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Abstract

We present a novel algorithm for over-
complete independent components analysis
(ICA), where the number of latent sources
k exceeds the dimension p of observed vari-
ables. Previous algorithms either su↵er
from high computational complexity or make
strong assumptions about the form of the
mixing matrix. Our algorithm does not make
any sparsity assumption yet enjoys favor-
able computational and theoretical proper-
ties. Our algorithm consists of two main
steps: (a) estimation of the Hessians of the
cumulant generating function (as opposed to
the fourth and higher order cumulants used
by most algorithms) and (b) a novel semi-
definite programming (SDP) relaxation for
recovering a mixing component. We show
that this relaxation can be e�ciently solved
with a projected accelerated gradient de-
scent method, which makes the whole al-
gorithm computationally practical. More-
over, we conjecture that the proposed pro-
gram recovers a mixing component at the
rate k < p2/4 and prove that a mixing com-
ponent can be recovered with high probabil-
ity when k < (2� ")p log p when the original
components are sampled uniformly at ran-
dom on the hypersphere. Experiments are
provided on synthetic data and the CIFAR-
10 dataset of real images.
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1 Introduction

Independent component analysis (ICA) models a p-
dimensional observation x as a linear combination of
k latent mutually independent sources:

x = D↵, (1)

where ↵ := (↵
1

, . . . ,↵
k

)> and D 2 Rp⇥k. The lin-
ear transformation D is called the mixing matrix and
is closely related to the dictionary matrix from dictio-
nary learning (see, e.g., Chen and Donoho, 1994; Chen
et al., 1998). Given a sample X := {x(1), . . . , x(n)} of
n observations, one is often interested in estimating
the latent mixing matrix D and respective latent rep-
resentations, ↵(1), . . . ,↵(n), also known as sources, of
every observation.

A classical motivating example for ICA is the cocktail
party problem, where one is interested in separating in-
dividual speakers’ voices from noisy recordings. Here,
each record is an observation and each speaker is an
independent source. In general, ICA is a simple single-
layered neural network and is widely used as an unsu-
pervised learning method in machine learning and sig-
nal processing communities (see, e.g., Hyvärinen et al.,
2001; Comon and Jutten, 2010).

There are three conceptually di↵erent settings of the
ICA problem: (a) complete, or determined, where the
dimension of observations coincides with the number
of sources, i.e., p = k; (b) undercomplete, or overde-
termined, with fewer sources than the dimension, i.e.,
k < p; and (c) overcomplete, or underdetermined, with
more sources than the dimension, i.e., k > p. While
the first two cases are well studied, the last one is more
di�cult and we address it here.

In the complete setting, where k = p, ICA is usu-
ally solved via pre-whitening of the data so that the
whitened observations, z := Wx, are uncorrelated and
all have unit variance, i.e., cov(z) = W cov(x)W> = I,



Overcomplete Independent Component Analysis via SDP

where W denotes the whitening matrix. Substitut-
ing x = D↵, we get (WD)(WD)> = I which implies
that the matrix Q := WD is orthogonal and there-
fore the problem of finding the mixing matrix D boils
down to finding the “correct” orthogonal matrix Q.
Numerous “correctness” criteria, such as maximizing
non-Gaussianity of sources, were proposed and respec-
tive algorithms for complete ICA are well known (see,
e.g., Hyvärinen et al., 2001; Comon and Jutten, 2010).
The most widely known complete ICA algorithms are
possibly the FastICA algorithm by Hyvärinen (1999)
and the JADE algorithm by Cardoso and Souloumiac
(1993). This naturally extends to the undercom-
plete setting where one looks for an orthonormal ma-
trix, where columns are orthogonal, instead. How-
ever, although nothing prevents us from whitening
data in the overcomplete setting, the orthogonaliza-
tion trick cannot be extended to the overcomplete set-
ting, where k > p, since the mixing matrix D has more
columns than rows and therefore cannot have full col-
umn rank.

Improvements in feature learning are among the ad-
vantages of overcomplete representations: it has been
shown by Coates et al. (2011) that dense and overcom-
plete features can significantly improve performance of
classification algorithms. However, advantages of over-
complete representations go far beyond this task (see,
e.g., Bengio et al., 2013).

