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Abstract

Sparse regularization is a central technique for
both machine learning (to achieve supervised
features selection or unsupervised mixture
learning) and imaging sciences (to achieve
super-resolution). Existing performance guar-
anties assume a separation of the spikes based
on an ad-hoc (usually Euclidean) minimum
distance condition, which ignores the geome-
try of the problem. In this article, we study
the BLASSO (i.e. the off-the-grid version of
`1 LASSO regularization) and show that the
Fisher-Rao distance is the natural way to en-
sure and quantify support recovery, since it
preserves the invariance of the problem un-
der reparameterization. We prove that under
mild regularity and curvature conditions, sta-
ble support identification is achieved even in
the presence of randomized sub-sampled ob-
servations (which is the case in compressed
sensing or learning scenario). On deconvolu-
tion problems, which are translation invariant,
this generalizes to the multi-dimensional set-
ting existing results of the literature. For
more complex translation-varying problems,
such as Laplace transform inversion, this gives
the first geometry-aware guarantees for sparse
recovery.

1 Introduction

1.1 Sparse Regularization

In this work, we consider the general problem of estimat-
ing an unknown Radon measure µ0 ∈ M(X ) defined
over some metric space X (for instance X = Rd for a
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possibly large d) from a few number m of randomized
linear observations y ∈ Cm, Let Φ :M(X ) 7→ Cm be
defined by

Φµ
def.
=

1√
m

(∫
X
ϕωk(x)dµ(x)

)m
k=1

, (1)

where (ω1, . . . , ωm) are identically and independently
distributed according to some probability distribution
Λ(ω) on ω ∈ Ω, and for ω ∈ Ω, ϕω : X → C is a
continuous function, denoted ϕω ∈ C (X ). We further
assume that ϕω(x) is normalized, that is

Eω[|ϕω(x)|2] = 1, ∀x ∈ X . (2)

The observations are y = Φµ0 + w, where w ∈ Cm
accounts for noise or modelling errors. Some represen-
tative examples of this setting include:

Off-the-grid compressed sensing: off-the-grid com-
pressed sensing, initially introduced in the special
case of 1-D Fourier measurements on X = T = R/Z
by (Tang et al., 2013), corresponds exactly to mea-
surements of the form (1). This is a “continuous”
analogous of the celebrated compressed sensing line
of works (Candès et al., 2006; Donoho, 2006).
Regression using a continuous dictionary: given a
set of m training samples (ωk, yk)mk=1, one wants to
predicts the values yk ∈ R from the features ωk ∈
Ω using a continuous dictionary of functions ω 7→
ϕω(x) (here x ∈ X parameterizes the dictionary), as
yk ≈

∫
X ϕωk(x)dµ(x). A typical example, studied for

instance by Bach (2017) is the case of neural networks
with a single hidden layer made of an infinite number
of neurons, where Ω = X = Rp and one uses ridge
functions of the form ϕω(x) = ψ(〈x, ω〉), for instance
using the ReLu non-linearity ψ(u) = max(u, 0).
Sketching mixtures: the goal is estimate a (hopefully
sparse) mixture of density probability distributions
on some domain T of the form ξ(t) =

∑
i aiξxi(t)

where the (ξx)x∈X is a family of template densities,
and ai > 0,

∑
i ai = 1. Introducing the measure

µ0 =
∑
i aiδxi , this mixture model is conveniently re-

written as ξ(t) =
∫
X ξx(t)dµ0(x). The most studied
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example is the mixture of Gaussians, using (in 1-D for

simplicity, T = R) as ξx(t) ∝ σ−1e−
(t−τ)2

2σ2 where the
parameter space is the mean and standard deviation
x = (τ, σ) ∈ X = R × R+. In a typical machine
learning scenario, one does not have direct access
to ξ but rather to n i.i.d. samples (t1, . . . , tn) ∈ T n
drawn from ξ. Instead of recording this (possibly
huge, specially when T is high dimensional) set of
data, following Gribonval et al. (2017), one computes
“online” a small set y ∈ Cm of m sketches against
sketching functions θω(t), that is, for k = 1, . . . ,m,

yk
def.
=

1

n

n∑
j=1

θωk(tj) ≈
∫
T
θωk(t)ξ(t)dt.

These sketches exactly have the form (1) when defin-
ing the functions ϕω(x)

def.
=
∫
T θω(t)ξx(t)dt. A pop-

ular set of sketching functions, over T = Rd are
Fourier atoms θω(t)

def.
= ei〈ω, t〉, for which ϕ·(x) is the

characteristic functions of ξx, which can generally be
computed in closed form.

BLASSO. In all these applications, and many more,
one is actually interested in recovering a discrete and
s-sparse measure µ0 of the form µ0 =

∑s
i=1 aiδxi where

(xi, ai) ∈ X × C. An increasingly popular method to
estimate such a sparse measure corresponds to solving
a infinite-dimensional analogous of the Lasso regression
problem

min
µ∈M(X )

1

2
‖Φµ− y‖22 + λ|µ|(X ). (Pλ(y))

Following De Castro and Gamboa (2012), we call this
method the BLASSO (for Beurling-Lasso). Here |µ|(X )
is the so-called total variation of the measure µ, and is
defined as

|µ|(X )
def.
= sup {Re〈f, µ〉 ; f ∈ C (X ), ‖f‖∞ 6 1} .

