isomor-
phic functions from the main text:
Definition 1. A function f is monotone if u � v =⇒
f(u) � f(v) for all u, v ∈ dom(f), where ordering is
taken with respect to the positive orthant (i.e., u � v
means ui ≤ vi for all i).
Definition 2. An injective function f is an order
isomorphism if f and f−1 restricted to the image of f
are both monotone, that is, u � v ⇐⇒ f(u) � f(v).

In this section, we establish that monotonicity and
order isomorphism impose strong constraints on the
function Jacobians.

Lemma 4. If a function f : Rkr → Rkr is twice differ-
entiable and monotone, then the Jacobian of f evaluated
at any z ∈ Rkr is a non-negative matrix.

Proof. Assume for contradiction that f is differentiable
and monotone, but that there exists some z ∈ Rkr such
that the Jacobian Jf (z) is not a non-negative matrix.
By definition, this implies that we can find i and j such
that the ij-th entry of Jf (z) is negative.

Let ej represent the j-th unit vector. By the remainder
bound for Taylor approximations, twice differentiability
implies that for any compact ball around z, we can find
some constant M such that we can write f(z + δej) ≤
f(z) + δJf (z)ej +

M
2 δ

2. If we pick δ < 2|Jf (z)ij |/M ,
the first order term dominates. Since the ij-th entry
is negative, this means that fi(z + δej) < fi(z) even
though z + δej � z, contradicting the monotonicity of
f .

Lemma 5. If q : Rkr → Rkr is twice continuously dif-
ferentiable and an order isomorphism, then the Jaco-
bian matrix Jh(z) is a non-negative monomial matrix
for all z ∈ Rkr .

Proof. If q is an order isomorphism, then q and q−1

are both monotone. By Lemma 4, their respective
Jacobian matrices are non-negative everywhere.

Now, for any z ∈ Rkr , the inverse function theorem tells
us that [Jq(z)]

−1
= Jq−1(q(z)), so both Jq(z) and its

inverse [Jq(z)]
−1 are non-negative. Applying Lemma 3

gives us that Jq(z) is a non-negative monomial matrix.

A.3 Component-wise monotonicity of order
isomorphisms

The conditions on the Jacobian of a twice differentiable
order isomorphic function q imply a constrained form.
Lemma 1 (restated). If q : Rkr → Rkr is an order
isomorphism and twice continuously differentiable, q
must be expressible as a permutation followed by a
component-wise strictly monotone transform.

Proof. Since q is bijective, q−1 exists everywhere, which
implies that Jq(r) must have full rank everywhere.
Since Jq(r) is a monomial matrix by Lemma 5, this
means that the sparsity pattern of Jq(r) cannot vary
with r; otherwise, by the intermediate value theorem,
there will be some r where Jq(r) where a row has
greater than one nonzero or no nonzeros and thus is
not monomial. By definition, a monomial matrix can
be decomposed into a positive diagonal matrix and a
permutation. Applying the fundamental theorem of cal-
culus to each diagonal entry recovers the strictly mono-
tone tranform, and the permutation matrix defines the
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permutation. The existence of the antiderivative is
guaranteed by construction of Jq as the derivative of
q.

A.4 Identifiability in the noiseless setting

We start by establishing two helpful lemmas:
Lemma 6. If functions f1 and f2 are both monotone,
then f1 ◦ f2 is also monotone.

If f1 and f2 are both bijective order isomorphisms, then
q

def
= f−12 ◦ f1 is also a bijective order isomorphism.

Proof. The first part of the lemma follows from the
transitivity of partial orders: x ≺ y =⇒ f1(x) ≺
f1(y) =⇒ f2(f1(x)) ≺ f2(f1(x)).

For the second part, note that q is bijective because
it is the composition of two bijective functions. Now,
since f1 and f2 are both order isomorphisms, we know
that f1, f−11 , f2, and f−12 are all monotone. By the first
part of the lemma, we conclude that q = f−12 ◦ f1 and
q−1 = f−11 ◦ f2 are both monotone, implying that q is
an order isomorphism.

Lemma 7. If a continuous, univariate, strictly mono-
tone function qi is measure preserving for a random
variable x, qi must be the identity map (on the support
of x).