Originally, the idea of overcomplete representations
was developed in the context of dictionary learning,
where an overcomplete dictionary, formed by Fourier,
wavelet, Gabor or other filters, is given and one is
only interested in estimating the latent representa-
tions ↵. Di↵erent approaches were proposed for this
problem including the method of frames (Daubechies,
1988) and basis pursuit (Chen and Donoho, 1994;
Chen et al., 1998). Later in sparse coding, the idea
of estimating a dictionary matrix directly from data
was introduced (Olshausen and Field, 1996, 1997) and
was shortly followed by the first overcomplete ICA
algorithm (Lewicki and Sejnowski, 2000).1 Further
overcomplete ICA research continued in several fairly
di↵erent directions based on either (a) various spar-
sity assumptions (see, e.g., Teh et al., 2003) or on
(b) prior assumptions about the sources as by Lewicki
and Sejnowski (2000) or (c) instead in a more general
dense overcomplete setting (see, e.g., Hyvärinen, 2005;
Comon and Rajih, 2006; De Lathauwer et al., 2007;
Goyal et al., 2014; Bhaskara et al., 2014a,b; Anandku-
mar et al., 2015; Ma et al., 2016). Since we focus on

1 Recall the close relation between ICA and sparse cod-
ing: indeed, the maximum likelihood estimation of ICA
with the Laplace prior on the sources (latent representa-
tions ↵) is equivalent to the standard sparse coding formu-
lation with the `1-penalty.

this more general dense setting, we do not review or
compare to the literature in the other settings.

In particular, we focus on the following problem: Es-
timate the mixing matrix D given an observed sam-
ple X :=

�
x(1), . . . , x(n)

 
of n observations. We aim

at constructing an algorithm that would bridge the
gap between algorithms with theoretical guarantees
and ones with practical computational properties. No-
tably, our algorithm does not depend on any prob-
abilistic assumptions on the sources, except for the
standard independence and non-Gaussianity, and the
uniqueness of the ICA representation (up to permuta-
tion and scaling) is the result of the independence of
sources rather than sparsity. Here we only focus on the
estimation of the latent mixing matrix and leave the
learning of the latent representation for future research
(note that one can use, e.g., the mentioned earlier dic-
tionary learning approaches).

Di↵erent approaches have been proposed to address
this problem. Some attempt to relax the hard orthogo-
nality constraint in the whitening procedure with more
heuristic quasi-orthogonalization approaches (see, e.g.,
Le et al., 2011; Arora et al., 2012). Other approaches
try to specifically address the structure of the model
in the overcomplete setting (see, e.g., Hyvärinen, 2005;
Comon and Rajih, 2006; De Lathauwer et al., 2007;
Goyal et al., 2014; Bhaskara et al., 2014a,b; Anand-
kumar et al., 2015; Ma et al., 2016) by considering
higher-order cumulants or derivatives of the cumulant
generating function. The algorithm that we propose is
the closest to the latter type of approach.

We make two conceptual contributions: (a) we show
how to use second-order statistics instead of the fourth
and higher-order cumulants, which improves sample
complexity, and (b) we introduce a novel semi-definite
programming-based approach, with a convex relax-
ation that can be solved e�ciently, for estimating the

Algorithm 1 OverICA

1: Input: Observations X := {x
1

, . . . , x
n

} and
latent dimension k.
Parameters: The regularization parameter µ and
the number s of generalized covariances, s > k.

2: STEP I. Estimation of the subspace W :
Sample vectors t

1

, . . . , t
s

.
Estimate matrices H

j

:= C
x

(t
j

) for all j 2 [s].
3: STEP II. Estimation of the atoms:

Given G(i) for every deflation step i = 1, 2, . . . , k:
Solve the relaxation (12) with G(i).
(OR: Solve the program (9) with G(i).)
Estimate the i-th mixing component d

i

from B⇤.
4: Output: Mixing matrix D = (d

1

, d
2

, . . . , d
k

).
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columns of D. Overall, this leads to a computationally
e�cient overcomplete ICA algorithm that also has the-
oretical guarantees. Conceptually, our work is similar
to the fourth-order only blind identification (FOOBI)
algorithm (De Lathauwer et al., 2007), which we found
to work well in practice. However, FOOBI su↵ers from
high computational and memory complexities, its the-
oretical guarantee requires all kurtoses of the sources
to be positive, and it makes the strong assumption that
certain fourth-order tensors are linearly independent.
Our approach resolves these drawbacks. We describe
our algorithm in Section 2 and experimental results in
Section 3.

