A Notations.

In this section, we recall and introduce some notation which will be used throughout the appendix.

Block norms. is the Euclidean norm for vector and spectral norm for matrices. For a vector
r = [x1,...,2,] € C*¥ formed of s blocks z; € C?%, 1 < i < s, we define the block norm

12 [lptock = 1S‘1P |2l

XS

For a vector ¢ = [q1,...,qs, @1, - .., Qs] € C*(¢+1) decomposed such that ¢; € C and Q; € C%, we define

||qHBlock max{‘q’b‘ ’ HQZ”}

Kernel The empirical kernel is defined as

Doy, () Py, (2)

and the limit kernel is K (z, z) = E, [, ()@, (2')]. The metric tensor associated to this kernel is

H, = Eu[Veu (2)Veu(2) ']

Given an event E, we write Kp(xz,2') = E,[K (x, )| E] to denote the conditional expectation on E.

Derivatives Given f € ¥°°(X), by interpreting the r*" derivative as a multilinear map: V" f : (C%)" — C,
so given Q = {q/};_, € (CH)",

Z azl o l, )QI,il e qr,iT.-

and we define the 7" normalized derivative of f as

D, [f] (2)[Q] £ V" f () {H 2 ;)]

with norm ||D,. [f] (z)|| £ SUPyy,||q £”<1 |D [f] (2)[Q]]. We will sometimes make use the the multiarray inter-

pretation: Do [f] = f, D1 [f] (z) = Hy 2V f(z) € C%, Dy [f] (z) = Hy * V2 f(x)H, * € Cox1,
For a bivariate function K : X x X — C, 0y (resp. 02;) designates the derivative with respect to the
coordinate of the first variable (resp. second variable), and similarly V; and V7 denote the gradient and
Hessian on the i coordinate respectively.

Fori,j € {0,1,2}, let K(¥)(z, ') be a “bi”-multilinear map, defined for Q € (C%)* and V € (C%)7 as

ith

[QIK D) (z,2")[V] £ E[D; [pu] (2)[Q]D; [¢u] (2)[V]]

def. | |

and ||K(ij) (x, 2 | = bupQV

V= (v} with [lql| <
When i + j < 2, an equwalent definition is K 7) (z,2") = E[D; [p.] (2)D; [¢w] (2/) "], and we note that
K0 = K, and we have normalized so that Re (K (1" (z,z)) = —Re (K(OQ) (z,)). Finally, we will make

use of the still equivalent definition: [q] K (12 (z,2’) = E[qT Dy [¢u] (2)D2 [pu] (z/) ] € Cx4.

")[V]|| where the supremum is defined over all @ E T




Kernel constants  For for i, j € {(0,0), (0,1)}, define B;; = sup, e | K (z,2")], for (i, 5) € {(0,2), (1,2)},

Bij = sup {HK(ij)(x,x')H i da(z,2") < rpear Or dug(z,2') > A/Q} .

and define for 7 = 1, 2
B, & sup HK(”)(x,x)H .
Tx€EX
For convenience, we define

def. def.

Bi£Byi+B;+1, BE Y Bj+1 (A1)

i,j€{0,1,2}
i+ <3

Matrices and vectors We will make use of the following vectors and matrices throughout: Given X =
{z;}5_1 € X* and a € C* which are always clear from context, define the vector yx (w) € Cs(d+1) a9
def. —\ ¥ T\ T
@) 2 ((eale) (Dl @) ) ) (A2)
and
Ty = Euy(w)y(w)] € Colirxe@y
fx () £ Eu[7(w)pu(2)] € CHY

a= Tyl u; = <Sign(a)>'
Osd

Note that the diagonal of Y has only 1’s. For wy, . .., w;,, we denote their empirical versions as:

m

(ﬁ

P IICOCON
k=1

fy(z) & Z A det ]
7% > Wk )P, (T a =Ty u,.

which will serve us to construct our certificate, using the properties of their respective limit version.
We remark that G)_(l/ 2F}F P'e G)_(l/ o7 x, where I x is defined in the main paper and

1d, 0
H,,
Gx = ) (A.3)
0 H,,
The vanishing derivative pre-certificate 7jx , is &Tfx (+) and the limit pre-certificate is 7 X.a = afx(-). When
the set of points X and amplitudes a are clear from context, we will drop the subscripts and write instead v, Y,
f, n, and so on.

Metric induced distances Given X = (7;);_; € X* and X' = (27);_; € &, denote du (X, X’) =

>_jdu(zj, z’;)?. Observe also that Gx is positive definite for all X and induces a metric on R® x X so
that given a,a’ € R® and X, X' € X3,

g

da((a, X), (@', X)) = \/lla — a'|2 + dra (X, X7)2.



Stochastic gradient bounds For r € N, define the following random variable
L. (w) = sup [|D; [p.] (z)]],
reX
and for i, j € N, define L;;(w) = \/L;(w)? + Lj(w)2. Fori = 0,1,2,3, let F; be such that

P (Lj(w) > 1) < Fi(b),

Throughout, for (Ej)?zo € R%, the event E is defined as

where E, = {L;(w) < Lj, Vj=0,1,2,3}. (A4)

[l
s

E def. Ewk

k=1

B Proof of Theorem

In this section, we consider the (limit) vanishing derivative pre-certificate
n(z) = u' Ty fx ().
Note that .
D, [n] (z) = Z a1, K (2, ) + [ag,] K (2, 2)
i=1

where we have decomposed o = [a1 1,. .., Q1 5,01, .., az2] € C*4F) where ay; € CZ.

We aim to prove that 7 is nondegenerate if / is an admissible kernel. Our first lemma shows that nonde-
generacy of 7 within each small neighbourhood of x; can be established by controlling the real and imaginary
parts of Dy [] in each small region:

Lemma B.1. Letc > 0. Let 79 € X and let o € C be such that |o| = 1. Suppose that n € €*(X;C) is such
that 1)(zo) = o, V() = 0 and Re (D3 [n] (x0)) < —eld. Then, V2 |n|* (o) < —2¢ld. If in addition, we
have c,r > 0 wither < 1 and ¢® < (1 — er?)/(er?) such that for all x such that dgz(x,z0) < T,

Re (@D [n] (2)) < —eld  and  ||Im (GD3 [1] (x))] < ez,

then, |n(z)|> <1 — e2du(z, x0)? for all z such that dgg (z, x0) < r.

Proof. The first claim follows immediately from the computation: by writing = 7,.(x) + in; (x) where 7; and
7, are real valued functions,

1

502 [Inl°] = Re (Dy TID1 ) + D2 ] 7).

and evaluation at x( gives the required result.
Let : [0,1] — X be a piecewise smooth path such that v(0) = xg, y(1) = z.

n(z) = (o) + / (1= (V203 () (1), »/ (1))t

1 1 1
— (o) + / (1= 0)(Da In] (v(6)FL 7/ (1), FL2 7/ (D)

So,

Re (@(x)) = 1+ inf Re (0 /0 (1~ )(D2 [n) ((1))HZ 7' (1), Hj(tﬂ’(t»dt) < 1-edpu(z,2')?



if we minimise over all paths from z to zy. Similarly,

T (o (2))|| < cedn(x, x0)?
Therefore,

n(@)* < |1 — edu(@,20)?|” + |cedu (e, 20)?|
<

1 — 2edg(x, x0)2 + €2dH(:r, x0)4 + CQEQdH((E, xo)4

=1—-edu(z,20)* — edu(z, z0)* (1 — edu (2, 20)* (1 + %)) < 1 — edu(z, z0)*.

Proof of Theorem[2] In order to show that 7 is (g0/2, £2/2)-nondegenerate, it is enough to show that
Vo e X% |n(z)| <1—g0/2 (B.1)
Ve e X" Re (sign(aj)Dg ] (ac)) =< —%Id and HIm (sign(aj)Dg ] (:r:)) H < 252 (B.2)

p— 1_627)3331'/2
where D=/ W’

We first prove that the matrix Y is invertible. To this end, we write

_ (Yo T{
T_(Tl T2> (B.3)

where T < (K(mi,xj))f)jzl € CsXs, T & (K10 (z;, xj))f,jzl € C59%s and Ty = (K(H)(xhxj))f’j:l €
C#d*sd_ By definition of K /), T (and also T and T5) has only 1’s on its diagonal.
To prove the invertibility of T, we use the Schur complement of T, and in particular it suffices to prove that

T5 and the Schur complement Y g o To—1175 1T1T are both invertible. To show that Y5 is invertible, we
define A;; = K(H)(aci, x;). So T has the form:

Id A12 e Als
T, — Ay Id :
Agq ... ... 1Id

and by Lemma|[G.6] we have

I = Tl < max 3 [| Al < 1/4.
J

Since [|[Id — Ya||yj0ec < 1, Y2 is invertible, and we have ||AI”2_1 ||b10Ck < m < %. Next, again with
LemmalG.6] we can bound
€
I Toll, = i 35 o2 <
JF1

17| max " HK<10> (xi,xj)H <h since K19 (z,2) =0
J

N

oco—+block

N

<h

||T1r||block~>oo m?XZHK(lo)(xjazi)
J

Hence, we have

_ 4
HI - Tslloo < ||I B T0”00 + HTlTHblockﬁoo HTQ lelock |‘T1||oo~)block < % + ghz < %) (B4)

since h < £5. Therefore the Schur complement of T is invertible and so is 1.



Expression of 7). By definition, = satisfies n(x;) = sign(a;) and Vn(z;) = 0.

We divide:
a="Tlu, ="
s as
where o; € C® and ap € C*¢, and we denote oo € C? blocks such that ag = [a21,..., a2
The Schur’s complement of T allows us to express a; and as as
a1 = Tg'sign(a), ap = =TT Y5 sign(a) (B.5)
and therefore we can bound
1
< B.6
e < 775 B.6)
8
2 llpock < 3h < 4k (B.7)

3

Moreover, we have

o = sign(@)l < 1= 05|, < 75| 17 = Yslos < ®.3)

Ry

Non-degeneracy. We can now prove that 7 is non-degenerate.
Let « be such that dgg (z;, ) < Thear- We need to prove that for all « such that dgg (z, z;) < r,

Re (WDQ ] (z )) =< ——Id and HIm (51gr1(az D2 [ )H 77"3%1

near

Then, since ryear < A/2 and the x;’s are A-separated, for all j # ¢ we have dg(x, ;) > A/2. Then, we
have

sign(a;)Dz [n] (z) = sign(a;) lal,iK( v, )+ Y o ;KO (), )
JFi

+ [Oég’i]K(m)(a?i, 37) + Z[O&Z}j]K(lz) (J?j, .%‘)‘|

J#i

Re (sign(a:)Dz [1] ()) < (1 = llax — sign(a)]l o )Re (KO (i, )) + flaa o 3 ||KO2 (2,2 | 14
j#i

[ K02 )|+ 30| o) | ] D g T
| #1

3 1 3 1 €2
| -- —— — +4h(B 1) |Id = —— + - |ldx —-—=1d.
( 45 +1—0/816+ (B2 + )) €2< 4+4) 9
Taking the imaginary part, we have
Hlm (81gn(aZ Do [n )H (1+ ||ay — sign(a)]]) HIm (K(Oz) Xy T )H + [la1 ]| Z HK(OQ) xj x)H
|£02 ||+ 3 [ KOs 2) | | ozl
5ceq 1 5ceq 2 —er2
< h + 4h(B 1 —— +h(4B 6 — e
< 4 + (1 —50/8) * ( 2 )> 4 - ( 12 ) 2 €2T§ear



So, by Lemma[B.1] foreachi = 1,...,s, [n(z)| < 1—&2/2du(z, z;) forallz € X such that du(z, z;) < rocar.
Next, for any z such that dgg(z, x;) > rear for all ;’s, we can say that there exists (at most) one index ¢
such that dgg(z, ;) > Tnear and for all j # ¢ we have dy(z, z;) > A/2. We have

OéLiK(JJZ', Ji) + Z aLjK(a:j, JI)
J#i

n(z) =

+ K(lo)(l‘i, I)Tagyi + Z K(lo) (.’I}j, $)Ta27]‘
Jj#i

N

o[l | 1K (i, )] + D 1K (g, )|
J#i

+llzllyo | [[HOO i) + 30| (o2
J#

+4h(310+1)<17%0.

< 17604’50/16
= 1—50/8

O

Remark B.1. Assuming that the derivatives of the kernel decay like a function f(||x — x'||) when, there is
always a separation A o< f~1(1/(Csmax))) such that the kernel is admissible. Ex: when f = 7P, we have

A o siE, (eg Cauchy). When f = =", we have A o< 10g"/P (smax) (€g Gaussian).

C Preliminaries

In this section, we present some preliminary results which will be used for proving our main results. We
assume that K is admissible, and given a set of points X € X', let A7 & {z e X; du(z,z;) < Tnear)s
Jnear def. US Jnear gnd A far def. X \ Jnear

$ .

=1
C.1 On the determistic kernel

For an admissible kernel, we have the following additional bounds that will be handy.