Proof. By strict monotonicity, c1 < c2 implies q(c1) <
q(c2) and thus the CDF is preserved implying that
P (x < c) = P (q(x) < q(c)) = P (x < q(c)). The last
step follows from measure preservation of q.

Now assume for contradiction that qi is not the identity
map. We can then pick some c such that q(c) 6= c and
P (c) > 0. This implies that P (x < q(c)) 6= P (x < c)
which is a contradiction.

We can now state and prove identifiability in the noise-
less setting:
Proposition 1 (restated). If f1 and f2 and their in-
verses are twice continuously differentiable and order-
isomorphic functions such that f1(tr)

d
= f2(tr)

d
= xt

for some t > 0, then f1 and f2 are identical up to a
permutation.

Proof. We consider the difference map q def
= f−12 ◦ f1,

which maps latent rates of aging implied by f1 to that
of f2. Our aim is to show that q must be a permutation,
which will give the desired result.

From Lemma 6, we know that q is itself an order isomor-
phism. Thus, by Lemma 1, it must be expressible as
the composition of a component-wise strictly monotone
map and a permutation.

We can further show that this component-wise strictly
monotone transformation has to be the identity trans-
formation. Since both f1 and f2 map rt 7→ xt, q is
measure preserving on rt. In other words, it maps the
probability distribution of rt to itself. We can there-
fore apply Lemma 7 to conclude that q can only be a
permutation.

Applying f2 to both sides of q = f−12 ◦ f1, we get that
f1 and f2 have to be permutations of each other, as
desired.

A.5 Checking order isomorphisms

Lemma 2 (restated). Let a(x) = Ax, where A ∈ Rd×k.

If we can write A = P

[
B
C

]
where P is a permutation

matrix, B is a non-negative monomial matrix, and C is
a non-negative matrix, then a is an order isomorphism.

Proof. a is monotone since A is non-negative. To ver-
ify that the inverse of a over its image is monotone,
let Ik = [I; 0] ∈ Rk×d be the matrix selecting the
first k coordinates. If Ax ≺ Ay, every coordinate
of Ax is smaller than the corresponding coordinate
of Ay, so we can jointly permute the rows (i.e., left-
multiplying by a permutation matrix) or select a sub-
set of coordinates while preserving ordering. Thus,
Ax ≺ Ay =⇒ IkP

−1Ax ≺ IkP
−1Ay. By construc-

tion, IkP−1A = B is a non-negative monomial matrix.
Applying a similar permutation argument, we have that
IkP

−1Ax ≺ IkP−1Ay =⇒ x ≺ y.

Proposition 2 (restated). Let f : Rk → Rd = s2 ◦
a ◦ s1, where s1 : Rk → Rk and s2 : Rd → Rd are con-
tinuous, component-wise monotone transformations,
and a : Rk → Rd is a linear transform. If a satisfies
Lemma 2, then f is an order isomorphism.

Proof. The proof follows from the fact that order preser-
vation is transitive. a◦s1 is an order isomorphism onto
its image, since s1 is an order isomorphism on the
entire Rk and a is order isomorphic onto its image
by Lemma 2. Thus for any x ≺ y ⇐⇒ a(s1(x)) ≺
a(s1(y)). Since s2 is an order isomorphism on Rd,
we have x ≺ y ⇐⇒ a(s1(x)) ≺ a(s1(y)) ⇐⇒
s2(a(s1(x))) ≺ s2(a(s1(y))).

B UK Biobank dataset and processing

Phenotype filtering. We selected Biobank pheno-
types that were measured for a large proportion of
the dataset and that captured diverse and impor-
tant dimensions of aging and general health. After
removing phenotypes which were missing data for
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many people, redundant (e.g., there are multiple mea-
surements of BMI), or discrete (e.g., categorical re-
sponses from a survey question), we were left with 52
phenotypes (Table 2) across the following categories:
spirometry (a measure of lung function), bone density,
body type/anthropometry, cognitive function, vital
signs (blood pressure and heart rate), physical activ-
ity, hand grip strength, and blood test results. By
visual inspection, we categorized the 52 phenotypes
into monotone features (45/52) and non-monotone fea-
tures (7/52) for the cross-sectional model. In the com-
bined longitudinal/cross-sectional model, we modeled
an additional 8 features as non-monotone because they
increased in the longitudinal data but not in the cross-
sectional data, or vice versa.