2 Overcomplete ICA via SDP

2.1 Algorithm overview

We focus on estimating the latent mixing matrix D 2
Rp⇥k of the ICA model (1) in the overcomplete setting
where k > p. We first motivate our algorithm in the
population (infinite sample) setting and later address
the finite sample case.

In the following, the i-th column of the mixing ma-
trix D is denoted as d

i

and called the i-th mixing
component. The rank-1 matrices d

1

d>
1

, . . . , d
k

d>
k

are
referred to as atoms.2

Our algorithm, referred to as OverICA, consists of
two major steps: (a) construction of the subspace W
spanned by the atoms, i.e.,

W := Span
�
d
1

d>
1

, . . . , d
k

d>
k

 
, (2)

and (b) estimation of individual atoms d
i

d>
i

, i 2 [k],
given any basis of this subspace.3 We summarize this
high level idea4 in Algorithm 1. Note that although the
definition of the subspace W in (2) is based on the la-
tent atoms, in practice this subspace is estimated from
the known observations x (see Section 2.3). However,
we do use this explicit representation in our theoretical
analysis.

In general, there are di↵erent ways to implement these
two steps. For instance, some algorithms implement
the first step based on the fourth or higher order cu-
mulants (see, e.g., De Lathauwer et al., 2007; Goyal
et al., 2014). In contrast, we estimate the subspace
W from the Hessian of the cumulant generating func-
tion which has better computational and sample com-
plexities (see Section 2.3). Our algorithm also works
(without any adjustment) with other implementations

2 We slightly abuse the standard closely related dictio-
nary learning terminology where the term atom is used for
the individual columns di (see, e.g., Chen et al., 1998).

3 The mixing component is then the largest eigenvector.
4 The deflation part is more involved (see Section 2.4.3).

of the first step, including the fourth-order cumulant
based one, but other algorithms cannot take advan-
tage of our e�cient first step due to the di↵erences in
the second step.

In the second step, we propose a novel semi-definite
program (SDP) for estimation of an individual atom
given the subspace W (Section 2.4.1). We also provide
a convex relaxation of this program which admits e�-
cient implementation and introduces regularization to
noise which is handy in practice when the subspace W
can only be estimated approximately (Section 2.4.2).
Finally, we provide a deflation procedure that allows
us to estimate all the atoms (Section 2.4.3). Before
proceeding, a few assumptions are in order.

2.2 Assumptions

Due to the inherent permutation and scaling unidenti-
fiability of the ICA problem, it is a standard practice
to assume, without loss of generality, that
Assumption 2.1. Every mixing component has unit
norm, i.e., kd

i

k
2

= 1 for all i 2 [k].

This assumption immediately implies that all atoms
have unit Frobenius norm, i.e.,

��d
i

d>
i

��
F

= kd
i

k2
2

= 1
for all i 2 [k].

Since instead of recovering mixing components d
i

as in
(under-) complete setting we recover atoms d

i

d>
i

, the
following assumption is necessary for the identifiability
of our algorithm:
Assumption 2.2. The matrices (atoms) d

1

d>
1

, d
2

d>
2

,
. . . , d

k

d>
k

are linearly independent.

This in particular implies that the number of sources k
cannot exceed m := p(p+1)/2, which is the latent di-
mension of the set of all symmetric matrices S

p

. We
also assume, without loss of generality, that the obser-
vations are centred, i.e., E(x) = E(↵) = 0.

2.3 Step I: Subspace Estimation

In this section, we describe a construction of an or-
thonormal basis of the subspace W . For that, we first
construct matrices H

1

, . . . , H
s

2 Rp⇥p, for some s,
which span the subspace W . These matrices are ob-
tained from the Hessian of the cumulant generating
function as described below.

Generalized Covariance Matrices. Introduced
for complete ICA by Yeredor (2000), a generalized co-
variance matrix is the Hessian of the cumulant gener-
ating function evaluated at a non-zero vector.

Recall that the cumulant generating function (cfg) of
a p-valued random variable x is defined as

�
x

(t) := logE(et
>
x), (3)
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for any t 2 Rp. It is well known that the cumulants
of x can be computed as the coe�cients of the Taylor
series expansion of the cgf evaluated at zero (see, e.g.,
Comon and Jutten, 2010, Chapter 5). In particular,
the second order cumulant, which coincides with the
covariance matrix, is then the Hessian evaluated at
zero, i.e., cov(x) = r2�

x

(0).