Note that on unbounded X , one needs to impose that
f vanishes at infinity. If X = {xi}i is a finite space,
then this corresponds to the classical finite-dimensional
Lasso problem (Tibshirani, 1996), because |µ|(X ) =

‖a‖1
def.
=
∑
i |ai| where ai = µ({xi}). Similarly, if X is

possibly infinite but µ =
∑
i aiδxi , one also has that

|µ|(X ) = ‖a‖1.

Previous Works. The BLASSO problem (Pλ(y))
was initially proposed by De Castro and Gamboa
(2012), see also Bredies and Pikkarainen (2013). The
first sharp analysis of the solution of this problem is
provided by Candès and Fernandez-Granda (2014) in
the case of Fourier measurement on Td. They show
that if the spikes are separated enough, then µ0 is the

unique solution of (Pλ(y)) when w = 0 and λ → 0.
Robustness to noise under this separation condition
is addressed in (Candès and Fernandez-Granda, 2013;
Fernandez-Granda, 2013; Azais et al., 2015). A re-
fined stability results is detailed by Duval and Peyré
(2015) which shows that conditions based on minimum
separation imply support stability, which means that
when ‖w‖ and ‖w‖ /λ are small enough, then the so-
lution of (Pλ(y)) has the same number of Diracs as
µ0, and that both the amplitudes and positions of the
spikes converges smoothly as w → 0. These initial
works have been extended by Tang et al. (2013) to the
case of randomized compressive measurements of the
form (1), when using Fourier sketching functions ϕω.
In all these results, the separation condition are given
for the Euclidean cases, which is an ad-hoc choice which
does not take into account the geometry of the prob-
lem, and gives vastly sub-optimal theories for spatially
varying operators (such as data-dependent kernels in
supervised learning, Gaussian mixture estimation and
Laplace transform in imaging, see Section 1.2).

While this is not the topic of the present paper, note
that for positive spikes, the separation condition is in
some cases not needed, see for instance (Schiebinger
et al., 2015; Denoyelle et al., 2017). It is important
to note that efficient algorithms have been developed
to solve (Pλ(y)), among which SDP relaxations for
Fourier measurements (Candès and Fernandez-Granda,
2013) and Frank-Wolfe (also known as conditional gra-
dient) schemes (Bredies and Pikkarainen, 2013; Boyd
et al., 2017). Note also that while we focus here on
variational convex approaches, alternative methods ex-
ist, in particular greedy algorithms (Gribonval et al.,
2017) and (for Fourier measurements) Prony-type ap-
proaches (Schmidt, 1986; Roy and Kailath, 1989). To
the best of our knowledge, their theoretical analysis in
the presence of noise is more involved, see however (Liao
and Fannjiang, 2016) for an analysis of robustness to
noise when a minimum separation holds.

1.2 The Fisher information metric

The empirial covariance operator is defined as
K̂(x, x′)

def.
= 1

m

∑
i ϕωi(x)ϕωi(x

′) and the determinis-
tic limit as m→ +∞ is denoted K with

K(x, x′)
def.
=

∫
Ω

ϕω(x)ϕω(x′)dΛ(ω). (3)

Note that many covariance kernels can be written under
the form (3). By Bochner’s theorem, this includes all
translation-invariant kernels, for which possible features
are ϕω(x) = eiω>x. The associated metric tensor is

Hx
def.
= ∇x∇x′K(x, x) ∈ Cd×d. (4)
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Throughout, we assume that Hx is positive definite
for all x ∈ X . Then, H naturally induces a distance
between points in our parameter space X . Given a
piecewise smooth curve γ : [0, 1]→ X , the length `H[γ]

of γ is defined by `H[γ]
def.
=
∫ 1

0

√
〈Hγ(t)γ′(t), γ′(t)〉dt.

Given two points x, x′ ∈ X , the distance from x to x′,
induced by H is dH(x, x′)

def.
= infγ∈F `H[γ] where F is

the set of all piecewise smooth paths γ : [0, 1] → X
with γ(0) = x and γ(1) = x′.

The metric H is closely linked to the Fisher information
matrix (Fisher, 1925) associated with Φ: This is clear
when ϕω are real-valued functions, since f(x, ω)

def.
=

|ϕω(x)|2 can be interpreted as a probability density
function for the random variable ω conditional on pa-
rameter x, and the metric Hx is equal (up to rescaling)
to its Fisher information matrix, since∫

∇ (log f(x, ω))∇ (log f(x, ω))
>
f(x, ω)dΛ(ω)

= 4 Eω[∇ϕω(x)∇ϕω(x)>] = 4Hx.