Sample filtering. We removed individuals with non-
European ancestry, as identified from their genetic
principal components, as is commonly done in studies
of the UK Biobank to minimize spurious correlations
with ancestry particularly in genetic analysis (Lane
et al., 2016; Wain et al., 2015). (The vast majority of
individuals in UK Biobank are of European ancestry.)
We also removed individuals who were missing data in
any of our selected phenotypes.

After filtering, we were left with a train/development
set of 213,510 individuals; we report all results on a test
set of 53,174 individuals not used in model development
or selection. While these samples are cross-sectional
(with a measurement at only a single timepoint), we
have a single longitudinal followup visit for an addi-
tional 8,470 individuals, on which we assess longitudinal
progression. UK Biobank data contains two followup
visits; we use only longitudinal data from the first fol-
lowup visit (2-6 years after the initial visit), not the
second, because some of the phenotypes we use in model
fitting were not measured at the second followup.

Phenotype processing. We normalized each phe-
notype to have mean 0 and variance 1. In fitting the
model, we first transformed all phenotypes so they were
positively correlated with age, by multiplying all phe-
notypes which were not by negative one, so we could
assume that monotone features were monotone increas-
ing. However, all results in the paper are shown with
the original phenotype signs.

Diseases, mortality, and risk factors. We exam-
ined associations with 91 diseases which were reported
by at least 5,000 individuals in the entire UKBB dataset.
Diseases were retrospectively assessed via interview
(i.e., subjects developed the disease prior to the mea-
surement of xt0). Second, we examined associations
between rates of aging and mortality. In contrast to
disease status, mortality was measured after xt0 (all

subjects were obviously alive when xt0 was measured);
thus, examining associations with mortality serves as
an indication that rates of aging predict future out-
comes. Finally, we examined 5 binary risk factors:
whether the individual currently smokes, if they are a
heavy drinker, if they are above the 90th percentile in
Townsend deprivation index (a measure of low socioe-
conomic status), if they have type 2 diabetes, and if
they report no days of moderate or vigorous exercise
in a typical week.

We examined associations between rates of aging and
mortality using a Cox proportional hazards model
which controlled for age, sex, and the first five genetic
principal components. We report the hazard ratios
for a one standard-deviation increase in rate of aging.
For the 5 binary risk factors and the 91 diseases, we
examined associations using a linear regression model,
where the dependent variable was the rate of aging
and the independent variable was the risk factor or
disease. We controlled for age, sex, and the first five
genetic principal components. We filtered for associa-
tions which passed a statistical significance threshold
of p = 0.05, with Bonferroni correction for the number
of tests performed. Figure 3 reports the diseases/risk
factors with the largest positive associations and an
effect size of a greater than 1% increase in the rate of
aging; if more than five diseases or risk factors pass
this threshold, we report the top five.

C Model architecture and
hyperparameters

Model architecture. Figure G.4 illustrates our
model architecture. The monotone function f = s ◦ a
is parametrized as the composition of a monotone el-
ementwise transformation s : Rd′ → Rd′ with a mono-
tone linear transform a : Rkr → Rd′ . We parametrize
the linear transformation a using a matrix A con-
strained to have non-negative entries, and implement
each component si(v) : R+ → R+ of s as the sum of
positive powers of v ∈ R+ with non-negative coeffi-
cients si(v) =

∑
pj∈S wjv

pij , where wij are learned
non-negative weights, and S is a hyperparameter.
(For example, S = [ 12 , 1, 2] yields the function class
s(v) = w0v

1
2 + w1v + w2v

2. We illustrate some of the
learned S in Appendix Figure G.5). We verified that
the learned model’s A matrix (part of the monotone
function f) can be row-permuted into a combination
of an approximately monomial matrix and positive
matrix, indicating that we learned an f that was order-
isomorphic.