The generalized covariance matrix is a straight-
forward extension where the Hessian of the cgf is eval-
uated at a non-zero vector t:

C
x

(t) := r2�
x

(t) =
E(xx>et

>
x)

E(et>x)
� E

x

(t)E
x

(t)>, (4)

where we introduced

E
x

(t) := r�
x

(t) =
E(xet>x)

E(et>x)
. (5)

Generalized Covariance Matrices of ICA. In
case of the ICA model, substituting (1) into the ex-
pressions (5) and (4), we obtain

E
x

(t) =
DE(↵e↵>

y)

E(e↵>
y)

= DE
↵

(y),

C
x

(t) = DC
↵

(y)D>,

(6)

where we introduced y := D>t and the generalized
covariance C

↵

(y) := r2�
↵

(y) of the sources:

C
↵

(y) =
E(↵↵>e↵

>
y)

E(e↵>
y)

� E
↵

(y)E
↵

(y)>, (7)

where E
↵

(y) := r�
↵

(y) = E(↵ey>
↵)/E(ey>

↵).

Importantly, the generalized covariance C
↵

(y) of the
sources, due to the independence, is a diagonal ma-
trix (see, e.g., Podosinnikova et al., 2016). Therefore,
the ICA generalized covariance C

x

(t) is:

C
x

(t) =
kX

i=1

!
i

(t)d
i

d>
i

, (8)

where !
i

(t) := [C
↵

(D>t)]
ii

are the generalized variance
of the i-th source ↵

i

. This implies that ICA generalized
covariances belong to the subspace W .

Construction of the Subspace. Since ICA gener-
alized covariance matrices belong to the subspace W ,
then the span of any number of such matrices would
either be a subset of W or equal to W . Choosing suf-
ficiently large number s > k of generalized covariance
matrices, we can ensure the equality. Therefore, given
a su�ciently large number s of vectors t

1

, . . . , t
s

, we
construct matrices H

j

:= C
x

(t
j

) for all j 2 [s]. Note
that in practice it is more convenient to work with vec-
torizations of these matrices and then consequent ma-
tricization of the obtained result (see Appendices A.1
and B.2). Given matrices H

j

, for j 2 [s], an orthonor-
mal basis can be straightforwardly extracted via the
singular value decomposition. In practice, we set s

as a multiple of k and sample the vectors t
j

from the
Gaussian distribution.

Note that one can also construct a basis of the sub-
space W from the column space of the flattening of
the fourth-order cumulant of the ICA model (1). In

particular, this flattening is a matrix C 2 Rp

2⇥p

2

such
that C = (D�D)Diag()(D�D), where � stands for
the Khatri-Rao product and the i-th element of the
vector  2 Rk is the kurtosis of the i-th source ↵

i

. Im-
portantly, matricization of the i-th column a

i

of the
matrix A := D � D is exactly the i-th atom, i.e.,
mat(a

i

) = d
i

d>
i

. Therefore, one can construct the
desirable basis from the column space of the matrix
A (see Appendix B.2 for more details). This also in-
tuitively explains the need for Assumption 2.2, which
basically ensures that A has full column rank (as op-
posed to D). In general, this approach is common in
the overcomplete literature (see, e.g., De Lathauwer
et al., 2007; Bhaskara et al., 2014a; Anandkumar et al.,
2015; Ma et al., 2016) and can be used as the first step
of our algorithm. However, the generalized covariance-
based construction has better computational (see Sec-
tion 3.3) and sample complexities.

2.4 Step II: Estimation of the Atoms

We now discuss the recovery of one atom d
i

d>
i

, for
some i 2 [k], given a basis of the subspace W (Sec-
tion 2.4.1). We then provide a deflation procedure to
recover all atoms d

i

d>
i

(Section 2.4.3).

2.4.1 The Semi-Definite Program

Given matrices H
1

, H
2

, . . . , H
s

which span the sub-
space W defined in (2) we formulate the following
semi-definite program (SDP):

B⇤
sdp

:= argmax
B2Sp

hG,Bi

B 2 Span {H
1

, H
2

, . . . , H
s

} ,
Tr(B) = 1,

B ⌫ 0.