The distance dH is called the “Fisher-Rao” geodesic
distance (Rao, 1945) and is used extensively in infor-
mation geometry for estimation and learning problems
on parametric families of distributions (Amari and Na-
gaoka, 2007). The Fisher-Rao is the unique Riemannian
metric on a statistical manifold (Cencov, 2000) and it
is invariant to reparameterization, which matches the
invariance of the BLASSO problem (Pλ(y)) to repa-
rameterization of the space X . Although dH has been
used in conjunction with kernel methods (see for in-
stance Burges (1999)), to the best of our knowledge, it
is the first time this metric is put forward to analyze
the performance of off-the-grid sparse recovery prob-
lems. In the complex setting, we refer to the notion of
the Fubini–Study metric instead (Facchi et al., 2010).

1.2.1 Examples

We detail some popular learning and imaging examples.

The Jackson kernel One of the first seminal re-
sult of super-resolution with sparse regularization was
given by Candès and Fernandez-Granda (2014) for
this kernel, which corresponds to discrete Fourier mea-
surements on the torus. We give a multi-dimensional
generalization of this result here. Let fc ∈ N,
X ∈ Td, Ω =

{
ω ∈ Zd ; ‖ω‖∞ 6 fc

}
. Let ϕω(x)

def.
=

ei2πω>x and Λ(ω) ∝
∏d
j=1 g(ωj) where g(j) =

1
fc

∑min(j+fc,fc)
k=max(j−fc,−fc)(1−|k/fc|)(1−|(j − k)/fc|). Note

that this corresponds to sampling discrete Fourier fre-
quencies. Then, the associated kernel is the Jackson
kernel K(x, x′) =

∏d
i=1 κ(xi − x′i), where κ(x)

def.
=

sinc4
fc/2+1(x) where sincs(x)

def.
= s−1 sin(πsx)/ sin(πx),

which has a constant metric tensor Hx = CfcId and
dH(x, x′) =

√
Cfc ‖x− x′‖2 is a scaled Euclidean met-

ric (quotiented by the action of translation modulo 1
on Td), where Cfc = −κ′′(0) = π2fc(fc+4)

3 .

The Gaussian kernel Let Σ ∈ Rd×d be a posi-
tive semidefinite matrix, X ⊆ Rd and Ω = Rd. Let
ϕω(x) = eiω>x and Λ(ω) = N (0,Σ−1), the centered
Gaussian distribution with covariance Σ−1. This can be
interpreted as sampling continuous Fourier frequencies.
Then, the associated kernel isK(x, x′) = e−

1
2‖x−x′‖2Σ−1

where ‖x‖Σ =
√
x>Σx, with constant metric Hx =

Σ−1, and dH(x, x′) = ‖x− x′‖Σ−1 . In Section 3, we
also detail how to exploit this kernel for Gaussian Mix-
ture Model (GMM) estimation with the BLASSO.

The Laplace transform Let ᾱ = (αj) ∈ Rd+, X ⊆
(0,+∞)d and Ω = Rd+. A (sampled) Laplace transform

is defined by setting ϕω(x) =
∏d
i=1

√
2(xi+αi)

αi
e−〈x, ω〉

and Λ(ω) =
∏d
j=1(2αj)e

−〈2ᾱ, ω〉. Then, K(x, x′) =∏d
i=1 κ(xi + αi, x

′
i + αi) where κ(a, b) = 2

√
ab

a+b ,
with metric Hx as the diagonal matrix with diag-
onal

(
(2(xi + αi))

−2
)d
i=1

and distance dH(x, x′) =√∑
i

∣∣∣log
(
xi+αi
x′i+αi

)∣∣∣2. We remark that this kernel, asso-

ciated to the Laplace transform (which should not be
confused with the translation-invariant Laplace kernel
exp(−‖x− x′‖)) appears in some microscopy imaging
technique, see for instance Boulanger et al. (2014).
Unlike the previous examples, it is not translation-
invariant, and therefore the metric Hx is not constant.
Our results show that the corresponding Fisher metric
is the natural way to impose the separation condition
in super-resolution.

1.3 Contributions.

Our main contribution is Theorem 1, which states that
if the sought after spikes positions X0 are sufficiently
separated with respect to the Fisher distance dH, then
the solution to (Pλ(y)) is support stable (that is, the
solution of the BLASSO is formed of exactly s Diracs)
provided that the number of random noisy measure-
ments m is, up to log factors and under the assumption
of random signs of the amplitudes a0, linear in s, and
the noise level ‖w‖ is less than 1/s. In the case of trans-
lation invariant kernels, this generalizes existing results
to a large class of multi-dimensional kernels, and also
provides for the first time a quantitative bounds on
the impact of the noise and sub-sampling on the spikes
positions and amplitudes errors. For non-translation
kernels, this provides for the first time a meaningful
support recovery guarantee, a typical example being
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the Laplace kernel (see Section 1.2).

2 Key concepts

Notation for derivatives. Given f ∈ C∞(X ), by
interpreting the rth derivative as a multilinear map:
∇rf : (Cd)r → C, so given Q def.