We use neural networks to parametrize the non-
monotone functions f̃ and g as well as the encoder
(which approximates the posterior over the latent
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Table 2: UK Biobank features used in model fitting. * denotes features which are modeled as non-monotone in
age when fitting the cross-sectional model. ** denotes additional features which are modeled as non-monotone
in age when fitting the model which uses both longitudinal and cross-sectional data. All features which are
modeled as non-monotone in the cross-sectional analysis are also modeled as non-monotone in the combined
longitudinal/cross-sectional model.

Feature
Spirometry: forced vital capacity
Spirometry: peak expiratory flow
Spirometry: forced expiratory volume in 1 second (FEV1)
Bone density: heel bone mineral density
Bone density: heel broadband ultrasound attenuation
Bone density: heel quantitative ultrasound index
Body type: body fat percentage
Body type: body mass index
Body type: hip circumference
Body type: impedance of whole body**

Body type: sitting height
Body type: standing height
Body type: waist circumference
Body type: whole body fat free mass
Body type: whole body fat mass
Body type: whole body water mass
Cognitive function: duration to first press of snap button
Cognitive function: mean time to correctly identify matches
Vital signs: diastolic blood pressure*

Vital signs: pulse rate**

Vital signs: systolic blood pressure
Physical activity: days/week of moderate activity (10+ min)
Physical activity: days/week of vigorous activity (10+ min)
Physical activity: days/week walked (10+ min)
Physical activity: time spent driving
Physical activity: time spent using computer**

Physical activity: time spent watching television
Hand grip strength: hand grip strength left
Hand grip strength: hand grip strength right
Blood: basophil percentage
Blood: eosinophil percentage
Blood: haematocrit percentage*

Blood: haemoglobin concentration*

Blood: high light scatter reticulocyte percentage
Blood: immature reticulocyte fraction
Blood: lymphocyte percentage*

Blood: mean corpuscular haemoglobin
Blood: mean corpuscular haemoglobin concentration**

Blood: mean corpuscular volume**

Blood: mean platelet thrombocyte volume
Blood: mean reticulocyte volume
Blood: mean sphered cell volume
Blood: monocyte percentage**

Blood: neutrophil percentage*

Blood: platelet count
Blood: platelet crit
Blood: platelet distribution width
Blood: red blood cell erythrocyte count*

Blood: red blood cell erythrocyte distribution width
Blood: reticulocyte count**

Blood: reticulocyte percentage**

Blood: white blood cell leukocyte count*
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variables r and b). We adopt the following priors:
r ∼ lognormal(0, σ2

rI); b ∼ N (0, I); and ε ∼ N (0, σ2
ε I).

We use a lognormal distribution for r to ensure posi-
tivity; set σr = 0.1 to reflect a realistic distribution of
the rates of biological aging (Belsky et al., 2015); and
optimize over σε. Finally, we simply take t to be an
individual’s age, although we could also have optimized
over some constant t0 and taken t = age− t0.

Hyperparameter selection. We conducted a ran-
dom search over the encoder architecture, decoder ar-
chitecture, learning rate, elementwise nonlinearity, and
whether there was an elementwise nonlinearity prior to
the linear transformation matrix. We selected a con-
figuration which performed well (as measured by low
reconstruction error/high out-of-sample evidence lower
bound (ELBO)) across a range of latent state sizes.
Our final architecture uses a learning rate of 0.0005,
encoder layer sizes of [50, 20] prior to the latent state,
and decoder layer sizes of [20, 50]. Our elementwise
nonlinearity is parametrized by s(y) =

∑
pi∈S wiy

pi ,
where S = [ 15 ,

1
4 ,

1
3 ,

1
2 , 1, 2, 3, 4, 5]. We found that using

an elementwise nonlinearity prior to the linear trans-
formation was not necessary in our dataset, so we only
used a nonlinearity after the linearity transformation
for interpretability and ease in training. We used Adam
for optimization (Kingma and Ba, 2014) and ReLUs
as the nonlinearity.