Lemma C.1. Assume K is an admissible kernel, let X € X?® be A-separated points. Then we have the
following:

(i) Y is invertible and satisfies

I1d = T < % and  |1d =Ty < % .1
(ii) For any vector ¢ € C*(V) and any x € X™, we have
[f(x)|| < Bo and ’qTf(x)’ < Bo HqHBlock (C.2)
(iii) For any vector g € C*“tY) and any & € X™* we have the bound:
D2 [¢"£()] ()] < llall B2 and ||D2 [¢"£()] (2)]| < llallprock B2 (€3)



Proof. We bound the spectral norm of Id — Y. Define y € C*(@+1) decomposed as iy = [y1,
where Y; € R%, such that ||y|| < 1. We have

"7yS7Y17"‘7}/S]
2
11d — Y)y|* = Z ZK T, T yJJrZK (zi,25) Y
i=1 | j#i
2
Iy KOO (g, a5) + Y K (@5, 25)Y;
J j#i
2

i=1 \ j#i

S K (@i, ||yg\+ZHK1°> zi,2;)| 1%

2

Dl |[ KOO )|+ 3 [ @) | 1931
j j#i

2
2
< K (10) / HK(II) / ) 9 , y.
N CCE IR R CE) N E 22| Xl
2
<45 max <|K(x, x|, HK(lo)(aj,x’) , HK(H)(JZ,JJ/) )
du(z,z’)>2A
by Cauchy-Schwartz inequality and since K (1%)(z, 2) = 0 for all z € X. Since by hypothesis we have
1
K N, HK(lo) o HK(H) / ) < 7
(IR )], [ K0 o) || B0 @ a)|) <
we obtain 1
- < (C4)
and we deduce (i). A near identical argument also yields || T — Id]|[, < 3.
For (ii), let z € X, then we have

W=

£(2)l| < (i”f (o) + HK“O)(“””""’”)W)
i=1

(s —1)ed (s—1)\?
<(B§O+(16$rm)°2+BfO+ > < By

max

=

for which, similar to the proof above, we have used the fact that z is A /2-separated from at least s — 1 points
x;. Similarly, for any vector ¢ = [q1, .. .,qs, @1, - -

,Q,] € C*(@+1) and any = € X™, we have
S
la €@ < 3 lail K (i) | + Qi) | KO )|

=1

(s — 1eo (s — 1eg
< Hq”Block (BOO + 3287) + Bio + T < By HqHBlock'



For any z € X" we have the bound:

D2 | Tf H = q KO (2, 2) + [Qi] K (24, x)
1
s 9 9 2
< lal ZHKw?)m,x)H + KO (@)
=1
< llall B>
and
D2 [¢"£] ( i O (@i, 2) + [Qu K1 (i, )

< et (Z |52 @) + HK“?)(xi,x)H)
=1

< ”q“Block B2

C.2 Lipschitz bounds

Lemma C.2 (Local Lipschitz constant of ,, and higher order derivatives). Suppose that |D; [¢.] (z)|| < L,
Sforallz € X. For all x,z’ with dgg(x,x") < rnear, we have

(i) () = o (2] < Lodu(z, z'),
(ii) D1 [po] () = D1 [pu] ()| < Lrdm(z, 27),
(iii) |[D2 [po] () — D2 [pu] (#) || < Lodm(z,2'),

where Lo = Ly, £1 = L1Cy + La(1 + Crrnear) and Lo = Ly (C’H + CTnear + 1) + L3(1 + CHrnear)?. As
a consequence, for all X = (x;) and X' = (x;) such that dy1(x;, ;) < Tnear, we have

sup HD [ fX—fX/)} (y)Hgflﬂ/E%—f—E%dH(X,X’).

llgll=1

1 _1
Proof. Letx,z’ € X withdg(x, ') < Thear- Recall that HH;,Hm 2 IdH < Cudu(z,z’), and so,

1 + CHTnear-
Letp : [0,1] — X be a piecewise smooth path such that p(0) = z’, p(1) = x. Then, by Taylor’s theorem,

N

1 L ~ 1 N
‘Pw(x) - @w(ﬂf/) = /ti H (t)Vng( p(t)), Hi(t)p'(t»dt S Ll/o HH;(t)p/(t)H dt (C.5)

so taking the minimum over all paths p yields |, (z) — @ (2')| < Lidu(x, 2").
Given ¢ € R, by Taylor’s theorem,

D1 [p] (2)[a] = V(o) [H, 2 g = Vop(a!) [ ¥ ] /m DI g, p/ (1))t
(C.6)

— Dy [pu] ()] + D1 ] («/)[(H2 H, %_m)] / Ds ] (p(1) [H2, Hy 2 g, HE o/ (£))dt
Therefore,

D1 [pw] () = D1 [pu] ()l < LiCrdu(z,2") + La(1 + Chrnear)dna (2, 7).



Finally, for all ¢, g2 € R%, by Taylor’s theorem

D[] (#)[g1, g2] — D2 [ww] (2")]a1, g2
= V20, (2)[Hs ?q1, Hz 2 ¢o] — Vi, (') [H,. > 1, H,, o]

P S| 11 , 11 (C.7)
=Dz [pu] (z')[Hg Hy 2 g1, (HZ, Hy * — 1d)g2] 4 D [po] () [(HZ Hy * —1d) g1, g2
1 1 1 1 1
+ /D3 [pu] (p(t))[H;(t)Hw “qu, H;(t)Ha& g2, H;(t)p/(t)]dt.
Therefore,
||D2 [Qow] (37) — Do [Spw] (Q’J/)H < (I_/Q ((1 + C1H7“near)C(H + 1) + E3(1 + C(Hrnear)z) dH(l‘, l‘/).
By applying these Lipschitz bounds, we obtain
. ) 2
sup Dy [a (Bx — x1)] ()
llqgll=1
5 N N 2 i N . 2
<O [RO@sm) — EOO@ )|+ D[RO @) — KOO @ )|
j=1 j=1
j=1 j=1
= (L3 + L£3) L2du(X, X')?
O

Lemma C.3 (Local Lipschitz constant of K(4)), Let z1,zq € X. Let i,j € {0,1,2} withi + j < 3. Define

A;; = sup ’K(ij)(x,xo)H
x

where x ranges over dg(x, 1) < Tnear- Then, for all x such that dg(x, 1) < Thear

The same results hold if we replace K by K.
Proof. The Lipschitz bounds on K% follow by combining
g1, -, qi](f((ij)(% o) — f((ij)(ivh z0))[v1, - -, vy
— ERe ((D: fpu] (2) — Di o] (@)ars - ailD; 3] (wo) v, -, v3])

where [ indicates either empirical expectation or true expectation with (C-3), (C.6) and (C7).

C.3 Probability bounds

In the proof of our main results, we will often assume that event E (see (A.4)) holds since our assumptions in
Sectionof the main paper imply that P(E°) < p/m. The following lemma shows that our assumptions also
imply that E,,[L;(w)?1g:] < =. and this is a condition which our proofs will often rely upon.



Lemma C.4. The following holds. P(ES) < Y, F;(L;) and

oo

Lj

Fi(t)dt + L3> " Fy(L;)
Proof. Let E, ; be the event that L,(w) < Lj, so E, = N3_yE, ;. By the union bound, P(ES) <
Zj P(Efz,j) < Zi Fi(Li).

For the second claim, observe that ES, = U; E, ; so that E[L;(w)?*1g:] < 3, E[L;j(w)?*1ge | and we have

E[Lj(w)*1g: ] :/ P(Lj(w)*1ge . > t)dt
, o ,

where we have bounded P ((L;(w)? > t) N (L;(w) = L;)) by respectively P(L;(w) > L;) < F;(L;) in the
first term and by P(L;(w)? > t) < F;(v/%) in the second term. O

N

C.3.1 Concentration inequalities
The following result is an adaption of the Matrix Bernstein inequality for dealing with conditional probabilities.

Lemma C.5 (Adapted unbounded Matrix Bernstein). Let A; € R4*92 pe q family of iid matrices for j =
1,...,m. Let Z = L Sy Ajandlet Z = E[Z]. Lett € (0,4||[E[A]|]]. Let events Ej; be independent
events such that E; C {||A;|| < L} and let E = N;E;. Suppose that we have

t

IP)E‘.; <7
) < TR

and  E[[[A;]| 1ge] <

| o

Then a first consequence is that we have Eg[Z] = Eg,[A;] for all j and |E[Z] — Eg[Z]|| < %
Finally, assuming that

o2& maX{HEEJ [A; A7 |

B, (4545} < o0

we have

l%uw—Ewm>w<ah+@wm(‘éﬁfig'

Proof. We first bound |E[Z] — Eg[Z]||. First observe that E[Z] = Eg, [A1] and EgZ = Eg, [A] since A;
are iid. Moreover,

E[A1] = E[A11p,] + E[A; 1 5] = E[A;|E1JP(E)) + E[A; 1 ).

Hence,
|E[A1] — Eg, [A1]]| = |[(P(E1) — 1)Eg, [A1] + E[A11 5]
P(ET) |E[A4]]| + P(EY) H]E[ 1] = Eg, [Ad]]| + E[[| A1 L g -
Therefore,
P(EY) |[E[A]]| + E[||[A1[| 1] ¢
E[A] — Eg, [A{]| < L
IE[A1] - Ex, [41]] R !

10



For the second statement,

Pe(lZ2 - E[Z]] > 1) - |E[Z] - Eg[Z]])

<
< Pe(|Z - Eg[Z]

To conclude, we apply Bernstein’s inequality (Lemma|G.2) to Y; = A; —E[A;|E] =Y; = A; —E[A,|E}]
conditional to . Observe that

0 X Egp[Y;Y;'] R Ep[A;A]] — Ep[A;]EE[4;]7] < E[4;4]],

which yields ||Eg[Y;Y;"]|| < ||E[4;A]]|| and similarly,
inequality

EplY;"Y;]|| < ||Ee[A] Aj]||. So by Bernstein’s

Pp(|Z - Ep[Z]] > t/2) < 2(dy + da) exp (_%) |

Corollary C.1. Let z,2' € X. If

c t
P(Ef) < tra HK(ij)(x’x/)H

and E[L;j(w)lg:] <

A~ =+

then Hng)(a:,x’) — K (z,2")

<t)2.

Proposition C.1. Lett > 0 and assume that

t t
P(ES) < —— E[L Mpe] < —
(B) < g and ElLo(w)’leg] < -

then ||Y — Y| < t/2 and
A mt?/4
Po(|r - 1| >0 <a@+1 ___mt/4
Consequently,

N t2
P HT*LT*H% <Ad+1 <m>
5 JsAldtDsexp | =5 57 on

Proof. We apply Lemmato A; = v(w;)y(w,;)* with the following observations:

e for each w,
Iy(@)y(@)*Il < IvW)]* < s max{[|Dy [, @) + lw(@)*},

so under event £, || A;| < sL3;.
o By LemmafCT} [E[A;]] = |T]| < 3/2
e We may set 02 = Lo (3/2 +t/2) since

0 X Eg[A14]] = E5[A] A1) = Eg[ln(wy)I” v(w;)y(w;)] 2 Lo (IE[A]]] + ¢/2)Id.

-1 (R 3
T H < 1_||Y_Y||HT—1H < 2—4t and

The last claim is because HT - YH < t implies that || Y]] < 3/2+ ¢, |
HT‘l — T_l" < HT - TH HY_lH < 2L and writing £ = 2L is equivalent to ¢ = 1/(3 + 21).

1-2t 0

11



Bounds on fx applied to a fixed vector

Proposition C.2. Lett € (0,1), r € {0,2}, g € C*UtV) and y € X,, where Xy = X and Xy = X", [f
P(ES) < ——  and E[Lot(w)Ln(@)lpe] < ——
t+4B, VW
then ) i Iy
P (|| [(Ex, — £x,)7a] @) > tlal) < 2desp (Mz T ﬁ))
where d = 1ifr:0andd~=difr:2.
As a consequence, since /25 ||q||gioac = l|qllo> we have
. ~ —mt?
e (o (105, = 5" 0] > Hhalhs) < 20 (a7 )
provided that
P(ES) < m and  E[Loy ()L (w)1ps] < 4\;55'

Proof. Without loss of generality, assume that ||¢g|| = 1. First note that
D, |(fx, — fx,)" = LN (@)D —E[g"v(wk)D
r | (fxo — fx0) ' q (y)fmzq Y(wk)Dr [pw,] () — Elg v(wi)Dr [pw] (9)]-
k=1

We first consider the case of r = 0. We apply Lemma to Ar, = ¢ y(wr)pw, (y) € C: Note that
|Ak| g \/§L01(wk)L0(wk) and |E[Ak]| g Bo.

e Underevent E,, , |Ax| < LaLoi+/s =

o Eg [Aul® = El(y(wi)v(wi)a: @) lpun W)I°] < L3 IT 5l < (3/2 +/2) L < 203 = o,

def.

For the case 7 = 2, we apply Lemma |C.5| with Ay = ¢ v(wi)Da [pw,] (y) € C¥*< Then, ||Ax| <
V/'8Lo1(wk) La(wy), ||E[Ag]|| < B, under event E,,, , || Ag|| < I}QEOl\/Edéf' L and

IES[ARAZ] = IE£[A5 AW | = [EsD2 [pu] 1) Ds ] (4) [a72(w)| 1| < Z3Eglla 2(wi)|'] < 2232 o2,

Lemma C.6. Assume that

t t
P(ES) < ——— and E[Lp(w)g] € —=—r
( w) t—|—6\/g [ 01( ) E} 4\/553/2
Let ¢ € C*@+Y_ Then, forall t > 2ﬁ8£°1i1 + \/88251,32@% + 14‘21:%, we have for each x; € X,

P, (HD1 {qT(fX 3 fx)] (z:) mt? /(4s) ) .

203 4+ /2tL1Lo1 /3

5 > 2t HQHBlock) <28 exp <_
Proof. Foreachz; € X,

HD1 [(EE[qTfX] — qTfX)} ()

< =Tl gl <

gl
s ql

12



by Proposition |C.1} For convenience, we drop the subscript X from fx. Fix ¢ € {1,...,s}. Observe that

Py (|[D1 [ - )] @)

A 2t
< T(f— , ki
2>%mme\PEQb4q@ B @), > %|mQ

<Pg <HD1 {QT(EE[E'] - f)} (i)

4
>7
> = lall)

The claim of this lemma follows by applying Lemma@ Let
Yy = D1 [pu,] (zi)7(wi) "¢ — EgD [pw,] (2:)y(w) Tq € C,
and observe that Dy {qT(f’ - IEE[?])} (zi) = L 37, Yi. Without loss of generality, assume that [|¢||, = 1. We
apply Lemma[G.3] Observe that conditional on event E,
o [1¥klly < 21lgll; v(wi)ll D1 [pw,] (@)l < 2v/5L01 Ly

2 — —
o Eg |[Vil* < Eglly(wr) a]” Di lpu,] (D1 [pwe] ()] < L3 Te]. So, 02 < mLi|Ts| <
mL3(t+ ||T]|) < mL3(t/2 + 3/2) < 2mL? (here we are talking about the ¢ in Lemma|G.3).