= {q`}r`=1 ∈ (Cd)r,

∇rf [Q] =
∑

i1,··· ,ir

∂i1 · · · ∂irf(x)q1,i1 · · · qr,ir .

and we define the rth normalized derivative of f as

Dr [f ] (x)[Q]
def.
= ∇rf(x)[{H−

1
2

x qi}ri=1]

with norm ‖Dr [f ] (x)‖ def.
= sup∀`,‖q`‖61 |Dr [f ] (x)[Q]|.

For i, j ∈ {0, 1, 2}, let K(ij)(x, x′) be a “bi”-multilinear
map, defined for Q ∈ (Cd)i and V ∈ (Cd)j as

[Q]K(ij)(x, x′)[V ]
def.
= E[Di [ϕω] (x)[Q]Dj [ϕω] (x′)[V ]]

and
∥∥K(ij)(x, x′)

∥∥ def.
= supQ,V

∥∥[Q]K(ij)(x, x′)[V ]
∥∥

where the supremum is defined over all Q def.
= {q`}i`=1,

V
def.
= {v`}j`=1 with ‖q`‖ 6 1, ‖v`‖ 6 1. Note that

D2 [f ] (x) and K(02)(x, x′) can also be interpreted as
a matrix in Cd×d, and we have the normalization
K(02)(x, x) = −Id for all x.

2.1 Admissible kernel and separation

In previous studies on the recovery properties of
(Pλ(y)) (Candès and Fernandez-Granda, 2014; Bhaskar
et al., 2013; Bendory et al., 2016; Duval and Peyré,
2015; Fernandez-Granda, 2016), recovery bounds are
attained in the context of K being admissible and a
separation condition on the underlying positions {xj}j .
Namely, given X = {xj}j , that mini 6=j dH(xi, xj) is
sufficiently large with respect to the decay properties
of K. For example, in the case where Φ corresponds
to Fourier sampling on a grid, up to frequency fc, this
separation condition is minj 6=` ‖xj − x`‖2 & 1/fc. In
fact, if sign(aj) can take arbitrary values in {+1,−1},
this separation condition is a necessary to ensure exact
recovery for the BLASSO (Tang, 2015).

Following the aforementioned works, we introduce the
notion of an admissible kernel.

Definition 1 A kernel K will be said admissible with
respect to K def.

= {rnear,∆, εi, Bij , smax}, where 0 <
rnear < ∆/4 is a neighborhood size, ε0 ∈ (0, 1), ε2 ∈
(0, r−2

near) are respectively a distance to 1 and a cur-
vature, ∆ > 0 is a minimal separation, Bij > 0 for
i, j = 0, . . . , 2 are some constants and smax ∈ N∗ is a
maximal sparsity level, if

1. Uniform bounds: For (i, j) ∈ {(0, 0), (1, 0)},
supx,x′∈X ‖K(ij)(x, x′)‖ 6 Bij ; for
(i, j) ∈ {(0, 2), (1, 1), (1, 2)} and all x, x′

such that dH(x, x′) 6 rnear or dH(x, x′) >
∆/4, ‖K(ij)(x, x′)‖ 6 Bij; and finally,
supx∈X

∥∥K(22)(x, x)
∥∥ 6 B22.

2. Neighborhood of each point: For all x ∈
X , K(x, x) = 1 and for all x, x′ ∈ X with
dH(x, x′) 6 rnear, Re

(
K(02)(x, x′)

)
4 −ε2Id and∥∥Im

(
K(02)(x, x′)

)∥∥ 6 cε2, where c
def.
= 1

2

√
2−ε2r2

near
ε2r2

near

and for dH(x, x′) > rnear, |K(x, x′)| 6 1− ε0.
3. Separation: For dH(x, x′) > ∆/4, for all i, j ∈
{0, . . . , 2} with i + j 6 3, ‖K(ij)(x, x′)‖ 6 h

smax
,

where h def.
= mini∈{0,2}

(
εi

32B1i+32 ,
5ε2

16B12+24

)
.

Additionally, there exists CH > 0 such that for
dH(x, x0) 6 rnear:

∥∥∥Id−H
− 1

2
x0 H

1
2
x

∥∥∥ 6 CHdH(x, x0).

We also denote dH(X,X0) =
√∑

i dH(xi, x0,i)2 and
B

def.
=
∑
i+j63Bij and ε def.

= min{ε0, ε2}.

Intuitively, these three conditions express the following
facts: 1) the kernel and its derivatives are uniformly
bounded, 2) near x = x′, the kernel has negative cur-
vature, and otherwise it is strictly less than 1, and 3)
for x and x′ sufficiently separated, the kernel and all
its derivatives have a small value.

2.2 Almost bounded random features

Ideally, we would like our features and its derivatives to
be uniformly bounded for all ω. However this may not
be the case: think of eiω

>x where the support of the
distribution Λ is not bounded. Hence our results will be
dependent on the probability that the derivatives are
greater than some value T decays sufficiently quickly
as T increases. In the following, for r ∈ {0, 1, 2, 3},
Lr(ω)

def.
= supx∈X ‖Dr [ϕω] (x)‖ , and let Fr be such

that Pω (Lr(ω) > t) 6 Fr(t).