D Baselines

Linear baselines. We compare to three linear base-
lines (PCA, contrastive PCA, and mixed criterion
PCA), using the same number of dimensions as in
the original model (kr + kb = 15). We compare to
PCA because it is commonly used in biological studies
(Relethford et al., 1978) and serves as a good baseline
for reconstruction performance. (We evaluate PCA
reconstruction loss both when PCA is provided age as
an input, and when it is not; its reconstruction loss is
virtually identical regardless). However, because PCA
does not naturally isolate age-related variation, a key
goal of our analysis, we also compare to two linear
baselines which naturally incorporate age information:
contrastive PCA (Abid et al., 2018) and mixed-criterion
PCA (Bair et al., 2006).

Contrastive PCA takes as input a foreground dataset
and a background dataset, and finds a set of latent
components which maximize variance in the foreground
space while minimizing variance in the background
space (trading off between the two objectives using a
weighting α). The latent components v optimize

max
||v||=1

vTCforegroundv − αvTCbackgroundv (3)

where Cforeground and Cbackground are the empirical co-
variance matrices of the foreground and background
datasets, respectively. This corresponds to taking the
eigenvectors of the matrix Cforeground − αCbackground.
Because we seek to isolate age-related variation, we use
as our foreground dataset the entire dataset of Biobank
participants (aged 40-69), and as the background set
participants aged 40-49. Contrastive PCA will thus
identify components which explain variation in the
population as a whole but not within participants of
similar ages (40-49). Following the original authors, we
experiment with a set of weightings α logarithmically
spaced between 0.1 and 1,000. We report results with
α = 10 because this weighting reconstructs the data al-
most as well as PCA but does not learn identical latent
dimensions, indicating that the weighting is having an
effect; however, the patterns we report in the main text
hold with other α as well.

Mixed-criterion PCA, like contrastive PCA, uses a two-
term objective: the PCA objective (weighted by 1−α),
and a second term (weighted by α) which encourages
the learned components to correlate with age:

max
||v||=1

(1− α)Var(Xv) + αCov(Xv, t) (4)

where X is the matrix of observed features and t is age.
When α = 0, mixed-criterion PCA reduces to standard
PCA; when α = 1, it learns a single component which
is the linear combination of observed features which
correlates most strongly with age. We experiment with
a range of α and report results with α = 0.99, because
this yields several top principal components which cor-
relate with age; using a significantly smaller α produces
results very similar to PCA, and using a significantly
larger α produces only a single meaningful component
which is strongly correlated with age, severely harming
reconstruction performance.

Non-linear baseline: non-monotone model.
We use the same hyperparameter settings as for the
monotone model but remove the constraint that the age
decoder must be linear. Thus, all observed features are
represented as an arbitrary function of the age latent
state rt plus an arbitrary function of the bias latent
state b.
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E Learning from both cross-sectional
and longitudinal data

Our model can naturally incorporate any available
longitudinal data by optimizing the joint likelihood
of the cross-sectional and longitudinal data. As cross-
sectional and longitudinal data can display different
biases (Fry et al., 2017; Louis et al., 1986; Kraemer
et al., 2000), this can produce models that are less
affected by the biases in a particular dataset.

We handle longitudinal data similarly to cross-sectional
data, but with an additional term in the model objec-
tive that captures the expected log-likelihood of observ-
ing the longitudinal follow-up xt1 given our posterior
of r and b. We control the relative weighting between
cross-sectional and longitudinal data with a single pa-
rameter λlon; when λlon = 1, the longitudinal and cross-
sectional losses per sample are equally weighted; when
λlon = 0, the model tries to fit only the cross-sectional
data, and when λlon � 1, the model tries to fit only
the longitudinal data. We fit the longitudinal model
using the same model architecture and hyperparame-
ters as the cross-sectional experiments (Appendix C),
varying only the longitudinal loss weighting λlon. The
loss for cross-sectional samples is the negative evidence
lower bound (ELBO), as before. The loss for longitudi-
nal samples has an additional term that captures the
expected log-likelihood of observing the longitudinal
follow-up xt1 given our posterior of r and b. We use
the same model architecture as for the cross-sectional
model. In particular, to avoid overfitting on the small
number of longitudinal samples, we share the same en-
coder; this means that the approximate posterior over r
and b for a longitudinal sample is calculated only using
xt0 . Because we have far more cross-sectional samples
than longitudinal samples, we train the model by sam-
pling longitudinal batches with replacement, with one
longitudinal batch for every cross-sectional batch. In
addition to the 7 non-monotonic features used in the
cross-sectional experiments, we add an additional 8 fea-
tures to the non-monotonic list because they increase
in longitudinal data and not in cross-sectional data, or
vice versa (Table 2).