Therefore, for all

. 2v/2sLo1 Ly N 8521332@% N 144sL?
m m m

1 «— t mt?/(4s) )
Pl|— Yill > — <286Xp<— — —
( m; , @) 203 4+ /2tL1Lo1 /3
O
Proposition C.3 (Block norm bound on T applied to a fixed vector). Suppose that
t t
PES) S —————— d E[L Np ) <
E)S rom@ oy 4 Ello@) el S o imy
Then, for all
> 4\/§$E01E1 + \/3232L(2)1L% n 57681;%
- m m2 m
we have
Pe (| (1= T)al| > tlalla) <325exp | - mt* (C8)
B 4 Block - UllBlock ) P S (32E% + 34t£1£01) ' '

Proof. Let Sy = {1,...,s}and S; = {s+ (j — 1)d + 1,...,s + jd} for j = 1,...,s. Observe that by the
union bound

Pe ([[(r =)l > tllallpea)

Block
s

> tlallpon) + P |

j=1

<Pe ([0 - Da)s, T)a)s,

>
2 tlle) )

>~ (] -
< 30 ([T = D00 ] > tlalla) + 322 (7 - D,

Jj=1

> tlallpia) -

To bound the first sum, observe that ((Y—T)q); = (f(xj)ff'(xj))Tq and ((Tf'i‘)q)g] =D, [qT(f - f')} (x;).
So, the first sum can be bounded by applying Proposition [C.2] The second sum can be bounded by applying
LemmalC.6

O
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Norm bounds for f We will repeatedly make use of the following result on fx. This result is due to concen-
tration bounds on the kernel K which are derived subsequently.

Proposition C.4 (Bound on fx). Let X € X*. Let p > 0. Assume that for all (i, j) € {(0,0), (1,0), (0,2), (1,2)},
t t

PIEL) S 75 4/s max{Bo, B}’ BLi(w)L(w)lps] < /s
Then, given any y € X,
. mt?/8
Ps (fo(y) - fx(y)H > t) < 4sdexp (— 35I7, ) . (C.10)

and given any y € X", writing fx = (fj)é‘):l and fx = (fj)ﬁ‘):l with p = s(d + 1), we have

mt?/8 ) .

s(L2B11 + L?Bas + Lo1 Lo)
(C.11)

(3001~ ) <y (-

llqll=1

Proof. Leti,j € Ng withi +j < 2. Let [s] = {1,...,s} and I = {(0,0),(1,0)}, By Lemmaand the
union bound,

Py (3(i,5) e 1,3 € [s HK @) (24, ) — K9 (2 y)H > ) casdep (WY e
’ Vs 3sL3;

So, (C:10) follows because

N 2
KO0 (g, y) — K(10) (xi7y)H < V2t

fo(y) —fx(y)H < K (21,y) (wz»y)‘z +

By Lemma Lemma and the union bound, letting I, = {(0,2), (1,2)}, we have
mt? /4 )

¢
Py (3(,) € I, 30 € [s HK(”) K (g,, H>7 < 2sdexp (—— 2
s (6.0 e, )~ KD (e > 2 ) < 2sdewp (5 pm
mt?/4 )

S(EgBll =+ E%BQQ + Elig)

(C.13)

+ s(d + d*) exp (—

and (C-TT) follows since given g € C, ||¢|| = 1, we have

> a7, ] < 3 (

) (02) °
(2,9) = K (a,0)| +

~ 2
RO (as,0) ~ K02(ay0)|) < 22

O

Lemma C.7 (Concentration on kernel). Lett > 0, x,2’ € X. Leti,j € Ng withi + j < 2. Assume

t t

t+ 4 ||[K@) (z, 2" E[Li(w)L;j(w)lge] < —

P(E) <
(UJ) 4

then

Pz (“R(ij)(x,x') - K(ij)(x,:c')

> t) < 2de mt®
= X X —= —
P\ 2200, + 1)+ LiLt/3

def.

where p = max (4, j) and b;; = 1 if min (¢, 5) = 0 and b;; =

’K(H)(JC,I/)H otherwise.
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Proof. 1t is an immediate application of Lemma with Ay = Re (Di [Puwr] (@)D [Puwy] (m’)T> for k =

1,...,m. Note that Ay, € (RY)™7 if (i,5) € {(0,0),(0,1),(1,0)} and Aj, € R**%if max(i, j) = 2. noting
that under F, ||Ag|| < L;L;. Next, we need to bound ||Ez[ArAf]| and |Ez[A;Ak]||. We present only the
argument for (7, j) = (0, 2), since all the other cases are similar:

* 2 *
0 < EpAs AL = Egll|¢w, ()] D2 [pun] (2)D2 0] (2)°]
< L2E g [lpu, ()] 1d = L2 |[K (2, 2") 1d < (1 +t/2)L31d

5o |[EpArAL|l < (1+t/2)L3. Similarly, |EzAfAg| < (1 +t/2)L% and
Bz A4 Akl [Eg AR ALl < Li(Bgg +1/2)

where p = max (4, j) and ¢ = min (¢, j).

Applying a grid on X", we get a uniform version.

Lemma C.8. Leti,j € Ng withi + j < 2, and assume that

P(ES) < f

t
<——— E[Li(w)L;jw)lg] < —.
9 < rriemy BLE)L@)1e:)

16

Then

Ps (EI z, 2’ € X", HIA('(ij)(x,x') — K9 (z,2')

>t)

2 L.+ L.L.
<20t s (- gy P s (HERERED) )

" L2(Bgq +1) + LiL;t/12

where p = max (4, j) and ¢ = min (4, j) and L;, L; are as in Lemma

Proof. We define a §-covering of X" for the metric dgg with § = min (rnean T

t
Let this covering be denoted by A'#14,
By the union bound and Lemmal[C.7]

) of size s (""gaf)d.

mt?/16

Pz (Elx,x’ € xFdgt, "K(ij)(x,x’) — KW (z, ")

where p = max (i, j) and ¢ = min (4, j). This gives the required upper bound: Given any z,2’ € X, let
Lgrid, l’/grid € X4 be such that dgg (2, Teria), du (2, xfb,rid) < 4. Then, under event F, by Lemma
1K @,07) = KO (o, 0| < (£:L5 + LiLy)5 < /4.

By Jensen’s inequality and since Hng)(m, z') — K9 (z,2)

< t/4 for all z, 2’, we have

H[((ij)(x7 x/) _ K(ij)(xgrid’x/grid)H < t)2.

We now derive analogous results for the kernel differentiated 3 times.

15

N 2d
>t 4) < 2ds? ( nw) exp | — S
/ 5 PUT 2By + 1) + LiLt/12

)



Lemma C.9 (Concentration on order 3 kernel). Let x,z’ € X™. Assume that

4
P(EY) < ’
(ES) t + 4max{Bi2, B2}

PN

E[(L1(w)La(w) + L3(w))1pg] <

Forj=1,...,m,leta; = (D1 [@s,] (z)); € C, D = Dy [po] (') € C¥¥9 and

A2 (@D asD -+ agD)’ e Cix (C.14)
LetZ= L i1 (Aj — E[A;]). Then, given
9(@") 2 (g:(@") 2 Y (DrTpu] @ew(@’) — ED: T (@u (@)
k=1

= K(IO) (‘Ta ‘T/) - K(IO) (I, $/),

. d 2 2
(i) supgeca|jq)<1 21 D2 [9:] (z")all” = [ Z]|7,

< 2]

(ii) supyeca qi<1 |[D2 [a" 9] ()] = HK(M) (@,2') ~ K09z, 2')

and 2

mt* /4
Pz A >t < d+d2 ex (_N__>
212130 < @+ Pesp (5 HE

where B = max{L}(B11 +t/2), L3(Ba2 +t/2)}.

Proof. The claim (i) is simply by definition, since Zq = (D3 [g;] (¢/)q)"_, € C*". For (i), the first equality is
simply be definition, and for the inequality, observe that

d
sup  |[D2[g'g] (2')]|= sup sup  ||Y D2 [gi] («)p
g€, g1 g€, llgll<1 peca,fpl<1 |
d
2
< sup sup lgll | Y D2 [g:] (2)pll* < [|1Z]] -
q€C4 ||q||<1 peCd |Ip|I<1 i=1

Finally, the probability bound follows by applying Lemma First note that under E, ||4;|| < Ly Lo. It
remains to bound ||Ez[A} A;]|| and ||E 5[4, A7]

d
sup Eg(ATA;q,¢) = sup Eg Y [(D1 [ew,] (2))i]” D2 0] (2")al)?

Il <1 llgll <1 i=1
< S L2E£Ds [pu] (') (g1, 42Dz [pe] (27)[g3, q4]
qr || X

< L3||KEP (. 2)|| < L3(Baz + 1/2).

Given p; € C? fori = 1,...,d such that 3, ||ps||° < 1, writt P = (p1 po ---pa) € C*? and j =
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T 2
(p{ ps ---pg) €C%.Then,

d 2
Ep(4;45p, p) =B | 3_(D1 [pu,] ())iDz [po,] ()
=Eg [|D2 [¢w,] (/) PD1 [0, ] (@)

<L3Ep )

> pik(Di [pw,] (@)
k

= L33 (KUY (@, 2)pi, pi) < L3

N 2 _
V@) Y eill® < Z3(Bu + 1/2).

O
Lemma C.10 (Uniform concentration on order 3 kernel). Assume
P(E5) < : E[Ly (@) La(w) g5 < -
B B w w | X T
“ t+ 16 maX{Blg, BQQ} ! 2 B 16
then
Ps (31‘,9&’ € e, HK<12) (z,2') — K" (2, 2")|| > t)
t2/1 Ly + L
< s2(d + d*) exp (M + 2dlog (M)>
B+ L1 Lot/6 t
where B = max{L3(B11 +t/2), L3(Bay +t/2)}, L1, Ly are as in Lemma
Proof. Let X# be a §-covering of X" for the metric dyy with § = min (rnear, m) of size at

- N
most s (W) . By Lemma and the union bound,

Pz (Hx,x’ € xeid ”K(ij)(aj,x’) — KW (g, 2| > t/2)
LiLy+ L)\ t2/1 .
<52(d+d2)<8( 1he + 2)> exp(—_2 m /6_ _ )‘!p
t L2(311 +t/4) +L1L2t/6

Moreover, under event F, given any x,z’ € X" there exists grid points Tgrids a:én-d such that
dux (@, Tgria), dur (7', Tgiq) < 0
and
[ (702 @2) = KO @) | < [ (RO ot t) = KO 0 ) ) |
4 H (K(u) (z,2') — K(? (fgridamérid)> H

[ (K09 0%~ KOD (.20

)

and by Lemma under event £,

H (R(lQ) (-T,Jf/) _ IA((12) (l‘grid?'xlgrid)) H < (,lezg + [.:QIJQ)(S < t/8
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and by Jensen’s inequality and since HK(H) (x,y) — K%m)(x, y)H < t/8,

H (K(u) (z,y) — K(u)(xgrid, y)) H < 3t/8.

Therefore, conditional on E,

(f((m) (z,y) — K12 (x, y)) H < t with probability at least 1 — p.

D Proof of Theorem

In all the rest of the proofs we fix Xo € X"® to be A-separated points, a9 € C*, and let u = (sign(ag), 0sq)-
We denote X" = {z € X ; du(7,20,;) < Tnear} and X" = U; X0 and X = X\ Anear,
Since K is an admissible kernel, from (B.2) and (B.I)) in the proof of Theorem 2] 7x, 4, satisfies

(i) forally € X™, |nx, a0 (y)] <1— %50’

(if) for all y € A"(i), —Re (sign(a:)Dz [11x0.00] (v)) 5¢21d and ||Im (sign(a;)Dz [1x,.0,] (W) <
(5)3e2.

def.

p= (1 - EQTr%ear/2>/(€2rr%ear/2) 2 1,

since eo72,, < 1 by assumption of K being admissible. We aim to show that, for X close to Xo, fjx is
nondegenerate by showing that ||D, [fix] — Dy [1x,.4,]|| < cer for some positive constant ¢ sufficiently small.

D.1 Nondegeneracy of 7)x, 4,

We first establish the nondegeneracy of 7x,, 4., Our proof can be seen as a generalisation of the techniques in
[9] to the multidimensional setting with general sampling operators:

Theorem D.1. Let p > 0 and assume that the assumptions in Section[2.3|hold. Assume also that either (a) or
(b) holds:

(a) sign(ag) is a Steinhaus sequence and

Nd
mZC-s~log( )log(s)
p P

(b) sign(ag) is an arbitrary sequence from the complex unit circle, and
Nd
m>C-s? . log ()
p

where C, N are defined in the main paper. Then with probability at least 1 — p, the following hold: For all
y € X, lix, a0 ()] < 1 — J5eo, and for all y € X7 (i), —Re (sign(a;)Dz [iixo.a) (1) = Tseold and
[[Im (sign(a;)Da [Axq,a0] (W) < (& 4 B)3e2 and hence, fix,a, is (1520, 15€2)-nondegenerate.

8 5 1—Teqr?, /16
224Dy =< L= TeoTiear/ 16
7T\2 8 7 Teor2,../16

SO 1x4,a0 18 (%50, 1—7652)—n0ndegenerate by Lemma
def.

Let ¢ = 1/32. Observe that by assumption and Lemma P(E) < p/2. Therefore, it is sufficient to
prove that conditional on E, with probability at least 1 — & with § = p /2, 7x,,a, 1S NONdegenerate.

Proof. Note that

18



We will repeatedly use the fact that our assumptions (by Lemma[C.4) also imply that

P(ES) < <, E[Li(w)L;(w)lp:] <

£ £
m m
for all (4, 5) € {(0,0),(1,0),(0,2),(1,2)},

Step I: Proving nondegeneracy on a finite grid.

Let ng;’fd C Xt and ngfd C X" be finite point sets. Let

Qr(y) =

‘DT [ﬁxo,ao] (y) — D, [nxmao] (y)” ) r=0,2.

We first prove that conditional on E, with probability at least 1 — § where § = p/2, that Qo (y) < ceq for
ally € ngfird and Q2 (y) < ceg forall y € ngﬁ‘ird.
Let us first recall some facts which were proven in the previous section: Let a,¢ € (0,1) and write f =

(fj);(:dfrl) and f = (fj)j-(:dfrl). Let go = Y~ 'u, 50 ||go| < 2¢/5. Let F be the event that

ot <

(b) ¥y € X2,

fx, (y) — £x, (y)H < ag,

. — 2
(¢) Vy € Xgid'» SUDgece, |qf|=1 \/2521 D2 [f; = fi] Wa||” < aea,
Let GG be the event that

(@ Vy € Xi, | (Bx, () — £, (1) Tao| < 2ae0

grid?