2.3 Key assumptions

Our main result will be valid under the following as-
sumptions.

I. On the domain and limit kernel Let
X be a compact domain with radius RX

def.
=

supx,x′∈X dH(x, x′). Assume the kernel is admissible
wrt K def.

= {rnear,∆, εi, Bij , smax}.

II. Assumption on the underlying signal For
s 6 smax, let a0 ∈ Cs and let X0

def.
= (x0,j)

s
j=0 be such

that dH(x0,i, x0,j) > ∆ for i 6= j. The underlying
measure is assumed to be µ0 =

∑s
j=1 a0,jδx0,j

.
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III. Assumption on the sampling complexity
For ρ > 0, suppose that m ∈ N and {L̄i}3i=0 ∈ R4

+

are chosen such that

3∑
j=0

Fj(L̄j) 6
ρ

m
, and

3
max
j=0
{L̄2

j

3∑
i=0

Fi(L̄i) + 2

∫ ∞
L̄j

tFj(t)dt} 6
ε

m
,

(5)

and either one of the following hold:

m & C · s · log
(
Nd/ρ

)
log (s/ρ) , (6)

or m & C · s3/2 · log
(
Nd/ρ

)
, (7)

where C def.
= ε−2(L̄2

2B11 +L̄2
1B22 +(B0 +B2)L̄2

01), N def.
=

L3dRX (rnearε)
−1 and Lr = maxri=1 L̄i.

Remark 1 Our main theorem presents support sta-
bility guarantees under the sampling complexity rate
(6) if sign(a0) = (a0,i/ |a0,i|)si=1 forms a Steinhaus se-
quence, that is, iid uniformly distributed on the complex
unit circle. This assumption has been used before in
compressed sensing (Candès and Romberg, 2007; Tang
et al., 2013) to achieve optimal complexity (see also
Foucart and Rauhut (2013), Chap. 14). As noted in
previous works, this random signs assumption is likely
to be a proof artefact, however achieving optimal com-
plexity without it may require more involved arguments
(Candes and Plan, 2011). When the signs are arbitrary,
we prove our results under (7). Although this s3/2 scal-
ing is still sub-optimal in s, we remark it improves upon
the previous theoretical rate of s2 (up to log factors)
(Li and Chi, 2017).

Remark 2 The assumption on the choice of L̄r en-
sures that with high probability, Dr [ϕω] (x) is uniformly
bounded up to r = 3. In general, {L̄r} depend on m,
through (5). However, in all our examples: either a)
supx∈X ‖Dr [ϕω] (x)‖ are already uniformly bounded, in
which case L̄i can be chosen independently of ρ and m
(for instance this is the case for the Jackson kernel); or
b) the Fr(t) are exponentially decaying, in which case
we can show that L̄r = O(log(m/ρ)p) for some p > 0,
which only incurs additional logarithmic terms on the
bounds (6) and (7). This is the case for the Gaussian
or Laplace transform kernel.

3 Main result

Our main theorem below states quantitative exact sup-
port recovery bounds under a minimum separation
condition according to dH.

Theorem 1 Let ρ > 0, suppose that K is ad-

missible, and that a0, X0, m and L̄i satisfy
the assumptions of Section 2.3. Let Dλ0,c0

def.
=

{(λ,w) ∈ R+ × Cm ; λ 6 λ0, ‖w‖ 6 c0λ} where c0 ∼
min

(
ε0
L̄0
, ε2
L̄2

)
and λ0 ∼ D/s with

D
def.
= amin

(
rnear

√
s, ε

√
s

L2
2‖a‖

, ε
CH(B+L2

2)

)
(8)

where a = min{|a0,i|2 , |a0,i|−2}. Suppose that either
sign(a0) is a Steinhaus sequence and m satisfies (6) or
sign(a0) is an arbitrary sign sequence and m satisfies
(7). Then, with probability at least 1− ρ,

(i) for all v def.
= (λ,w) ∈ Dλ0,c0 , (Pλ(y)) has a unique

solution which consists of exactly s spikes. Moreover,
up to a permutation of indices, the solution can be
written as

∑s
i=1 a

v
i δxvi .

(ii) The mapping v ∈ Dλ0,c0 7→ (av, Xv) is C 1 and we
have the error bound

‖av − a0‖+ dH(Xv, X0) 6
√
s(λ+‖w‖)

mini|a0,i| (9)

We detail below the values relating to the sampling
complexity corresponding to each of the examples de-
tailed in Section 1.2.1. The corresponding proofs can
be found in Section F of the appendix.