(9)

We expect that the optimal solution (if it exists and
is unique) B⇤

sdp

coincides with one of the atoms d
i

d>
i

for some i 2 [k]. This is not always the case, but we
conjecture based on the experimental evidence that
one of the atoms is recovered with high probability
when k  p2/4 (see Figure 1) and prove a weaker re-
sult (Theorem 2.1). The matrix G 2 Rp⇥p determines
which of the atoms d

i

d>
i

is the optimizer and its choice
is discussed when we construct a deflation procedure
(Section 2.4.3; see also Appendix C.1.4).

Intuition. Since generalized covariances H
1

,. . . ,H
s

span the subspace W , the constraint set of (9)
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is:
K := {B 2 W : Tr(B) = 1, B ⌫ 0} . (10)

It is not di�cult to show (see Appendix C.2.2) that un-
der Assumption 2.2 the atoms d

i

d>
i

are extreme points
of this set K:
Lemma 2.4.1. Let the atoms d

1

d>
1

, d
2

d>
2

, . . . , d
k

d>
k

be linearly independent. Then they are extreme points
of the set K defined in (10).

If the program (9) has a unique solution, the optimizer
B⇤

sdp

must be an extreme point due to the compact-
ness of the convex set K. If the set (10) does not
have other extreme points except for the atoms d

i

d>
i

,
i 2 [k], then the optimizer is guaranteed to be one of
the atoms. This might not be the case if the set K con-
tains extreme points di↵erent from the atoms. This
might explain why the phase transition (at the rate
k  p2/4) happens and could potentially be related
to the phenomenon of polyhedrality of spectrahedra5

(Bhardwaj et al., 2015).

Before diving into the analysis of this SDP, let us
present its convex relaxation which enjoys certain de-
sirable properties.

2.4.2 The Convex Relaxation

Let us rewrite (9) in an equivalent form. The con-
straint B 2 W := Span

�
d
1

d>
1

, . . . , d
k

d>
k

 
is equivalent

to the fact that B is orthogonal to any matrix from the
orthogonal complement (null space) ofW . Let the ma-
trices {F

1

, F
2

, . . . , F
m�k

}, wherem := p(p+1)/2, form
a basis of the null spaceN (W ).6 Then the program (9)
takes an equivalent formulation:

B⇤
sdp

:= argmax
B2Sp

hG,Bi

hB,F
j

i = 0, for all j 2 [m� k],

Tr(B) = 1,

B ⌫ 0.

(11)

In the presence of (e.g., finite sample) noise, the sub-
space W can only be estimated approximately (in the
first step). Therefore, rather than keeping the hard
first constraint, we introduce the relaxation

B⇤ := argmax
B2Sp

hG,Bi � µ

2

X

j2[m�k]

hB,F
j

i2

Tr(B) = 1, B ⌫ 0,

(12)

where µ > 0 is a regularization parameter which
helps to adjust to an expected level of noise. Im-
portantly, the relaxation (12) can be solved e�ciently,

5 The spectrahedron is a set formed by an intersection of
the positive semi-definite cone with linear constraints, e.g.
the set K. Importantly, all polyhedra are spectrahedra,
but not all spectrahedra are polyhedra.

6 Note that a basis of N (W ) can be easily computed
given matrices H1, . . . , Hs.

e.g., via the fast iterative shrinkage-thresholding al-
gorithm (FISTA; Beck and Teboulle, 2009) and the
majorization-maximization principle (see, e.g., Hunter
and Lange, 2004). See Appendix C.1 for details.

2.4.3 Deflation

The semi-definite program (9), or its relaxation (12),
is designed to estimate only some one atom d

i

d>
i

. To
estimate all other atoms we need a deflation procedure.
In general, there is no easy and straightforward way
to perform deflation in the overcomplete setting, but
we discuss possible approaches below.

Clustering. Since the matrix G determines which
atom is found, it is natural to repeatedly resample this
matrix a multiple of k times and then cluster the ob-
tained atoms into k clusters. This approach generally
works well except in the cases where either (a) some of
the atoms, say d

i

d>
i

and d
j

d>
j

, are relatively close (e.g.,
in terms of angle in the space of all symmetric matri-
ces) to each other, or (b) one or several atoms were
not properly estimated. In the former case, one could
increase the number of times G is resampled, and the
program is solved, but that might require very high
number of repetitions. The latter issue is more di�-
cult to fix since a single wrong atom could significantly
perturb the overall outcome.