(e) Wy € X,

Dy [(fxo - on)TqO} (y)H < 206y

then provided that

u u
P(E°) < . E[L(w) L (w)lge] < + D.1
( w) u+max{4\/§Bij,6} [ (w) J(w) Eu.)] 48 ( )
where v = min{ae;, t}, we have
P (FC) <A(d+ 1)se mt?
_ < S (L
B P\ 7 16s02,(3 + 20)

m(agg)?/8 >
(Bi1 + 1)+ L)

, m(ags)?/8 )
+ 3d+d2 nr?ar e < _ - — D.2
s( ) | Xgia'| exp $(L3B11 + L3Bas) + Lo1 L2) B2

f
+4sd |ngird| exp ( S

ma?e?
Pa(G%) <2| X8| exp (| ———== i
£(G°) | gﬂd| *P ( s(8LE + §L0L01a50))

ma®e3
+2d | X5 [ exp | ———= —2 ,
’ grid ‘ P ( 5(8L%+§L2L01a52)>
where for Pz (F°), the first term on the right is due to Proposition the second and third are due to Propo-
sition while the bound on P (G¢) is due to Proposition (noting that, since this probability bound over
the w; is valid for all fixed u, and the w; and the signs are independent, it is valid with the same probability
over both w; and u).

19



Observe that

1D [ 00] (8) = D [1,00) ) = || D5 [, — @0) T, ] () + D5 [k, (B — £,)] )|

. A A (D.3)
<oy [u" (T =1+ T - )| )
Step I (a): Random signs
We first bound @) in the case where u is a Steinhaus sequence.
Let B1(y) & (T — T Hfx, (y) and Ba(y) £ T (Fx, (y) — (y)) Then, event F implies that
181 (y)|| < t(Bo + aeg) forally € ngffd, and event GG implies that |uTﬂ2 )| < 2aeq. So,

(|E|y € X r1d> T(ﬂl + 52)(y)| > CEO)

C
<Prrg (Fv € X, [0 A1) > Se0) Po(F) + P (F9)

C
+Pons (3 € X, [u”B2v)]| > Se0) Pa(G) + P (G
C
<Prrs (3y € X, [uTBi| > Se0) + Py (F) + P (G°)

(c/0)2

4|03 BT 4 P (F) + P (G).

where we set a = ¢/4 for the second inequality and the last inequality follows from Lemma and because
u consists if random signs.

Now consider Q2(y) = Dz [u' 8] (y).
T~1), we have

Dy [u' Bo] (y)H < Seg. Writing M = (Y71 —

D2 [0 A1) () = Do [uT (Mix, )| (1) = D we | D MyD2 (£ ) | - (D4)
=1 j=1

We aim to bound (D-4) by applying the Matrix Hoeffding’s inequality (Corollary [G.T)): let

P
Y, = Re | Y MgDa[f](y) | € R

j=1
which is a symmetric matrix. Note that
2
b p D
Y YP|= sup Y (VP q)= sup Z\m 1< sup | My (D2 [£5] (v)a)
= q€R? [lqll=1 =3 geR? Jlall=17=, a€R lall=1 | =1

Then, for a vector ¢ of unit norm, let V; ,, = =D2[fj] W)@Qnforj=1,...,pandn=1,...,d, then

2 2

P P p d D d d

D Moy W) =D D |D MegVim| =Y IMV,l* < IMIP Y V.l
(=1 ||j=1 (=1n=1|j=1 n=1 n=1

= || M|* ZDM = || Mm|* ZHDQ il ()all” -

n=1j=1

Under event F, we have || M || > D2 [f] ()qll® < t2(By + aes)?. Then,

| <HD2 {uTRe (foo)} (y>H = ij;) < 2dexp <_4t2((;/224)r2i2)2> .
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By repeating this argument for the imaginary part, we obtain

Prng (HD2 [uTIm (foo)] (y)H Z ij%) < 2dexp <_4t2((;/22‘)|‘22%52)2) .

So,
P (3y € Xgid, D2 [u"B(»)]|| > ce2)
<Prrg (Fy € 2558, D2 [0 Re (Mix, )] W)]| > Se2) +Po(Fe) + Po(G?)
(c/2)%3 . c
<4d’ gnr?gr|exp <—M +IPE‘(F )+PE‘(G )
Therefore,

1—P (Qolyo) < ceo and Q2(y2) < cea,Vyo € X, Vyp € X3)

2)2e2 (c/2)?e2
<4|xt S U T BT P N G S USG5 S e 5
| gnd|exp< 32t2(Bo+(1€0)2 + ‘ gr1d|exp 16t2(32+a52)2 + E( )+ E(G )

The first 2 terms are each bounded by /7 by setting ¢ such that

112Nd\ (B +1)
c?e?

1 13
t—2:2 log( 5

where B % max{By, B}, ¢ & min{eg, s} and N = max (‘X;ggr ,’nggfd ). The first term of (D) is
bounded by §/7 if
1 28(d+1)s ~ _, 29 (B+1 112Nd 28(d+1)s
m = 7 log <§> 64sL3, = sL3, £252 ) log 5 log — 5

and the last 4 terms of (D.2) are each bounded by 4/7 provided that

m 2 log

~

28(8 + d)dN 168(E%Bu + E%BQQ + I/()lfzg)
0 c2e?

So, to summarise, recalling that 6 = p/2, 7x, .4, iS nondegenerate on Xoia and ngi‘d with probability at
least 1 — & (conditional on E)) provided that

T2 72 =70 -
m 2 log (MUV) log (Sd) s(LyBi1 + L Bas 2+ BL§, + Lo La)
p €

and

P(ES) E[Li(w)Lj(@)lee ] S

< € €
~ B3/2/s\/log(Nd/p) and ™ 4sv/By/log(Nd/p)

Step I (b): Deterministic signs Assume now that u consists of arbitrary signs. We will show that (D-3) can
be bounded by ce when m is chosen as in condition (b) of this theorem. Let F’ be the event that

(a’) HT - YH < S115/4 and HTil - TilH < slt/4

(b)) Vy € Xfr

grid?

(Bx, (4) — £, ()] | < 5

(@) Yy € Xt supygy . ||Ds [(Bx, — £x,) 7] )| < 22
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Yy -1 ~1
(f) H(T -1 u’ Blok < ae ||T uHBlOCk < 2aqe.
Then, provided that
u u
P(ES) S ——————— and E[L Np) < —=—m,
( w) u+65(BO+BQ) an [ 01(w> E] 4B53/2
with « = min{ag;, t} as before, we have
Po((F)°) <4(d + 1)se mt”
5 < sexp | — -
E P\ 7165322, (3 + 2t)
. m(agg)?/8 >
+ 4sd | X | ex <— = =
sl X0 \ =703, By + D)7 23)
2/8
3d + d2 near _ _ m(ae_2) / _
+ o3+ &) 57 exp ( s3/2(L3B11 + LiBaz + Lo L)

+ 32se mAa?e?
X — = .
P\ 75 (3207 + 68acLy Loy)

where the first bound is from Proposition[C.I} the second and third are from Proposition[C.4]and the final bound
is due to Proposition[C.3]

To bound (D.3)), we first observe that if event G holds, then just as observed previously,
2a¢,. To bound |u' B3 (y)|, observe that

Dr [uTﬁ2] (y)‘ <

uTﬁl(y) T(T_l - Y_l)(fxo - fXD) + uT(T_l - T_l)fxo

u
ul (Y7 =T (fx, — fx,) +u' THT —T)T 'y,
u

—

Tt =T (Ex, — fx) +uTTHT =TT Ty, +uTHT - )Y

Under event I,

o [uT (T —T1)(fy, — fx,)

S ERES | TSP

o U Y LT —T) (T — T D)y,

< s 2t [T - B < 2,

< HT_luBlock < dae.

o |[r-1(tT - T)r—lu(

‘(T - T)T—lu‘

Block Block

Finally, given any vector ¢ such that ||¢||p,. < 4ae, we have |qTf X0| < 4aeBy. Therefore,
|uT51 (y)| < ta+ 2t% + 4ae By,

and in a similar manner, we can show that the same upper bound holds for ||Ds [u” 3] (y)||.
Therefore,

D, [u' B8] ()] < cer (D.5)
if both F” and G hold, so conditional on E, (D.3) holds with probability at least 1 — & provided that

s e, 3B+ BB ¢ BIG + Inl) | (N ds)
c P
and € 2
P(ES) < and , E[L;(w)L;(w)lEe] S V
(E2) DL D) S 50 7B s vary)

™ B3/2s\/log(Nd/p)
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Step II: Extending to the entire space To prove that 9)x, o, is nondegenerate on the entire space X, we
first show that 7)x,,,q, is locally Lipschitz (and hence determine how fine our grids X35, Xgﬁ‘iﬂl need to be): for
z, 2" € X with dg(z,z") < Tears

1D, ) @) = D, i) ()] = [+ 30D, [Re (750 5 )| @) (D.6)
k=1

=D, [Re (Tx'w) Y wi)pu ) | (@)

- i Re (((T3'0) "y(we)) - (Dr o] (@) = Dr [0, ] ()

/N

T3 Il V5 Lor 1D, ] () = Dy ] (&) (0.7)
< 4sLoyydu(z, 2" )L, < cep. (D.8)

where we have applied Lemma[C.2]to obtain the last line.
Choosing ngf{d to be a §p = 4Lz“"i’ms—covering of X" (of size at most O(Rx/dp)), ngfird to be a dy =

1715 -covering of X' (of size at most O(Rx/d2)). Then for any x € X" and o' € Xgra such that

dH(.’L‘, x/) < 607

|ﬁX0,U«0 (x)‘ < mXo,ao(w/” + |77X070«0 (.’E) - ﬁXO«,ao (‘T/)| <1 —eo + 2ce.

and given any x € X™, let 2’ € X4, be such that dgz(z, 2') < b2, s0

Re (sign(a0.0)Dz [xo.a0) (#) ) < Re (sign(a0,0D2 [i1xo,00] (2')) + D2 [iixo,00] (2) = D2 [iixe.a0] ()] 1d
= (—e9 + 2ceq)1d,
and

Hlm (sign(aoﬂ-)Dg [1x0.a0] (x)) H < HIm (sign(aoyi)Dg [Mx0.00] (x')) H + cea < (c2 + ¢)eq.

D.2 Nondegeneracy transfer to 7)x ,.
We are now ready to prove Theorem 3] which we restate below for clarity.

Theorem D.2. Suppose that the assumptions of Theorem[D 1| hold, and the following holds with probability at
least 1 — p: for all X such that

du (X, Xo) < min (rpears - (CaBvVs) e (CuLi2Li/5) 1), (D.9)

and ||a — agl| S ﬁ(&) min |ag ;|. Then, fx. o = (IYT}’T (Sigg(a)) satisfies

N 13

(i) forally € XM, |ix o(y)| <1— Feo

(ii) for all y € X" (i), —Re (sign(ai)D2 [1x,a] (y)) = 1221d and HIm (sign(ai)Dg [1x,a] (y)) H <
(2 4321
2 T 16/2%%

Hence, x4 is (é—gso, %@)-nondegenemte.

The proof essentially exploits the fact that T, fx are locally Lipschitz in X with respect to the metric
du, and consequently nondegeneracy of 7jx, o, implies nondegeneracy of 7jx , whenever dg (X, Xo) and
la — ao|, are sufficiently small.
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D.2.1 Proof of Theorem[D.2]
We begin with a lemma which shows that Ty is locally Lipschitz in X.
Lemma D.1 (Lipschitz bound of T x). Let Xo € X% be A-separated points. Assume that for all i + j < 3

1 1
PES) < ——————, E[Lj(w)L;(w)lg] <
(EZ) 1+ 16y/5B; A TV

foralli,j =0,...,2. Let p > 0 and
=9 - - sd 3 =
m > s(L2B11 + LBy + Lot L) (log [ 22 ) + dlog (soH ma3<Li>
p i=

Then, conditional on event E, with probability at least 1 — p, the following hold:

e (i) for all X such that du(x;,%0;) < Thear, We have

|

. _1
e (ii) for all X such that dg (X, X) < min (rnem, ﬁ), we have Hld — TXH < % and HGX2 '

YX - TXO

< CuBdu(X, X)) .

<1

Proof. By Lemma and Lemma [C.10, with probability at least 1 — p conditonal on E, for all (i,j) €
{(0,0),(0,1),(1,1),(1,2)} and all z, y € A",

o y 1
ol < e
note that this also holds for &% (x, ) since K (z,y) = K@) (y, z).
< % Take any X such

In particular, for all , 2’ such that dgg(z,z’) > A/4, we have "K(ij)(x, a’) 7

that dgg (24, 0,i) < Tnear, We have that both x;, g ; are at least A /4-separated from x; and ¢ ;. Therefore, for
k, ¢ € {0,1}, using Lemma|C.3}

N N C
K0 (25, 2;) — K(M)(xi,oﬂfj,o)H S Ti\/dH(xiaxo,i)Q +du(xj, xo,;)?

(D.10)
K0 (25, 2;) — K*9 (2, xi,o)H S Cu (Bi+1,e + Bie+1) du(@i, xo,4)
and therefore by Lemma [G.6}
¢ - 2 < o (ke £ (ke 2
HTX—TXU <Y Y KR (25, 25) - K )(xo,iywo,j)H
i,j=1 k=0
S 1 R ) 2 ) ) 9
<2 Z Z ‘ KW)(%»%‘) - K(u)(xo,i,%‘)H + HK(ZIC)(inafEO,i) - K(ék)(xo,j,xo,i)
i,j=1k,£=0
2
1
< 0% ) N2 4 ) 2
S Chi > Bu ZdH(mz,mo,z) + > du(zj,x0,)
k,1€{0,1,2} i i
k+0<3

which yields the desired result.
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For the second statement, using Proposition , P E(HT x, — I'x,
have with probability 1 — p, || Tx — Tx,

i implies that HId - TXH < 2 and

HTXHg7/4 and HG;(l ;

> %) < p, so conditional on E, we

<  and the claim follows since [|Id — T, || < 3 (due to Lemma

- fesl < van

Proof of Theorem|D.2] Since 7)x, 4, is nondegenerate with probability at least 1 — p, the conclusion follows if
we prove that for all z € X™ and all y € A",

O

||D0 [ﬁxﬂl - ﬁXo,ao} (l‘)H < 50/32 and ||D2 [ﬁX,a - ﬁXo,ao] (y)H < p52/32 (D.11)

with probability at least 1 — p. We first write

eat) = s = (15 () ) et (130 (1) - 1 (Sigéls(fO)))Tgi ,

Conditional on F, with probability at least 1 — p/2, we have by Lemma (note that our assumptions
imply the assumptions of Lemma D.1)), Tx,| < CaBdu(X, X,) and [T} H < 4. Combining this

with Lemma | we obtain HD T (Si%rs’i“))) (fx, — fx)} (y)H < 4y/sLo+/LE + L3du(X, Xo). For
the second term of (D-12)),
()l

o1 <SIgn( )) T2
o (50 (50) 1) (50

< 4 ||sign(a) — sign(ao)|| + 8v/s HTX — TXO M + 8v/sCuBdu (X, Xo).

min; |ag ;|

AN

So,

v—1 (sign ~— ign T a—a
D, | (T3 (%) = T3t () | 0] < 108, (Gl + Ao (X, X0)),
Finally, since P(E°) < p/2, we have with probability at least 1 — p, for all y € X, (D.I1) holds provided
that holds. Combining with the nondegeneracy of #jx, 4, the conclusion follows with probability 1 — 2p.