Discrete Fourier sampling The Fejer kernel of or-
der fc > 128 is admissible with ∆ = O(

√
d 4
√
smax),

rnear = 1/(8
√

2), ε0 = 0.00097, ε2 = 0.941, B01 =
O(d), B11 = B02 = B12 = O(1) and B22 = O(d).
Moreover, L̄r = O(dr/2). Hence, up to logarithmic
terms, Thm. 1 is applicable with m = O(sd3) when
the random signs assumption holds, and m = O(s

3
2 d3)

in the general case, with guaranteed support stability
when λ = O(s−1d−2), ‖w‖ = O(s−1d−3). Note that
our choice of ∆ imposes that ‖xi − xj‖2 &

√
ds

1/4
max/fc

whereas the previous result of Candès and Fernandez-
Granda (2014) requires ‖xi − xj‖∞ & Cd/fc with no
dependency in smax, however, their proof would imply
that the constant Cd grows exponentially in d. Since
we are interested in having a general theory in arbi-
trary dimension, we have opted to present a polynomial
dependency on smax.

Continuous Gaussian Fourier sampling In the
appendix we prove that the kernel is admissible with
∆ = O

(√
log smax

)
, rnear = 1/

√
2, ε0 = 1− e− 1

4 , ε2 =

e−
1
4 /2, Bij = O(1) for i + j 6 3, B22 = O(d) and

L̄r =

(
d+ log

(
dm
ρ

)2
) r

2

(as mentioned before, the

dependence in m only incurs additional logarithmic
factors in (6) and (7)). Hence, up to log factors, the
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sample complexity and noise level for the application
of Thm. 1 is the same as for the Fejér kernel.

Laplace sampling The associated kernel is ad-
missible with ∆ = O (d+ log(dsmax)), rnear = 0.2,
ε0 = 0.005, ε2 = 1.52, Bij = O(1) for i + j 6 3 and

B22 = O(d). Define R̄X =
(

1 + RX
mini αi

)d
(where we

recall that RX is the radius of X ). Assuming for
simplicity that all αj are distinct, we can set L̄r =

R̄X (RX + ‖α‖∞)r
(√

d+ maxi
1
αi

log
(
dβimR̄X
ραi

))r
Hence, choosing αi ∼ d, we have that R̄X = (1) and up
to log factors, (6) is O(sd7) and (7) is O(s3/2d7), and
support stability is guaranteed when λ = O(s−1d−3)
and ‖w‖ = O(s−1d−5). Note that despite the
stronger dependency on d, for practical applications
(microscopy), one is typically only interested in the
low dimensional setting of d = 2, 3.

Gaussian mixture learning Consider n datapoints
z1, . . . , zn ∈ Rd drawn iid from a mixture of Gaus-
sians

∑
i a0,iN (x0,i,Σ) with means x0,i ∈ X ⊂ Rd and

known covariance Σ, where X is bounded. Consider
the following procedure:

draw ωj iid fromN (0,Σ−1/d) (the 1/d normalization
is necessary to avoid an exponential dependency in d
later on)
compute the generalized moments y =

1√
m

∑n
i=1(ei〈ωj ,xi〉)mj=1

solve the BLASSO with features ϕω(x) =

ei〈ω,x〉e−
1
2‖ω‖

2
Σ , to obtain a distribution µ̃

Then, as described in the introduction, we can interpret
y as noisy Fourier measurements of µ0 =

∑
i a0,iδx0,i

in
the space of means X , where the "noise" w corresponds
to using the empirical average over the zi instead of a
true integration. It is easily bounded with probability

1−ρ by ‖w‖ 6 O
(√

log(1/ρ)
n

)
, by a simple application

of Hoeffding’s inequality (Gribonval et al., 2017).

The associated kernel is the Gaussian kernel with co-
variance (2 + d)Σ and hence, our result states that, if
‖xi − xj‖Σ−1 >

√
d log s, and the number of measure-

ments and sample complexity satisfy, up to logarithmic
terms, m = O

(
s

3
2 d3
)
, n = O

(
s2d6/mini |a0,i|2

)
and

λ0 = O
(

mini|a0,i|√
sd2‖a0‖2

)
, then, with probability 1− ρ on

both samples zj and frequencies ωj , the distribution
µ̃ is formed of exactly s Diracs, and their positions
and weights converge to the means and weights of the
GMM. Let us give a few remarks on this result.

On model selection. Besides convexity (with respect to
the distribution of means) of the BLASSO, which is

not the case of classical likelihood- or moments-based
methods for learning GMM, the most striking feature
of our approach is probably the support stability: with
a sample complexity that is polynomial in s and d, the
BLASSO yields exactly the right number of components
for the GMM. Despite the huge literature on model
selection for GMM, to our knowledge, this is one of
the only result which is non-asymptotic in sample com-
plexity, as opposed to many approaches (Roeder and
Wasserman, 1997; Huang et al., 2013) which guarantee
that the selected number of components approaches
the correct one when the number of samples grows to
infinity.