Adaptive Deflation. Alternatively, one could
adapt the constraint set iteratively to exclude from
the search all the atoms found so far. For that, one
can update the constraint set so that the subspace W
is replaced with the subspace that is spanned by all the
atoms except for the ones which were already found.
The most natural way to implement this is to add the
found atoms to a basis of the null space of W , which is
straightforward to implement with the relaxation (12).
Similar to other deflation approaches, a poor estimate
of an atom obtained in an earlier deflation step of such
adaptive deflation can propagate this error leading to
an overall poor result.

Semi-Adaptive Deflation. We found that taking
advantage of both presented deflation approaches leads
to the best result in practice. In particular, we com-
bine these approaches by first performing clustering
and keeping only good clusters (with low variance over
the cluster) and then continuing with the adaptive de-
flation approach. We assume this semi-adaptive de-
flation approach for all the experiments presented in
Section 3.
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Figure 1: Phase transition of the program (13).

2.4.4 Identifiability

In general, there are two types of identifiability of
probabilistic models: (a) statistical and (b) algebraic.
The statistical identifiability addresses whether the pa-
rameters of the model can be identified for given dis-
tributions. In particular, it is well known that the
ICA model is not identifiable if (more than one of) the
sources are Gaussian (Comon, 1994) and issues also
arise when the sources are close to Gaussian (Sokol
et al., 2014). These results also extend to the over-
complete case that we consider. However, we do not
address these questions here and assume that the mod-
els we work with are statistically identifiable. Instead,
we are interested whether our approach is algebraically
identifiable, i.e., whether our algorithm correctly re-
covers the parameters of the model. In particular,
we address the following question: When is the solu-
tion B⇤

sdp

of the program (9) is one of the atoms d
i

d>
i

,
i 2 [k]?

We address this question in theory and in practice and
focus on the population (infinite number of samples)
case, where we assume that an exact estimate of the
subspace W is given and, therefore, one can use the
representation W := Span

�
d
1

d>
1

, . . . , d
k

d>
k

 
without

loss of generality. Therefore, for the theoretical anal-
ysis purposes we assume that atoms d

i

d>
i

are known,
we consider the following program instead

B⇤
sdp

:= argmax
B2Sp

hG,Bi

B 2 Span
�
d
1

d>
1

, d
2

d>
2

, . . . , d
k

d>
k

 
,

Tr(B) = 1,

B ⌫ 0.

(13)

Phase Transition. In Figure 1, we present the
phase transition plot for the program (13) obtained
by solving the program multiple times for di↵erent
settings. In particular, for every pair (p, k) we solve
the program n

rep

:= 50 times and assign to the re-
spective point the value equal to the fraction of suc-
cessful solutions (where the optimizer was one of the
atoms).

Given a fixed pair (p, k), every instance of the pro-
gram (13) is constructed as follows. We first sample
a mixing matrix D 2 Rp⇥k so that every mixing com-
ponent is from the standard normal distribution as

described in Appendix D.1; and we sample a matrix
G 2 Rp⇥p from the standard normal distribution. We
then construct the constraint set of the program (13)
by setting every matrix H

i

= d
i

d>
i

for all i 2 [k],
where s = k. We solve every instance of this problem
with the CVX toolbox (Grant et al., 2006) using the
SeDuMi solver (Sturm, 1999).

We consider the observations dimensions p from 10 to
50 with the interval of 5 and we vary the number of
atoms from 10 to 1000 with the interval of 10. The
resulting phase transition plots are presented in Fig-
ure 1. The blue line on this plot corresponds to the
curve k = p(p+ 1)/2, which is the largest possible la-
tent dimension of all symmetric matrices S

p

. The red
line on this plot corresponds to the curve k = p2/4.
Since above the red line we observe 100% successful re-
covery (black), we conjecture that the phase transition
happens around k = p2/4.

Theoretical Results. Interestingly, an equivalent
conjecture, k < p2/4, was made for the ellipsoid fitting
problem (Saunderson et al., 2012, 2013) and the ques-
tion remains open to our best knowledge.7 In fact, we
show close relation between successful solution (recov-
ery of an atom) of our program (13) and the ellipsoid
fitting problem. In particular, a successful solution
of our problem implies that the feasibility of its La-
grange dual program is equivalent to the ellipsoid fit-
ting problem (see Appendix C.2.3). Moreover, using
this connection, we prove the following:
Theorem 2.1. Let " > 0. Consider a regime with
p tending to to infinity, and with k varying according
to the bound k < (2 � ")p log p. As above, let the d

i

be random unit vectors and let G = uu> for a ran-
dom unit vector u. Then with high probability8, the
matrix d

i

d>
i

for which d>
i

Gd
i

is largest is the unique
maximizer of the program (13).