We search over a range of values of λlon and find that
test longitudinal loss (i.e., the negative evidence lower
bound on the likelihood of xt0 and xt1) is minimized
when λlon = 1. This indicates that the model achieves
the best longitudinal generalization performance by us-
ing cross-sectional data and the small amount of avail-
able longitudinal data. With higher λlon, the model
overfits to the small longitudinal dataset. Repeating
our longitudinal extrapolation task (Section 7.1) on a
held-out test set of 1687 participants with longitudinal
data and comparing to the same three benchmarks,

we found that the model with λlon = 1 outperforms
just predicting xt0 on 83% of people with followups
> 5 years (compared to 66% with purely cross-sectional
data, as in Section 7.1); pure reconstruction on 79% (vs
61%); and the average-cross-sectional-change baseline
on 80% (vs. 60%). The longitudinal model also outper-
forms benchmarks on the full longitudinal dataset (as
opposed to just individuals with followups > 5 years)
by similarly large margins. These results illustrate the
benefits of methods which exploit both cross-sectional
and longitudinal data.

F Model stability

We evaluated the stability of the learned rates of aging
in response to various model and data perturbations.
To compare the rates of aging learned by two differ-
ent models, we defined ρr as the correlation between
the r(i)’s learned by the 2 models, averaged over each
component of r, and maximized over permutations of
components We found that learned rates of aging were
stable over random seeds and changes to:

1. The number of non-monotone features. ρr with the
original model remained high even as we tripled
the number of non-monotone features from the
original 7, to 25 (for which ρr = 0.84). (We did this
by removing monotone constraints on randomly
chosen features.)

2. Random subsets of training data. Models trained
on different subsets, each containing 70% of the
overall data, learned similar rates r (average ρr of
0.82 between models).

3. The dimensions kr and kb of the time-dependent
and bias latent variables. When we altered kr, the
model learned many of the same rates of aging:
e.g., for kr = 4, ρr with the original model (kr = 5)
was 0.89, and for kr = 6 it was 0.92. Results were
also stable when we altered kb and compared to
the original kb = 10: ρr > 0.8 for 8 ≤ kb ≤ 12.
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G Supplementary Figures

Input

b ∈ Rkbrt ∈ Rkr
+

X ∈ Rd t

Age state Bias

f = s ∘ a

monotone non-monotoneOutput

Encoder
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Figure G.4: The model structure. The features X and age t are fed into the encoder to approximate the posterior
over the rates of aging r and bias b. The grey boxes indicate functions parametrized by neural networks. While
both the monotone and non-monotone outputs are a function of both the age state rt and the bias b, only the
relationship between rt and the monotone outputs (green arrow) is constrained to be monotone and parametrized
by f = s ◦ a.
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Figure G.5: Representative elementwise transformations s. Most elementwise transformations are close to linear,
like the left plot, but some are not (right two plots). To determine the relevant domain for each elementwise
transformation, we sample latent rt from the fitted cross-sectional model (for t = 40-69), feed it through the linear
transformation a, and compute the 0.1th and 99.9th percentiles of the resulting distribution for each monotonic
feature. This yields the relevant domain over which each elementwise transformation operates.

Figure G.6: Reconstructed vs. actual features. The figure plots the reconstructed f(rt) + g(b) against the actual
xt for the 2 features with the highest (ρ = 0.99, left) and lowest correlation (ρ = 0.63, right). Overall, the model
fits the data well: reconstructed features are highly correlated with actual features (mean ρ = 0.88), with most
resembling the left plot.
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PCA mcPCA cPCA

Component Loading Component Loading Component Loading

Figure G.7: Loadings for the three linear baselines (with 15 latent dimensions) reveal non-sparse latent dimensions
which are difficult to interpret and do not clearly differentiate between age and non-age variation. Each cell shows
the loading for one component (horizontal axis) and observed feature (vertical axis).