O

E Supplementary results to the proof Theorem 1]
Let ®x : C° — C™ and its adjoint % : C™ — C* be defined by
Va € C*, dxa = Zajap(xj) €C™, and VYgeC™, kq= ((p(z)), q));_;
j=1

and (@g)) :C*d — C™,

VP eCl (@[p,..., P = <i<wwk (z:), Pi>>

=1
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with adjoint
Vg e C™, () g = (Valp(®:), a))i, -

In the following, we interpret ® x € C5*™ and @ﬁ? € C*IX™ a5 matrices.
Recall that in the proof of Theorem we defined the function f : R?® x X* x R x R?™ — R2?* x C*¢ by

Re (@5 (B (s +i0g) — Bx00— (o + i)\ ( (1),
fu,v) = | Im (@5 (Px (ar +1ia;) — Px,a0 — (we +iwy))) | + A (L)
(@) (@ x (ar + i) — Pxya0 — (wy + iw;)) ‘af)‘\d’:ﬂ

where u = (a,, a;, X), v = (A, wy, w;) for a,, a; € R®, X € X*, A > 0, wy,w; € R™, and a = a, +1a; € C*,
w= wy + iw;.

Differentiability of f/ The function f is differentiable at all (u,v) such thati = 1,...,s, a; + ia; # 0. Its
differential can be written as

Re (@) Re (@%) ().
0w, f=— | Im(P%) |, Ouf=—1(Im(P%) |, onf= () (E.1)
((I)(l))* (@(1) * la:] i
X X Osd
SO
(ﬁ;ﬂ)i Re (®%) Re (%
Ao f(u,v) = N Im (®%) |, —i [ Im (®%) | | € cRsFsd)xt2m), (E2)
e (@) (@)

Idsxs 0 0 /D b
and Oy, f (u,v) = (My(u,v) + Ma(u,v)) 0 Idsxs with M, (u,v) = ( 0.X Dl’X) and

0 0 Ja ’
Ay 0 -0
0 Ao --- 0
A Id 0 0
O = DSl I B K S (E3)
0 Ao 0 0 0 J,
0 0 - Ay,

where

9

« o) -
Do ow (Re(@x®x) —Im(P52x)) 5w (Re(PxPxa It
OX 7 \Im (@5 Px) Re(®%®x) )7 "7 \1n ot ol g, ) I

Dix (@) ey (@) ax). and Dyx (@) al)

and C, Cy € R(@s5+25)%s are defined as

2 iar;
diag ((|T1| - ‘ijs)i) diag ((—“‘;i‘s )i)
def. . Qi;arg &b H a;?
Ci =X diag ((_W)l) ) Cy= A diag ((‘711‘ PR )z)
Osdxs Osdxs
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o (Re (Valp(a;). )
7 \Im (Valp(a;),2)"

and J, € R*%9¥s? i5 the diagonal matrix:

>7 Ay EV2(p()),2), 2= (Pxa— Px,a0—w) (E4)

aﬂddxd 0
J(L = ..
0 aslddxd

Letting ug = (Re (ag),Im (ag), Xo) and vo = (0,0,0), we have that My (ug,vg) = 0 and 9, f (ug, vo)
is invertible since HT x, — Id|| < 1/8. Moreover, f(ug,v9) = 0. Hence, by the Implicit Function Theorem,

there exists a neighbourhood V' of v, a neighbourhood U of u( and a differentiable function g : V' — U such
that for all (u,v) € U x V, f(u,v) = 0if and only if u = g(v). To conclude, we simply need to bound the
size of the region on which g is well defined, and to bound the error between g(v) and ¢(0). This is done with
the following theorem. Let us first remark that our assumptions imply that P(E€) < p/2 and

T ElL@)L )] < e

forall i, j = 0, ..., 2. Therefore, it is sufficient to prove the existence of g conditional on event £:

P(EC) <

S5 E.5
« 1+ 16\/§Bij (E-5)

Theorem E.1. Assume that forall i+ j < 3

1 1
PES) < —————, E[L;j(w)L;(w)lp:] <
(B) < riggem PLL@e] < 35

foralli,j =0,...,2. Let p > 0 and suppose that
= - - d
m 2 s(L2Byy + L2Bay + Loy Ly) <log <8p> +dlog (scHL3)>

where L, o max;<, L,. Then, conditional on event E, with probability at least 1 — p: there exists a €'
Sfunction g such that, for all v = (X, w) such that ||v|| < r with r satisfying

1 : -1
— . 3 mln{Tlneary(CHB) } 1
r=0 (\/g min ( min; |ao, ;| » Lo1Li2(1+(aol)’ )) (E6)
we have f(g(v),v) = 0 and g(0) = uo. Furthermore, given (\,w) in this ball, (a, X) = g((\, w)) satisfies
A
Ha—aOH +dH(X,X0) < M (E7)
min; |ag ;|

Before proceeding to prove this result, we first remark that as discussed in the main paper, Lemma[E.T|and
Lemma [E.2] below imply that given v = (A, w;, w;) € V, u = g(v) indeed correspond to the unique solution
of the BLASSO with regularisation parameter A and noise w = w, + iwj;. In particular, the combination of
these two lemmas imply that the certificate 7 < p* D,w associated to a and X is close to the nondegenerate

def.

certificate 7)x o = ®*px., when |Jw]|| /A and \ are sufficiently small. In the following, ITx = (Id — I‘XI‘}) is
the orthogonal projection onto Im(I'x ).

Lemma E.1. Given u = (ay,ai, X) and v = (A, wy,w;) such that f(u,v) = 0, write a = a, + ia; and
w = wy + iw;. Let py s % (Px,a0 — Pxa+ w). Then,

1
A

1

HXw + )\HX(I)XOCI,().

Prxw = PX,a +
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Proof. The equation f(u,v) = 0 can be written as

Iy (rx (of) Ty, (g‘;) - w> +A <Sig02§“)> —0

By applying I'x (T%T'x)' to the above equation, we obtain

Iy (0“d) —IxI' T, (Slod) — DxTfow + A% (Slgonfla)> =0 (E.8)

S

Therefore, since I[Ix = (Id — T XFE(), we have

—®xa+ CDXUG(] +w = HX(DXOCLQ + IIxw + /\].—‘;(’]L (mg()nia)) (E.9)
s

and by dividing by A, we obtain the desired equation.
O

Lemma E.2. Asssume that event E occurs. Then, forall X € X* such that dgp(z;, 33071‘) < Tpear and a € C3,

Ly ||al|, max; dy (2, x0,;)?

HXFXa S _
M0l S0 L, ) der(x, Xo)?

Proof. Let ~y; : [0,1] — X be any piecewise smooth curve such that v;(1) = x¢; and 7;(0) = x;. Then, by
Taylor expanding ¢, (7:(t)) about ¢ = 0, we obtain

Pur (T0,1) = o(x) + (Vo (i), 72(0)”/0 %(V%Wk(%(t))%(t), 7i(t))dt.

Therefore, since Im(I'x) = {¢(x;), J,(x;)}; where J,, denotes the Jacobian of ¢, and IIx is a projector on
Im(FX ) + ,

s s 1 m
a;
MyTxa = Tlx (Z aw(aso,i)) =Ilx (Z 5 / (V00 (D)% (1), %‘(t)>dt>
i=1 i=1 0 k=1
Taking the norm implies
~ai| (1 2
ITxTx,al < > /. Lo ||FL,, (oyvi(t)||” dt (E.10)

i=1

_1_1 _
since for dgr (2, ©0,5) < Tnear» We have HHIOi H2Z, || <1, and hence, under E:

B2 V2, e S (1D [, (20)]| < o

Taking the infimum over all paths ~; in (E.10) yields

ITxTxoall < Loy lai| du(wi, z0,:)*.
A
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E.0.1 Proof of Theorem [E.1l
E.0.2 Preliminary results

We first discuss the invertibility of d,, f. To this end, we make the following definitions.
Let u = (ay, a;, X), up = (Re (ap),Im (ag), Xo), v = (A, wy, w;) and vy = (0,0, 0). We define the block
diagonal matrices

[ldes 00 H., 0
Fx o 0 Idss 0 where Gy i
0 0 GX 0 H,

s

_1
For (u, v) sufficiently close to (ug, vg), we aim to show that d,, f (u, v) is invertible and to control HFX2 Oy f (u,v) H

and |[F50,f(u,0) "' F§

. Using Lemma conditional on event £, with probability 1 — p we have

L Re (9%
[Pt uf 0| <l + tm (¥5) )5 Vs E11)
GX2 (éX

To deduce invertibility of 0,, f (u, v) and to bound HFi@u fu, v)_lF)%( , first observe that

d 0 0
F /20, f (u,0)F Y = (F;(l/QMl(u,v)F}l/Q+F)—(1/2Mg(u,v)F;/2) 0 Id
0o o0 J,

where F}1/2M2 (u, 11)F)_(1/2 is

L (B Re (Vo A](r) 0 0
T
L (H (Vi 2)@) 0 0
0
— : T
e 0 0 (R (Vi @D) | @)
0 0 R (H (Ve 2)](@0))
AHAV (e, 9))(@)H 0 - 0
; .
: 0 AHV e B

where z = (P xa—Px,a0—w). Now, let us study the invertibility of F}1/2M1 (u, U)F}1/2+F;(1/2M2 (u, v)F;(l/2
and bound the norm of its inverse.

def. & ming|agq|

Lemma E.3 (Bound on Ms(u,v)). Assume that E occurs and givene > 0, let c. = I, Then, for all
X € X%, a € C*° and w € C™ such that

mini |a0,i|

4 9

A< lla — ao| < C , Jw] < %E and dg(X,Xo) < min( CE) ,

r —
4Ly e 4L, ||a’0H
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we have for u = (Re(a),Im(a), X) and v = (Re(w), Im(w), X),

(VAN e EE A e TN S T

~
Block

Proof. First note that for r € Ny,
1 — _
[0 [e72] @ll < 7= > [l2iDr ] (@] < Lo 2]
j=1

Now, for § = [P}, P2, Q1, . .., Q] € C*(4+2) where P, € C* and Q; € C¢, and ||g|| = 1, we have

2
|FX 20 (u, 0) PR 2

2 2

_1
2

S 1 T
Slep P + (Pl + 3 | = (H22 Ve T2 (@) Q.
i=1 17"

"

1. .1 _1
7H3€1‘2 v2 [QDTZ} (xl)Hrzz Qz
Qa;

< N2 4 S T 2 L2 T -2
St max [ Ve T w)|| + B Ve 2 0 HE,
min; |ag ;| min; |ag ;| ¢
A2 4 2 2
= max (1 [ 4] ) + D2 7] ()
min; |ag ;| min, |ag|” ¢
A2 4 _ _ 9
< - 2 (LY + L3) |||l

mini |a0,i|2 mini |a07i
where we have used the fact that min; |a;| > min; |ag ;| /2. If ||7]|gjo = 1, then

2

S 2| (VT @) @[V ER Q)
Block 7 min; |a0,i| z‘X Ti ¥ 4 2 T @ 4 x; i

HF;/?MQ(U, ) Qq\

|

H,? Vo 2)(2,)Hy,?

+ mae{ | F VT2 ()

}

2
’ ’

x .
min; |ag ;|

and the same bound holds.
Now it remains to bound ||z|| (recall the definition of = from (E4)). Writing ¢ () = (., ()}, we have

D aip(as) — ag (o)) —w

%

121l ‘

T 2
< Lo [la — aol| + [lao| max \/Z [P (1) = Pus (20,0)]” + [l

< Lo |la — aol| + [lao|l L1du (X, Xo) + [Jw]

where the last inequality follows from Lemma[C.2}

Lemma E4. If |a — ao|| < 4 min |ag;| and HTX - IdH < e < %, then M (u,v) is invertible and

4

1 1
I 3 R

Proof. By considering the Schur complement, we have that M; (u, v) is invertible provided that

(i) D3 x is invertible
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(i) S = Do x — Dy x D5\ D1 x is invertible.

In this case,
_ e —S_lbleD_l
Milw o) =\ _potp st poloypslspyDsk )
2,xHM1,X 2,X+ 2,X 1, XM x
T2 JONT (O Pt *
Gy (CI)X ) PGy —1d N[@xPx —1d]| <

)

To establish (i) and (ii): Note that HG;ﬁ (@) @x|

HTX — IdH. So, provided that HTX — IdH < € < 1, (i) is satisfied, and note that Dy x on R?# is invertible if

and only if % ® x is invertible on C* and ||(<I>§<<I)X)*1|| = HDO_%H < ﬁ and since
- 1 -1 1 1 2 42
|D1x D3k D1 x| < 2HG§( (@PyeQ)  eif|lext @) ex| < =,

S is invertible provided that 4 < (1 — €)2, which is true when ¢ < 1/3, and we have

—1
|p3k|| |
<

S| < - < .
H H 1 HDI,XDEE(DLXH 1—e—4¢e2

_1
G* D1 x H < v/2¢. Then, by combining the above bounds, we have

)

1.
Note that HzeDLX

1 1 1
[FA M (u,0) T

O

In the following given a metric d on some space ), z € ) and r > 0, the ball of radius r around z is
denoted by By(xz,7) = {z' ; d(2',z) < r}.

Theorem E.2 (Quantitative implicit function theorem, adapted from [4]). Let F' : H x Y — C" be a differ-
entiable mapping where H is a Hilbert space, Y C C?* x C*%, n = s(d + 2), ||-|| be a norm on H. For each
y € Y, suppose that there exists a positive definite matrix ¥, and let dg be the associated metric. Let xo € H,
Yo € Y and 1,12 > 0 be such that F(xo,yo) = 0 and for x € Bj(x0,71),y € Bag(yo,72), OyF(x,y) is
invertible and

_1 1 1
HFyQOJCF(J:,y)Hng and HFyzayF(x,y)—ng < Ds.