3 Experiments

It is di�cult to objectively evaluate unsuper-
vised learning algorithms on real data in the
absence of ground truth parameters. There-
fore, we first perform comparison on synthetic
data. All our experiments can be reproduced with
the publicly available code: https://github.com/

anastasia-podosinnikova/oica.

7 In Appendix C.2.1, we recall the formulation of the
ellipsoid fitting problem and slightly improve the results of
Saunderson et al. (2012, 2013).

8Throughout, “with high probability” indicates proba-
bility tending to 1 as p ! 1.

https://github.com/anastasia-podosinnikova/oica
https://github.com/anastasia-podosinnikova/oica
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Figure 2: A proof of concept in the asymptotic regime. See explanation in Section 3.1.
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Figure 3: Comparison in the finite sample regime. See explanation in Section 3.2.

3.1 Synthetic Data: Population Case

As a proof of concept, this simple experiment (Fig-
ure 2) imitates the infinite sample case. Given a
ground truth mixing matrix D, we construct a basis of
the subspace W directly from the matrix A := D�D
(see Appendix B.2). This leads to a noiseless estimate
of the subspace. We then evaluate the performance of
the second step of our OverICA algorithm and com-
pare it with the second step of FOOBI. We fix the
observed dimension p = 10 and vary the latent dimen-
sion from k = 5 to k = 60 in steps of 5. For every
pair (p, k), we repeat the experiment n

rep

= 10 times
and display the minimum, median, and maximum val-
ues. Each time we sample the mixing matrix D with
mixing components from the standard normal distri-
bution (see Appendix D.1.1). Note that we tried di↵er-
ent sampling methods and distributions of the mixing
components, but did not observe any significant dif-
ference in the overall result. See Appendix D.1.2 for
further details on this sampling procedure.

The error metrics (formally defined in Appendix D.2)
are: (a) f-error is essentially the relative Frobenius
norm of the mixing matrices with properly permuted
mixing components (lower is better); (b) a-error mea-
sures the angle deviations of the estimated mixing
components vs the ground truth (lower is better);
and (c) “perfect” recovery rates, which show for ev-
ery i 2 [k] the fraction of perfectly estimated i com-
ponents. We say that a mixing component is “per-
fectly” recovered if the cosine of the angle between
this component d

i

and its ground truth equivalent

d
⇡(i)

is at least 0.99, i.e., cos(d
i

, bd
⇡(i)

) � 0.99. Note
that the respective angle is approximately equal to 8.
Then the black-and-white perfect recovery plots (in
Figure 2) show if i  k (on the y-axis) components
were perfectly recovered (black) for the given latent
dimension k (x-axis). These black vertical bars can-
not exceed the red line i = k, but the closer they
approach this line, the better. The vertical green
lines correspond to k = p = 10, k = p2/4 = 25,
k = p(p � 1)/2, and k = p(p + 1)/2. Importantly,
we see that OverICA works better or comparably to
FOOBI in the regime k < p2/4. Performance of Over-
ICA starts to deteriorate near the regime k ⇡ p2/4
and beyond, which is in accord with our theoretical
results in Section 2.4.4. Note that to see whether the
algorithms work better than random, we display the
errors of a randomly sampled mixing matrix (RAND;
see Appendix D.1.1).

3.2 Synthetic Data: Finite Sample
Case

With these synthetic data we evaluate performance of
overcomplete ICA algorithms in the presence of finite
sample noise but absence of model misspecification. In
particular, we sample synthetic data in the observed
dimension p = 15 from the ICA model with uniformly
distributed (on [�0.5, 0.5]) k = 30 sources for di↵er-
ent sample sizes n taking values from n = 1, 000 to
n = 10, 000 in steps of 1, 000 (two left most plots in
the top line of Figure 3) and values from n = 10, 000 to
n = 210, 000 in steps of 10, 000 (two right most plots in
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Table 1: Computational complexities (n is the sample size,
p is the observed dimension, k is the latent dimension, s is
the number of generalized covariances, usually s = O(k)).