On separation condition. Our separation condition of√
d log s is, up to the logarithmic term, similar to the√
d found in the seminal work by Dasgupta (1999). This

was later improved by different methods (Dasgupta and
Schulman, 2000; Vempala and Wang, 2004), until the
most recent results on the topic (Moitra and Valianty,
2010) show that it is possible to learn a GMM with no
separation condition, provided the sample complexity is
exponential in s, which is a necessary condition (Moitra
and Valianty, 2010). As mentioned in the introduction,
similar results exist for the BLASSO: Denoyelle et al.
(2017) showed that in one dimension, one can identify
s positive spikes with no separation, provided the noise
level is exponentially small with s. Hence learning
GMM with the BLASSO and no separation condition
may be feasible, which we leave for future work, however
we note that the multi-dimensional case is still largely
an open problem (Poon and Peyré, 2017).

On known covariance. An important path for future
work is to handle arbitrary covariance. When the com-
ponents all share the same mean and have diagonal co-
variance, the Fisher metric is related, up to a change of
variables, to the Laplace transform kernel case treated
earlier. When both means and covariance vary, in one
dimension, the Fisher metric is related to the Poincaré
half-plane metric (Costa et al., 2015). In the general
case, it does not have a closed-form expression. We
leave the treatment of these cases for future work.

4 Sketch of proof

4.1 Background on dual certificates

Our approach to establishing that the solutions to
(Pλ(y)) are support stable is via the study of the asso-
ciated dual solutions in accordance to the framework
introduced in Duval and Peyré (2015). We first recall
some of their key ideas. In order to study the support
stability properties of (Pλ(y)) in the small noise regime,
we consider the limit problem as λ→ 0 and ‖w‖ → 0,
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that is

min
µ∈M(X )

|µ|(X ) subject to Φµ = y. (P0(y))

The dual of (Pλ(y)) and (P0(y)) are

min
p

{
‖y/λ− p‖22 ; ‖Φ∗p‖∞ 6 1

}
(Dλ(y))

max
p
{〈y, p〉 ; ‖Φ∗p‖∞ 6 1} . (D0(y))

Any solution µλ of (Pλ(y)) to related to the (unique)
solution pλ of (Dλ(y)) by −pλ = 1

λ (Φµλ − y) and
writing ηλ

def.
= Φ∗pλ, 〈ηλ, µλ〉 = |µλ| (X ). Note that

Supp(µλ) ⊆ {x ∈ X ; |Φ∗pλ(x)| = 1}, so ηλ “certifies”
the support of µλ and is often referred to as a dual
certificate. Furthermore, by defining the minimal norm
certificate η0 as η0

def.
= Φ∗p0 where

p0 = argmin {‖p‖2 ; p is a solution to (D0(y))} (10)

one can show that pλ converges as λ → 0 to p0 and
hence ηλ converges to η0

def.
= Φ∗p0 in L∞. When λ

and ‖w‖ are sufficiently small, solutions to (Pλ(y)) are
support stable provided that η0 (called the minimal
norm certificate) is nondegenerate, that is η0(xi) =

sign(ai) for i = 1, . . . , s and ∇2 |η0|2 (xi) is negative
definite. This is proven to be an almost sharp condition
for support stability, since Duval and Peyré (2017)
provided explicit examples where |η0(x)| = 1 for some
x 6∈ {xi}i implies that (Pλ(y)) recovers more than s
spikes under arbitrarily small noise.

Pre-certificates In practice, the minimal norm cer-
tificate η0 is hard to compute and analyse due to the
nonlinear `∞ constraint in (10). So, one often intro-
duces a proxy which can be computed in closed form
by solving an linear system associated to the following
least squares problem: ηX,a

def.
= Φ∗pX,a where

pX,a
def.
= argmin{‖p‖2 ; (Φ∗p)(xi) = sign(ai),

∇(Φ∗p)(xi) = 0}.
(11)

Note that if ηX,a satisfies ‖ηX,a‖∞ 6 1, then ηX,a = η0.

Computation of ηX,a For x ∈ X , let ϕ(x)
def.
=

1√
m

(ϕωk(x))
m
k=1. For X = {xi}si=1 we define ΓX :

Cs(d+1) → Cm as ΓX([α, β])
def.
=

∑s
i=1 αiϕ(xi) +

∇ϕ(xi)
>βi where ∇ϕ ∈ Cm×d. Then, the minimizer

of (11) is pX,a = Γ∗,†X
(

sign(a)
0sd

)
. Furthermore, when ΓX

is full rank, we can write η̂X,a(x)
def.
=
∑
i α̂iK̂(xi, x) +

〈β̂i, ∇1K̂(xi, x)〉, where α̂i ∈ C, β̂i ∈ Cd are such
that

(
α̂
β̂

)
= (Γ∗XΓX)−1

(
sign(a)

0sd

)
, and the hat nota-

tion refers to the fact that we are using sub-sampled

measurements. The limit precertificate is defined as
ηX,a(x)

def.
=
∑
i αiK(xi, x) + 〈βi, ∇1K(xi, x)〉, where(

α
β

)
= (E[Γ∗XΓX ])−1

(
sign(a)

0sd

)
.