Then, defining R = min #QDQ, 7’1>, there exists a unique Fréchet- differentiable mapping g : B (zo, R) —
Bax (Yo, r2) such that g(xo) = yo and for all x € B).|(zo, R), F'(x, g(x)) = 0. Furthermore

dg(z) = —(9yF (=, g(x))) 0. F (x, g(x))
and consequently HFgé(r)dg(z)H < Dy Ds.
Proof. Let V* = Uy ¢y V, where V is the collection of all open sets V' of H such that
1. g€V,
2. V is star-shaped with respect to x,

3. VC B”.H(I07T1)7

4. there exists a ¢’ function g : V' — By, (yo, r2) such that g(xg) = yo and F(z, g(z)) = 0 forallz € V.
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Observe that V is non-empty by the (classical) Implicit Function Theorem. Moreover, V is stable by union:
indeed, all conditions expect the last one are easy to check. Now, let V,V € V and g, § be corresponding
functions. The set V = {z € V NV, g(x) = g(z)} is non-empty (it contains z), and closed in V N V.
Moreover, it is open: for any z € V, by our assumptions 9, F'(z, g(x)) is invertible and the Implicit Function
theorem applies at (x, g(z)), and by the uniqueness of the mapping resulting from it we obtain an open set
around z in which g and § coincide. Hence V is both closed and open in V' N V, and by the connectedness of
it V.= V N V. Therefore, there exists a function g’ defined on V' U V that satisfies condition 4 above (it is
defined as g on V and § on V, which is well-posed for their intersection), and V is indeed stable by union.

Hence V* € V, let g* be its corresponding function. It is unique by the arguments above, satisfies
F(z,g*(x)) = 0and

F2 dg*(2) = ~F2 ) (0,F(z,g" (1) 0:F (z,9(x))

1
for all z € V*. Note that by our assumptions HF}(z)dg*(m)H < D Ds.

We finish the proof by showing that V* contains a ball of radius r2/(D; Ds). Let x € H with ||z]| = 1,
R, = sup{R; o+ Rz € V*}, and 2* = 2o + Ryz € OV*. Clearly 0 < R, < ry since V* is open,
assume R, < ri. Our goal is to show that in that case R, > Dl 55 - Since dg* is bounded g* is uniformly
continuous on V* and it can be extended on OV*, and by continuity F'(z*, g*(«*)) = 0. By contradiction, if
g*(z*) € Bag(yo,72), by our assumptions we can apply the Implicit Function Theorem at (x*, g*(z*)), and
therefore extend ¢* on an open set V' that is not included in V* such that V' U V* € V), which contradicts the
maximality of V*. Hence dp(g* (2*),y0) = ro. Lety : [0,1] — Y be defined by v(t) = g*(z* + t(xo — z*)),
so v/ (t) = dg*(y(t))(xg — x*). Then,

ro = dr(g* (%), g*(x0)) < \// <Fg*(7(t))’7/(t), ~/(t))dt
0
N \//0 HFg%*(fy(t))dg*(V(t))(xo — %) ’

E.0.3 Proof of Theorem [E.1|
Our goal is to apply Theorem [E.2]

Since HId —Tx H < é by Lemma and by applying Lemma , we have that
5. From Lemma under event E, by taking

dt < D1DsR,.

-1

(F;/QMI(U, v)F;/Q) <

def. HllIl7 |a0 1‘

E.13
16L15 ( )
forall X € X*, a € C* and w € C™ such that
min; |ag ;| c c ¢
A < =, — < —, < - d d X X nears ’
20 - aal < g el < S and (X, Xo) < i (1 )

we have HF;(l/QMQ(U,’U)F;{l/2H <3

In this case, 0, f (u, v) is invertible, and we have

|FFouroF )| 5

32



since ||a — ao|| < min; |ag ;| by assumption.
Therefore we can apply Theorem with (recalling the definition of ¢ in (E.I3) and the bound (E.IT))
with 2 = R, x R?™,

— — — : c c 1 _ 1
T = D1—0<\/§), TQ—O(HIIH (Tnear, m,j}y@))? DQ_O(W)

with B =}, ;3 B;;, we obtain that g(v) is defined forv € V/ = By, (0,7) with

r = min (52,71 ) = =22- = O (min Tnear L
DiDyo'1 D1 Ds V/smin;|aog ;| leLuHaOH’ lezLO /s min;|ag, ;|Cua B

such that g is C1, f(g(v),v) = 0, g(vo) = uo, where we recall that uy = (ag, Xo) and vy = (0,0).
Finally, from Theorem [E.2] we also have that

1
[Piag)|| < Dips < _ Vs
min; |ag 4|

and by defining v(¢) = g(vo + (v — vg)) for t € [0, 1], we have the following error bound between u = g(v)

and ug = g(vp):
. 1
dr (u, up) = \/Ha — ag|; + du (X, Xo)? < / (Fy@)y'(£), 7' (t))dt
0

— \//0 (Ftdg(tv)v, dg(tv)v)dt

_VE )

~
min; |ag 4|

F Examples

F.1 Jackson kernel

Let f € Nand X € T¢ the d-dimensional torus. We consider the Jackson kernel

K(z,2') = HH(Z‘Z — ),
i=1
4
et sin((%+1>7rm> ) .
where k() = —7-~ | »with constant metric tensor
5-1—1) in(mx)

H, = Cld and d(e,2’) = C2 o —a'|l,.

where Cf = —x"(0) = %f(f +4) ~ f2. Note that K() = C’;(iJrj)/QViV%K and since the metric is

constant, we can set g = 0

F.1.1 Discrete Fourier sampling

A random feature expansion associated with the Jackson kernel is obtained by choosing 2 = {w € Z% ; |lw||, < f}.

© i mu x min(j+
Pu(r) = e2m% and Aw) =[], g(w;) where g(j) = + P00, (10— |k/F)(1 =G — B)/])-
Note that this corresponds to sampling discrete Fourier frequenmes In this case, the derivatives of the random
features are uniformly bounded with || Vg, (z)|| = [|w|’ = (’)(C’}/deﬂ). So, we can set L; = O(d'/?).
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F.1.2 Admissibility of the kernel

Theorem F.1. Suppose that f > 128. Then, K is an admissible kernel with 1y = 1/(8v/2), €2 = 0.941,
g = 0.00097, h = O(d 1/2) and A = O(dl/QSmax) Boo = Bu = Bgo = 0(1), BOl = O(dl/Q) and
Bss = O(d).

The remainder of this section is dedicated to proving this theorem. The uniform bounds on B;; are due to
Lemmal|F.4] (uniform bounds), and the bound on A and h are due to Lemma From Lemmal|F.1| we see that
by setting roeqr = #, for all dgz(2,2") < Tnears K (1, 2") < —e5ld with eg = (1 — 6r2,,,)(1 — 12,/ (2 —
T2ar) — Vi) = O 941 Finally, from Lemmal[F.2} we have that for for all dgz (2, 2') > Tear, | K| < 1-1/(8°-2),
SO we can set €g £ 0.00097.

Before proving these lemmas, we first summarise in Section [F.1.3] some key properties of the univariate
Jackson kernel x when f > 128 which were derived in [2].

def. y  def.

. . B def.
For notational convenience, write t; = x; — @}, ; = £(t;), & = k(t;), and so on. Let

d
K = Hﬁkv 1] déf‘ H Rk and zjédif H Rk
it Py K
With this, we have:
31’Z-K(:r7 LC/) = K;KZ
8171'8271‘}'{(1’,50/) = — Ii/i,KZ', and Vi 7é j, 817i827jK(£L'7I’/) = ;H;K”

Where convenient, we sometimes write K (t) = K (z — 2') = K (z,z').

F.1.3 Properties of «
From [2, Equations (2.20)-(2.24) and (2.29)], for all t € [-1/2,1/2] and £ = 0, 1, 2, 3:

Cy o Cr 9 1+2/f ? 2,4 Cr 9 2,4
11— —t"<k(t) <1 ——t 8| ———————— | Cst* <1 — —=t 8C%t
5 & S Al) 2 P i zer ) o 1y
1+2/f \°
/ S " S /// 2t<12 2t F.1
k') < Cypt, ") <Cy, |k 3<1+2/2+f>0f C5 (E.1)
3 1+2/f \?
K'<—Cp+ = () C?? < —Cf 4+ 6032,
o \teesp) O R
By [2| Lemma 2.6],
7rH(t) 1 V2
‘H(ﬂ)(t)‘g (f+2}§‘oe"t4’ te[?}’ 71-]
2
T €% 3),

def.

where H® = 1, H® = 4, H® = 18 and H$® = 77, and Hy(t) = o(t)B,(t), with

et 2 /gy def. a(t) _ 2
aft) = Wy B(t) = ft - ftm(1 — 72t2/6)
and Bo(t) £ 1.6 (1) £ 223(1). fo £ 4+ TB(0)-+63(1)? and A1) £ 84245+ 303(1)* +155(1)°. Letus first
remark that 3 is decreasing on I = [#, %}, SO ‘B )| < |B 1/(2f))| ~ 1.2733, and a(t) < a(v2/7) = 2
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on I. Therefore, on I, Hy(t) < %, Hq(t) < 3.79, Ho(t) < 18.83 and H3(t) < 98.26, and we can conclude
that on [%, 3), we have i
ﬂthS’o
(F+2)
where Hg® = 1, H® = 4, H® = 19, H® = 99. Combining with (ET)), we have ||/1(£)||Oo < K§° where

def. def.
kg =1, kS = CY,

‘H(f) (t)’ <

Finally, given p € (0, 1),

1
(f+2)%" > (L+p(f +2)%%)% Vi
(1=p)(f+2)
Choosing p = § and using (f +2)? = (% Cy +4) > 2}, we have
o] 27T2
(“t‘g# Vi T F2
’KJ () (1+%Oft2)2, 3Cf’ ( )

F.1.4 Bounds in neighbourhood of 2’ = z

Lemma F.1. Suppose that C'¢ HtHg < ¢ with ¢ > 0 such that

def. C
=(1— 1— -
e=( 6«:)( 2—c> c>0

Then, K°2 (t) = —eld.
Proof. We need to show that i (—K (2 (2)) > b. Let ¢ € R?, and note that

—(V3Kq, q) = —Z gk Ki — K ZQjﬁ;Kz'j qi
: i

== D @RK =Y ik Y a4k K (F.3)

i i J#i
2
> gl | - mas{l K} = 3015
J

We first consider s} K;:

ki < —Cf +6C3t3,
C C 2 C 2\° C 2\’
K> T (1-2) = 1- G- (Log) - (L) -

J#i
2
1 Crl
= C 25"
21— S 1413)
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and hence,

2 Cr It
R < (=Cp + 663 [1t3) (1 - —
2(1 = 5 [Itll2)

SR < CR il -
J

For the second term,

Therefore,
M (K1) > (160, [12) (1 - Cft”) Sy
min = 2 C p) 2
21~ 5 IflE)
Lemma F.2. Assume that t||, Then,
e > il
4
K1) < 1— S |13 + 1603 1]

Consequently, for all
1
0<c ——

8/2C}’

and all t such that ||t||, > ¢,

Proof. First note that
C
k(u)] < 1——fu2—|—32C’2u4:1—u29 U
) f
where

def. 1
g(u) = Cy (2 - SZCfu2> ,

and note that g(u) € (0, %) for u € (0,1/(8,/C7). So, writing t = (t;)%_, and g; = g(t;), we have

d
K(t) = II II (1—12-g(t)))

U

=1-> tigj+ Zt?tigjgk - Z t5tit09; 9190 + - -
=1 7k kA

Note that

= N e84 gigege+ Y CHRHIE - gigkgegn

Ak j#kAGEn
= 3" 233 gigkge+ | D 212 g0k (Z?ﬁ%)
kAL J#kAL n
Cr 2
- 3 s g (1- L 1E) <o
kAL
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since (1 - % ||tH§) > 0. Also,
d

O d
ZtZQj X 72:

by assumption. So,

<1l- thgg + Zt tkg]gk

J#k
2
d 1 1 d
2 2 2
1= o+ | 260 | <1-5 8
j=1 J j=1
cp[1E d c
f 2 4 f 2 2 4
<1-F 52@42@2@ 1= =5 [t + 16CF |l
j=1 j=1

Finally, observe that the function

qlz) & if 2 16032

. .. . . . 1 .
is positive and increasing on the interval [0, 5 \/E] So, for ¢ satisfing
<tlly < ! (F4)
c < < —, .
> 7 8/2C;
we have |K (t)\ <1—-9g(c) <1- %02. Finally, since |K (t)| is decreasing as ¢ increases, we trivially have
that | K (t)| < 1 — g(c) for all ¢ with [|t]|, > c.
O

F.1.5 Bounds under separation

Lemma F3. Leri,j € {0,1,2} withi+ j < 3. Let A > \/ %% 42 and lItlly = A\fsrlr{fx/\/cf. Then, we have
[ O < a5 (Atsman)

Proof. Write t = (tj);-izl. To bound K(t) = Hj 1 k(a;), we want to make use of the form (F2). We can do

this for each ¢; such that [¢;| > 30 . Note that there exists at least one such ¢; since [|t||, > ||t|, /Vd >
Asilb )\ /T \/7 I {Jt;}5oy € [0, \/250) for k < d — 1, then
22 A2dsil
kot D B2l >
U e f

_ 205 1/2
which implies that Z ka1 J > Cif (A2ds]ﬂl/zfx 27 (3d 1)) > A ;g,;,ax by our assumptions on A. There-

fore, we may assume that we have some d > p > 1 such that {b;}/_, C {t;} with [b;] > \/; and
([l > %. Observe that

p p
3cf 30 3cf )
[T+ > 1455 R = 14 SR > 1+ g A

Jj=1 J=1

37



So, by applying the fact that |x| < 1, 55° = 1 and (E2)), we have

P P 1 1
t) < I Is(5)) l] (s 3%2) S 0s 2y omm)

For\/fK|1fz¢{ tj| > /2% }then

p /
%3l
Kl < llwilloo T Im(B9)] < o 7
Z T (1 + 22 A%d\/3max)
and otherwise, we have ki K;| < |'(t:)| ][], [x(bj)] < (1+4%;E:l = In a similar manner, writing

Ve (14 525 A%, /smax) , we can deduce that

2
max " max - max)2
|kl K| < , |k K;| < , ’KilﬁjKij‘ < (R)°V
" max ", .1 mmx max 1o o max 3
|k Ki| < K3V, |k} KZJ‘ KTV, ’niﬁjfseKijd K1)V
Therefore,

<] =

f” K< 72 f S U -

Using Gershgorin theorem, we have

||V§K(Jc,x’)H < max{|l<:"K | + |k Z |;‘£]| |Kij|}

J#i
and hence,
&) = 5 1935 < & bt + 101 50 s
f J#L
1 max{x$°, (k°)?} 1
<7V max max2d_1 < 20 L Vd S ——
Cf (Iig + (K/l ) ( )) Cf ~ A dsmax

Note also that ||K(11) H = HK(O2) H Finally, since
Hal,ing(ﬂc,x’)H < max{ |k K| + |k | Z ’KJ;| | K,
Jj#i

max{ [ K | + [l K| + L] 5] D Il |KW|}},
Jj#i (71

we have

<] = Gam 192K

3/2

< 03/2 VdV max (K5 + £3RF(d = 1), 265°65° + (d — 1) (£7°)°)
f
1

O;/2 ~ A4d1/2smax

< B mac{ g, AR (6)°}
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F.1.6 Uniform bounds

Lemma F4. [f roear ~ 1/1/C}, then By = O(1), By = O(Vd), Bos = Bia = Biy = O(1) and By =
O(d).