Procedure Memory Time
GenCov O(p2s) O(snp2)
CUM O(p4) O(np4 + k2p2)
FOOBI O(p4k2 + k4) O(np4 + k2p4 + k6)
OverICA O(sp2) O(nsp2)
OverICA(Q) O(p4) O(np4 + k2p2)
Fourier PCA O(p4) O(np4)

the top line of Figure 3; see also Figure 6 in Appendix
for log-linear scale). Note that the choice of dimen-
sions p = 15 and k = 30 corresponds to the regime
k < p2/4 ⇡ 56 of our guarantees. We repeat the ex-
periment n

rep

:= 10 times for every n where we every
time resample the (ground truth) mixing matrix (with
the sampling procedure described in Appendix D.1.1).
See further explanation in Appendix D.1.3.

We compare the Fourier PCA algorithm (Goyal et al.,
2014), the FOOBI algorithm (De Lathauwer et al.,
2007), OverICA from Algorithm 1, and a version of
the OverICA algorithm where the first step is replaced
with the construction based on the fourth-order cumu-
lant, a.k.a. quadricovariance (OverICA(Q); see Ap-
pendix B.2). Note that we can not compare with the
reconstruction ICA algorithm by Le et al. (2011) be-
cause it estimates the de-mixing (instead of mixing)
matrix.9 Similarly to Section 3.1, we measure the
Frobenius error (f-error), the angle error (a-error), and
the perfect recovery for the angle of 8. We observe
that the generalized covariance-based OverICA algo-
rithm performs slightly better which we believe is due
to the lower sample complexity. Fourier PCA on the
contrary performs with larger error, which is probably
due to the higher sample complexity and larger noise
resulting from estimation using fourth-order general-
ized cumulants.

3.3 Computational Complexities

In Table 1, we summarize the timespace complexi-
ties of the considered overcomplete ICA algorithms
and two sub-procedures they use: generalized covari-
ances (GenCov; used by OverICA) from Section 2.3
and the forth-order cumulant (CUM; used by Over-
ICA(Q) and FOOBI; see Appendix B.2) (see Ap-
pendix D.3). Importantly, we can see that our Over-
ICA algorithm has a significantly lower complexity.
In Appendix D.3, we present runtime comparisons of
these algorithms.

9 In the complete invertible case, the de-mixing matrix

would be the inverse of the mixing matrix. In the overcom-
plete regime, one cannot simply obtain the mixing matrix
from the de-mixing matrix.

Figure 4: Mixing components obtained from 7-by-7
patches, i.e., p = 49, of the CIFAR-10 dataset (k = 150,
i.e., overcomplete). ICA does not preserve non-negativity
and the signs of ICA mixing components can be arbitrar-
ily flipped due to the scaling unidentifiability; here black
and white correspond to the extreme positive and extreme
negative values. The colorbar limits of every image are
the same and the signs are alligned to have positive scalar
product with the first component.

3.4 Real Data: CIFAR-10 Patches

Finally, we estimate the overcomplete mixing matrix
of data formed of patches of the CIFAR-10 dataset
(see, e.g., Krizhevsky et al., 2014). In particular, we
transform the images into greyscale and then form 7-
by-7 patches for every interior point (at least 3 pixels
from the boundary) of every image from the train-
ing batch 1 of the CIFAR-10 dataset. This results in
6, 760, 000 patches each of dimension p = 49. We per-
form the estimation of the mixing matrix for k = 150
latent mixing components. The resulting atoms are
presented in Figure 4. Note that since ICA is scale
(and therefore sign) invariant, the sign of every compo-
nent can be arbitrary flipped. We present the obtained
components in the scale where black and white corre-
sponds to the extreme positive or negative values and
we observe that these peaks are concentrated in rather
pointed areas (which is a desirable property of latent
components). Note that the runtime of this whole pro-
cedure was around 2 hours on a laptop. Due to high
timespace complexities (see Section 3.3), we cannot
perform similar estimation neither with FOOBI nor
with Fourier PCA algorithms.

4 Conclusion

We presented a novel ICA algorithm for estimation
of the latent overcomplete mixing matrix. Our algo-
rithm also works in the (under-)complete setting, en-
joys lower computational complexity, and comes with
theoretical guarantees, which is also confirmed by ex-
periments.
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