Proof. We have |K| < 1, and
2 2 2 0o
IVK(* <Y [l [Kil® < d(s7°)* S Crd,

s0 Bo1 = O(Vd).
From (E3)), for all ||¢|| = 1,

(V3K (t)q, ¢) < max|s{| [lgll; + llall2 Z\ml <Oy + Gt = 0(Cy),

for ||t < 1/4/Cy. So, since rnear < 2/+/Cy. || K°2(t)|| < 2 = Boz. The norm bound for K11 is the same.

HK(12) H = swp <Z Z O1,i (03 Kpigy, + 01,i02,:02 e Kpiqiqic)
llgll= HPH 1 C k ki

+Z§§}m@@W@m+ZEEM%@JM%+Z&ﬁww@>

N E)

1
B HQH HpH 1 03/2 (Z ZH;H%Kikpiql% + Ky K, KikDiqiqr
& kti

+ Z Z Z Ky Hkli Kzgk:pzpjpk + Z Z Ky K Kiipigiq; + Z H;“}/ ijPiQ?)
i

i jFEi

3/2
1 2
< o <3II Ko ‘/ZIHU2+ (ZIH%I) +H’IIOOIIH”OO>
f i i

1
S oo (3¢3 11l + €5 11t + 0(c'™)) = o(1)
f

for ||t < 1/C}/*.
We finally consider K (??) (x, z): for ||p|| = 1,

Z Z Z O k010,02 Kpjpr = Y | Yk kip Kin + Y ki kipipe K

¢ kA i ki
+ Z Z Z Ii” /,‘quwkp]pk + Z Z Iimlﬁ;pjpiKij + Z Hg’”p?K
[
_ ZZH//ngka + ZHNH 2
i k#i
(’)(Cf)

since #/(0) = #"(0) = 0 and |”(0)| = O(Cy), |&""(0)| = O(C?). So, Baa = O(d). O
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F.2 The Gaussian kernel

We consider the Gaussian kernel K (z,z') = exp (—% ||z — a:’||22,1) in R?. Note that K is translation in-
variant, so that H,, will be constant and equal to —V2K (x,z). For simplicity define t =  — 2/, Kx(t) =
exp (—% ||t||;_1> and for u € R, r(u) = exp (—3u?). Denote by {e;} the canonical basis of R?, and by
fi = ¥~ te; the it" row of £ 1. We have the following:

VKs(t) = — 2 1Kx(t)
VIKs(t) = (-1 + 57t TS Kx(t)
01 V2 Ks(t) = (ST + fit 'S — (-2 4 2T TS Y (T f) Ke(t)

Hence we have H, = —V2Kx(0) = £, and, defining dgz(z,2) = ||z — 2'||y 1 = HE*%(:E - x’)’ ,
we have C = 1 Cu = 0 (that is, the metric tensor of the kernel is constant, and dyg is defined as the

corresponding normalized norm).
Then, we have

OD) (5 ) (z,2")k(du(z, 2"))
< (dua(,2') + D(du (2, 2'))

KO (2, 2') = (du(z,2")? — 1)k(du(z, 2"))Id

HK(lo) (1’, LL'/)

HK(OQ) (l‘, x/)

(@, 2")

and for ¢ € R? with ||q|| = 1, since
Z(E%v%ﬁ)i% V‘Pw 22 Zaﬁpw TZQ@Z)
we can write

d
KO9(e,a)g = Y- (q7 She)Bhon Vs (t)SH

i=1
Thus we examine each term in Ol’iVQIA( 5;. We have

Y (¢"SEe)DEn TSR = 0 <Z qTE%eiesz—%> S
and similarly 3°,(¢T22¢;)27 f;t TR 7'87 = gt T X3, Then

STt e RN TINE = ¢ T Zee N2g=(t'92q)Id
and similarly 37, 57 (T 27 ¢;)(tT 27l ) 2Rt T RTINS = (tTR3g)N 2t D5,
Hence at the end of the day

HK(u) (z,2")

< (3du(z, 2') + du(z,2"))r(du(z, "))

and this bound is automatically valid for K21 as well.
Finally, note that

HK(QQ)(:U, CE)‘ = sup <El/2V2V2 . (21/2K(2,0)($’ x)p) . D)

llpll <1
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where V- is the divergence operator on the 2nd variable, and one can show that HK (22) (2, x) H =(d+1).
We are then going to use the fact that for any ¢ > 1 the function f(r) = rie=2"" defined on Ry is

increasing on [0, ,/q] and decreasing after, and its maximum value is f(,/q) = (g)Q/ %, Furthermore, it is easy

to see that we have f(r) = rie""/2 < (%) % ¢=r/4 and therefore flr) <eifr>2(log (1) + 4log (22)).
We define 7peqr = 1/\/5 and A = C; \/m + C5 for some C; and Cs.

1. Global Bounds. From what preceeds, we have

3
HK“”H< e Jxe) < 2+ ()
Ve e

and note that HK(H)H = ‘

<3B;; =0(1).
2. Near 0 For dgg(x,2") < Thear, We have
K02 < —e_—ZId
2
and for dp(z,2') > 3,
K|<ed=1-(1-¢7)
and ||K(22) (aam)” = d+1,sowehavealsog; = O(1),s0 B; = By;+B1;+1 =0 (1) and By = d+1.
3. Separation. Since ¢; = O (1) and B;; = O (1), every condition HK ”)H —— is satisfied if A >
C1/10g(Smax) + C4 for some constant C; and Cs.
F.2.1 Fourier measurements with Gaussian frequencies
The random feature expansion for K is ¢, (z) = e T and A = N (0,X71). We have immediately Lo = 1.
For j > 1, we have D; [, ] (2)[¢1,-..,q;] = (Hz wT(E%qi)) ¢, () and therefore
ID; [ ]Il < llwlls

J

Now, we use ||w|?, = (||22w )2 W% where W is a y?2 variable with d degrees of freedom. Then, we

use the following Chernoff bound [3]: for = > d, we have

by using 22e~ 7 < %

2
Hence we can define the F} such that, for all t > d//2, P(L;(w) > t) < Fj(t) = 2% exp ( Y ) and

F};(Lj;) is smaller than some 0 if L; o< (d + log %) * Then we must choose the L; such that [ tF;(t)dt is

bounded by some §. Taking L; > d?/? in any case, we have

2
_t : t
/ tFj(t)dt:Q%/ texp dt_Q%/g(]/Q)tjflexp () dt
L Ly L 4
t



Hence this quantity is bounded by § if L; o (d + log (%))% Then we have L2 Fy(L;) = E?2% exp ( Ef )
i

which is also bounded by ¢ if Ej x (d + (log %)2> *. At the end of the day, our assumptions are satisfied for
dm\ 2 3
x |d+ <1og m)
p

We apply the mixture model framework with the base distribution:

Py =N(6,%)

F.2.2 Gaussian mixture model learning

The random features on the data space are ¢/, (z) = Ce™' @ with Gaussian distribution w ~ A = A/ (0,A4)
for some constant C' and matrix A. Then, the features on the parameter space are ¢, (6) = Eywp, ¢, (z) =

Ceiw 0= 3lIwII% (that is, the characteristic function of Gaussians). Then, it is possible to show [5] that the
kernel is

1
A7

. 7%”070 ||?2):+A*1)f1
2% + A1

K(0,0') = C?

oI
16—l

Hence we choose A = X~ C= (1—1—20)%, and we come back to the previous case K (0,60') = e~
with covariance ¥ = (2+1/¢)X. Hencee; = O (1), Bi; = O (1),du(0,0") = [|0 — 0'||5-1 = \/241r71/c

Admissible features. Unlike the previous case, the features are directly bounded and Lipschitz. We have

‘@w(eﬂ < c déf. L07

S

il

e C(2+1/c)%<‘2> “r,

lwlld

46 2 C(2+1/c)

ID; [pu @)l = €[S

Hence all constants L, are in O (0(2 + l/c)%) by choosing ¢ = 2 they are in O (djﬁ).

F.3 The Laplace transform kernel

Let o € RY and let X C RY be a compact domain. Define for z € X and w € R%,

d
o) = exp(—(z, w) H @it ai) and A(w) = exp(— H 2a;),

i=1
The associated kernel is K (z,z’) = H?zl k(i + a;, x, + a;) where & is the 1D Laplace kernel

w o /U
wu,v) = 2(u+v)

A direct computation shows that H, € R?*? is the diagonal matrix with (A, )%, where h, =

0x0p k(w,2) = (22)~2. Note that
t+«
1 ES5
o (112)] ©3)

max{s,t}
de(s,t) = / (22 + 20) " tdx =

min{s,t}

2
and so, dgr(z, z') \/zz 1 ‘log ;Ligl)‘ .
We have the following results concerning the boundedness of ||D; [¢,,]|| and the admissiblity of K:
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Theorem F.2 (Stochastic gradient bounds). Assume that the o;’s are all distinct. Then, Lo(w) < Ly &

d
(1—!— By ) and forj =1,2,3,

def. d 1 t 1/j
P(Lj(w) > t) < Fj(t) = 25 exp (ai (2(Rx+Ha) <L0) _ ﬁ))

and we have that Y, Fj(L;) < 6 and LY, Fi(L;) + 2 ffj tF;(t)dt < 0 provided that

4B:Lo(Rax + ||a|w>>){

_ - . 1

Ly o Lo(R -+ all ) (Vi 1o
T Oy 50ti

where B; =[], ﬁ Note that ov; ~ d implies that Lo ~ (1 + Ry /d)? ~ ef*x.

Theorem F.3 (Admissiblity of K). The Laplace transform kernel K is admissible with ryeo = 0.2, Cg = 1.25,
g0 = 0.005, &5 = 1.52. Foralli+j < 3, Bjj = O(1), Baz = O(d), A = O(d + log (d*/?s1pax)) and
h=0().

The first result Theorem is proved in Section and the second result, Theorem is a direct
consequence of Theorem [F4]and Lemma[F3]in Section[F3.2]

F.3.1 Stochastic gradient bounds

Proof of Theorem[F2} Let V = (1 — 2(x; + ai)wi)?zl € R?. Then,

vi= ¢Z<1 2+ o)

< ¢z L4 A+ 002w? < \Jd 4 ARy + a2 ]

<Vd+2(R + |lall) ]

We have the following bounds:

and given u, g € RY,

Ds [pu] (2)[q, ¢, u] = @u(x) <<u, Vg, V)2 =2 |lqll” — 4(u, q){q, V) + 82%'2“2') ,

SO
IDs o] @)1 < lpu(@)] (IVIP + 10+ 41V])) < Zos(IVIP +3),

And therefore, in general, _
f =4 7
ID; o] (@) < Ly(w) £ R (Va+jw])
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ID; fpu] ()] S Ly(@) 2 Lo (Vi + 2(Ba + flall) )’

Assuming for simplicity that all a; are distinct, we have [[1]]:

P(llwll > #) < P(|lwll, > Zﬂz

where 8; =[], m, using the fact that ||w||, is a sum of independent exponential random variable.

Hence, foralll1 < j <3andt > d% we have
1 +\ Vi
P(Lj(w) 2t) <P <||w|| > 2Fx 1 al) (Lo> - ﬁ)
o d 1 + O\ VI
SBHOE2 e <‘O‘i <2<Rx+ o (%) - ﬂ))

Lo>1 (2 . IEEAN
Lj > Lo [ 2(Rx + [lall,)’ { Vd +max —log { =

Next, in a similar manner to the Gaussian case, we compute

/ Z 1 t 13 \f
t)dt = 51/ texp S () — V) | dt
L, L 2(Rx + llall o) \ Lo
2 eV, exp (M) w214y,
g Z:: i P\ S T ol
2j — 1)4(R w-1_ 4 —y
eq; P (L,;/Lo)t/i 4(Rx + |all )

4(Rx + o] ))” (2j - 1)2“ N (—cu(Lj/Lo)l/j)
< e L e VeBiexp | 55— | <9
( o e 02 proxp ARx + [l )

=1

N
>,

ifforalli =1,...,d,

4(Ra +lloll..) <2j log (4(2]' - DRy + IIaloo)> +log(L3j) + a;Vd + log (dﬁi» S <€j)w

o; eq; 1) Ly

_ _ , A 1 dgi\\’
Lj 2 Lo | 2 (R + [lallo)” ( Vi + max —log { = .

that is,
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It remains to bound L; Fy(Lg) with ¢,5 € {0,1,2,3}: Let Ly > LoM* for some M to be determined. Then,

= = = -y
L:F)(Ly) < LoM? "~ Bjexp <M+om/&)
sFelLe) < Lo E 2R + ol )

d
_ _ o o
=1L, Bi M7 exp (Z M) exp (L M) eiVd
2 1R+ all) (R + ol

o)

d . 1
& (R + ol Y s o
< J A AT | b |73 : % @i
S foe Z( o B J R 1 el ™) €

i=1

d 3

s (12(Ra + o) —a Vi
< 32 i Seht N | i Ll <V ) 7 M) e¥Ve <
s im1 < o e i + o)) S ’

if foreachi=1,...,d
1 LodB; (12(R 3
ARx + [lol ) \/ngmaX—log 0ds X"'”O‘H
- iy oe3
d

) and for j = 1,2, 3,

Therefore, similar to the Gaussian case, the conclusion follows for Ly = (1 +

I'l’lll'l O[

T T i 1 d 1I1 J
Lj o< Lo(Rx + |loll o) (\/a-l-m,axalog( Bilo(Rax + ”a|°°)>) )

i day

F.3.2 Admissiblity of the kernel
Metric variation We have the following lemma on the variation of the Fisher metric:

Lemma F.5. Suppose that dy(x,2') < ¢, then HId ~HYPHL || < (14 ce®)du(x,2') .

Proof. Note that |1 — |(z; + o) /(2 + a)|| < max{e®@2) — 1,1 — e=d=@)} < d, (2, 2))(1 + ce®)
for all d (x;, ;) < c. Therefore,

I1d = HLH |* =37 1 — [(2s + a0) /(] + el < (1 + ce)dm(, 2')

provided that dg (z, 2") < c.

Admissiblity of the kernel The following theorem provides bounds for K and its normalised derivatives.
Theorem F4. 1. |K(z,2)| < min{2de—2n (=)

| K0 (z,2")|| < min{2vd |K]|,V2}.
HK(H)H < min{9d |K|, 8}

STanee )
' 8+du(z,2’)2 "

| K@Y < min{10d | K|, 8} and Amin(—K?V) > (2 — 12du(z,2')?) K.
.|| K| < min{66 |K|d®/2, 16v/d + 49} and | K1) (2, 2")|| < 34 if du(z, o) < L.

Qv A W

| K32 < 16d + 9.
In particular, for dg(z,2') > 2dlog(2) + 2log (%), we have || K9 (z,2/)|| < -2

Smax

To prove this result, we first present some bounds for the univariate Laplace kernel in Section before
applying these bounds in Section
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F.3.3 1D Laplace kernel
In the following k() (2, 27) & hy/2h 7208 07, ke(, 2').
Lemma F.6. We have

(l) K,(.'I],.T/) — SeCh (M) < 26—%dn($,$’),

,and |[k10| < 25.

(i) |c10(z,2")| =2 ‘tanh (M) k(z, ")

(iii) |0V | < 4|x° + 41|

(iv) ’K(20)| < 6 |k| and —k(0 > 2k(z, ") <1 — 2tanh (d“(z’z/))).
v) |s1?] < 49|x|.
i) k%) (x,x) =9 for all x.

Proof. We first state the partial derivatives of «:

2v/za’
T rtal
(2 —x)
V(o
—z? + 6x2’ — (2')?
V! (z + )3
(2')? ((z + 2)% + da (2’ — 2))
2 (xx’)3/2 (x4 a')3
(2)? 2z () — x)
a 2(3630’)3/2 (x4 2') (xx’)1/2 (x + a')3
23 4+ 132%2" — 33x(2")? + 3(2')3)
4z (') /2(z + 2/ )4
3zt + 6023z’ — 27022%(2")? + 602 (2')3 + 3(a’)*
a 8! (za')V/2(x + a')®

0,0y k(z,2') =

D2k(x,2') = —

0,0% k(x,2") =

0202 k(x,2') =
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(ii) We have, assuming that z > z/,

-

(10) " = 220 =922 =
K (1'756') T Ili($7$) I+l’/

k(x,z')

1 1
=2 = 1 1 K(LE,(EI)
s+l 1+

5 ( 1 3 1 )
o 1+ exp(ds(x,2’)) 14 exp(—dy(z,z))
—9 ( exp(—dn(x,x')) — exp(dn(Qj?x/)) )

2+ exp(dyg(z,2")) + exp(ds(z, 2'))

—2sinh(d, (z,2"))

1 + cosh(dy(z,z")) k(x, ")

= —2tanh(d,(x,2")/2)k(z, 2),

(iii)

dza’ — (z — ')
Ii(ll) — 41‘1‘/830/8;3&(.%‘,.1‘/) — 4m/w

2V (v + 2')3
7 N 4(x — a')? ,
= 4k(xz,x") @+ )2 K(x, z')

= k(z,2') (4r(z,2')? — 4tanh®(d,(z,27)/2))

) |n(11)| <4 |’€|3 + 41kl
(iv)

4 (xm/)1/2 ((CC + ZE/)Q + 456'(:5/ _ .%'))

k20 = 42202k (x,2") = —

= —2k(z,2') (1 + m)

2a+ )

s0 |£%| < 6kl. Also,
—(20) > 2k(z, ") (1 — 2tanh(d.(z, 2")/2))
)

K1) = 22(22")20,0% k(z, z')

= r(z,z") (1 + 2v(5u2(;jil)b;} + v2)>

) ‘m(12)| <491k
(vi)
K(QQ) — 16(xml)23333//€($733/)
B 48x2' (22 — 6xz’ + (2')?)

=3 (x+a')4

and K??) (z,2) = 9.
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F.3.4 Proof of Theorem[F4|

Let dp = dy(x¢ + ag, @, + o) and note that dg(z,2") = /3, d7. Define g = (2 tanh(g’f)) . We first
prove that

. d d

() [K(x,2")] <[[,_qsech(ds/2) <T[,_, 1+é§/8 < 1+§dHl(w,z')2'
() [|KO (z,2")|| < llgll, [ K.
Gii) KOV < K] (llgl3 +5)
) [|KE ] < K] (llgl; +6) and Amin (K22) > K (2= 3g]3)
W |82 < 1K1 (llgl + 16 1gll, +49)
vi) [|[K@P|| < 16d +9.

The result would then follow because

e sech(z) < 2e~% and sech(x) < (1 + 22/2)7!

e [tanh(z)| < min{z,1}, so ||g|| < min{dg(z,2’),2Vd},

< W (dH(a:,x’)3 + 16dg(x,2") + 24) < 8dH(J;,m’)—|—§+24 < 34 when
dg(z,2') < 1.
(i ) det

In the following, we write (00)

w9 (24 + oy, Ty + ay) and Ko = IQZ and K; £ Hj# k. Moreover,
we will make use of the inequalities for (%) derived in Lemma

(1) We have
d d d? 1
! < < < T LA N2
K (z,2)] \gsech(de) \E(1+ B) ) 1+ dg(z,2')?
(i1)

d
K(lO)(x’m/) _ (HEIO)KZ)Z — HK(lo)(x,ac’)
=1

< llglly 1K1

ij‘ < 4tanh (%) tanh (d]> |K]|,

< 5|K]|. So, given p € R? of unit norm,

(iii) For ¢ # j

!K(” =

and ‘K ‘_

11) ZZ (10) (‘01 z]png+2pz 111)K

i=1 j#i

d
< |K| Z > 4tanh(d;/2) tanh(d;/2)pip; + 5 > p

i=1 j#i i=1

2
<1 (lgl3 +5)
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(iv)Fori # j, K2 = k19519 and ]K§f°) < 6|K|and — K" > 2K (1 - 2tanh (%)).

ZZ ;0 (1O)KUPZPJ+ZP? (ZO)KZ

i=1 j#i
d d
<|K[| Y 4tanh(d;/2) tanh(d;/2)pip; + 6 p}
i=1 j#i i=1

2
<151 (lgli3 +6).
and
(K@, p) > K (2-2 gl — lgl3)

(v) For i, j, ¢ all distinct,

d; d; d
Kl.(jlez) = Hglo)H§_01)H§01)Ki < 8tanh ( 5 ) tanh (2) tanh (;) K,

for all 4, £,
de
K.Y =8 k" K, < 10 tanh <2>
Kl(;lz) 511),{5_01)[(1,], < 10tanh (dgj) K

K12 — /i(.w)/igw)l( < 12 tanh ( L) K, and K1 — k0D g < 96K, So, for P, q € R? of unit norm,

ijj 7 1% Kq

Z Z Z KD pimea =S (SN KU pipeqs + Z K4 pivea:

i Ve

=200\ X KyPpipea+ KD pipia+ KiPpa
i g ee{m}

+ Z Z Kne ) pipeqi + Z Kz(zlf)pf

)
< 1K1 (llgl + 16 g1, +49) :

(vi)

K (@,a)|| = sup BIH, 2V, (0)H, /2p, H, V2V 20, (0)H, /%)

llpll=1

< sup ZZHH) (11) 2_1_22512) klO)pr +ZZ Z (11 (10 K§o1)pkpj
Ipll=1"7" %z i ki i ki jef{ik}

+ZZ“21 ijp i +Zf€22pz
i jFEe

= sup Zzﬁll (11) 2+ZK22]91

lol=1 5" %z

<5 2] < roa )]
o0 (o) oo

since K19 (z, ) = k(O (2, 2) = 0, and k') (z, ) = 4 from the proof of (iii) in Lemma|E.6]
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G Tools
G.1 Probability tools

Lemma G.1 (Bernstein’s inequality ([8], Thm. 6)). Let x1,...,x, € C be i.i.d. bounded random variables

def.

such that Ex; = 0, |a;] < M and Var(z;) £ El|z]?] < o2 for all i’s.
Then for all t > 0 we have

1 & nt? /4
x| = >t <4 S 1
<nz_;x >t> < exp< 02+Mt/(3\/§)> (G.1)

Lemma G.2 (Matrix Bernstein ([10], Theorem 6.1.1)). Let Y1, ...,Y,, € C%:9 be complex random matrices
with
EY; =0, [V <L, o(Y;):=max(|[EY;Y/],|[EY;Y;]) <M

for each index 1 < j < m. Introduce the random matrix
Z = 1 E Y.
=2 Y
J
Then

77Lt2/
P(|Z]| > t) < 2(dy + do)e” FTE73 (G.2)

Lemma G.3 (Vector Bernstein for complex vectors [7]). Let Y1,..., Yy € C be a sequence of independent
random vectors such that E[Y;] = 0, ||Y;||, < K fori=1,..., M and set

M
ot =3 BVl
i=1
Then, forallt > (K + vVK? + 3602) /M,
| M
(=

Lemma G.4 (Hoeffding’s inequality ([9], Lemma G.1)). Let the components of u € C* be drawn i.i.d. from
a symmetric distribution on the complex unit circle or 0, consider a vector w € CF. Then, with probability at
least 1 — p, we have

o2/M +tK/3

Mt2/2
> t> < 2B exp (/>
2

P (|(u, w)] > 1) < de” o (G3)
Lemma G.5. [[0| Theorem 4.1.1] Let the components of u € R* be a Rademacher sequence andletYy,..., Yy €
C4d pe self-adjoint matrices. Set o2 = Zé\il Y;H. Then, fort > 0,
M 2
P < ;um > t) < 2dexp (—202> ) (G.4)

We were only able to find a reference for this result in the case where u is a Rademacher sequence, however,
by the contraction principle (see [6, Theorem 4.4]), a similar statement is true for Steinhaus sequences (we write
only for the case of real symmetric matrices because this is all we require in this paper, but of course, the same
argument extends to complex self-adjoint matrices):
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Corollary G.1. Let the components of u € C* i.i.d. from a symmetric distribution on the complex unit circle
or0andlet By, ..., By € R¥™9 be symmetric matrices. Set 02 = HZ@J\i1 B? H Then, fort > 0,

M 2
P ( ZTWBZ > t> < 4ddexp <—402> . (G.5)

t M t

> uebe > ﬁ> +IP’< ;Im(w)Be > 2) :

By the contraction principle [6, Theorem 4.4],

() (]

where ¢ is a Rademacher sequence, and the same argument applies to the case of Im (u,). Therefore by Lemma
wehave]P’(HZé\ilungH 275) < 4dexp (—%). O

G.2 Linear algebra tools

Proof. By the union bound,

M M
P< ) @(
=1 =1

The following simple lemma will be handy.

Lemma G.6. For 1 < i,j < s, take any scalars a;; € R, vectors Q;j, R;; € R? and square matrices
Aij € Rxd,

1. Let M € R*¥*5% be q matrix formed by blocks :

A11 . Als
M= : S
Agq ... Ag
Then we have
[Mllposk = sup [[M2 o0 < Z [ As;]l (G.6)
T {lblock = j=1

Now, let P € R3¥%$ be a rectangular matrix formed by stacking vectors Qi € R:

Qll le
M=t
Qsl cee st
Then,
T
||M||oo—>block 1I£1a<x Z ||QU||27 ||M ||blockﬁoo = 1<7,<SZ ”QNHQ (G'7)

2. Consider A € R3@HD*3(d+Y) gocomposed as

T T

aiq QA1s Qll 1s

T T

M= g1 N Qggs sl . ss
R11 Rls A11 Als

Rsl Rss Asl Ass



Then,

2 2 2
1M1 < D ad +1Qul” + IR I” + 114517,
i

M [0k < miaX{Z |aij| + 11Qusll; Z [ Rijl + 1| AsjlI1}
J J

Proof. The proof is simple linear algebra.

1. Let z be a vector with ||z]|,;, < 1 decomposed into blocks = = [z1, ..., zs] with z; € R%, we have

1<i<s

S
2
| Ml = max | Aija|| < max Y | Ay]|fl]] < max Y || Ay
j=1 J J

2. Similarly,

1<i<s

S
[MTz|| = max | Qla;| < m?XZ 1Qyill [z ]| < m?XZ 1Qjll
=1 j i

Then, taking « € R® such that ||z|| < 1, we have

1<i<s

S
1M oq = max | Y 2;Qu < m?XZHQv:jH
i=1 i

3. Taking x = [x1,..., 24, X1, ..., X,] € R*@HD) with ||z|| = 1, we have

2 2
S S S
||M.TH2 ZZ Z&ijﬁﬁj—FQ;ng + ZRijlij—FAinj
i=1 \j=1 j=1
2 2
S S S
2 2 2
<D0 Ml [ D e+ 1Qul® )+ (Hlll | Do l1Ri 1 + 11441

i=1 j=1 j=1

2 2 2
<D ad +1Qus 1 + 1Rus|1” + 114

4,3

Now, if ||z ||),x = 1, we have

S S
T
[Mz][gjoq = max D g+ QLX) ||D] Rijey + Ay X;

j=1 j=1

S

S
< max D as| +1Qisll Y IR + A X5

j=1 j=1
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