The key to establishing our recovery results is to show
that η̂X,a is nondegenerate. In this paper, we will
actually prove a stronger notion of nondegeneracy:

Definition 2 Let a ∈ Cs, X = {xi}si=1 ∈ X s for some
s ∈ N, and ε0, ε2, r > 0. We say that η ∈ C 1(X ) is
(ε0, ε2)-nondegenerate with respect to a, X and r if for
all i, η(xi) = sign(ai), ∇η(xi) = 0 and

∀x ∈ X far, |η(x)| 6 1− ε0

∀x ∈ X near
j , |η(x)| 6 1− ε2dH(x, xj)

2

where X near
j

def.
= {x ∈ X ; dH(xi, x) 6 r} and X far def.

=

X \
⋃s
j=1 X near

j .

Our proof proceeds in three steps:

1. Show that under admissibility of the kernel and
sufficient separation, the limit precertificate ηX0,a0

is non-degenerate (see Theorem 2).
2. Show that this non-degeneracy transfers to η̂X,a

when m is large enough, a is close to a0 and X is
close to X0. This is the purpose of Section 4.3.

3. As discussed, nondegeneracy of η̂X0,a0
automatically

guarantees support stability when (λ,w) ∈ Dλ0,c0

for λ0 and c0 sufficiently small. To conclude we
simply need to quantify λ0 and c0. This is the pur-
pose of Section 4.4. In particular, given (λ,w), we
construct a candidate solution by means of (a quan-
titative version of) the Implicit Function Theorem,
and show that it is indeed a true solution using the
previous results.

4.2 Non-degeneracy of the limit certificate

Our first result shows that the “limit precertificate"
ηX0,a0

is nondegenerate:

Theorem 2 Assume the kernel is admissible wrt K
(see Definition 1). Then, for s 6 smax, for all a0 ∈ Cs
and X = {xj}sj=1 ∈ X s such that dH(xi, xj) > ∆, the
function ηX0,a0

is ( ε02 ,
ε2
2 )-nondegenerate with respect

to a0, X and rnear.

The proof of this result can be found in Appendix B
and is a generalization of the arguments of Candès
and Fernandez-Granda (2014) (see also Bendory et al.
(2016)). We remark that unlike previous works which
focus on translation invariant kernels, the Fisher metric
provides a natural way to understand the required
separation between the points in X0 and thus open
up the possibility of analysing more complex problems
such as Laplace transform inversion.
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4.3 The randomized setting

For the remainder of this paper, we consider solutions of
(Pλ(y)) given y = Φµa0,X0

+ w for some fixed a0 ∈ Cs
and X0 ∈ X s. The following result shows that η̂X is
nondegenerate for all X close to X0:

Theorem 3 Let ρ > 0. Under the assumptions of
Section 2.3, and assuming that either m satisfies (6)
and sign(a0) is a Steinhaus sequence, or m satisfies
(7) and sign(a0) is an arbitrary sign sequence, with
probability at least 1 − ρ: for all a ∈ Cs and X ∈ X s
such that

dH(X,X0) . min

(
rnear,

ε

CH
√
smax(B,L̄12L̄r)

)
, (12)

and ‖a− a0‖ . ε
B mini |a0,i|, ΓX is full rank and η̂X,a

is ( ε08 ,
ε2
8 )-nondegenerate with respect to a, X and rnear.

The proof of this result is given in Appendix D. We
simply make a remark on the proof here: We first prove
that η̂X0,a0

is nondegenerate by bounding variations
between ηX0,a0

and η̂X0,a0
. The proof of this fact is a

generalization of the arguments in Tang et al. (2013)
to the multidimensional and general operator case. We
then exploit the fact the ϕ is smooth and hence, Γ∗XΓX
satisfies certain Lipschitz properties with respect to X,
to bound the local variation between η̂X,a and η̂X0,a0

.

4.4 Quantitative support recovery

This final section concludes the proof of Theorem 1 by
quantifying the regions for λ and ‖w‖ on which support
stability is guaranteed.

Solution of the noisy BLASSO. Let ΦX : Cs →
Cm be defined by ΦXa =

∑s
i=1 aiϕ(xi). Recall that

µa,X =
∑
i aiδxi is a solution to the BLASSO with

y = Φµa0,X0 + w if and only if η̂λ = Φ∗pλ, with pλ =
1
λ (y − ΦXa), satisfies ‖η̂λ‖∞ 6 1 and η̂(xj) = sign(aj).
In that case, pλ is the unique solution to the dual of
the BLASSO. Moreover, if |η̂λ(x)| < 1 for x 6= xi and
ΦX is full rank (which follows by Theorem 3), then
µa,X is also the unique solution of the primal.

Construction of a solution Following Denoyelle
et al. (2017), we define the function f : R2s × X s ×
R+ × R2m → R2s × Csd by

f(u, v)
def.
=

Re (Φ∗X(z))
Im (Φ∗X(z))

(Φ
(1)
X )∗(z)

+ λ

Re (sign(a))
Im (sign(a))

0sd


where u def.

= (ar, ai, X), v def.
= (λ,wr, wi), a

def.
= ar + iai,

w
def.
= wr + iwi and z

def.
= (ΦXa − ΦX0a0 − w). Ob-

serve that having f(u, v) = 0 ensures the existence of

η̂λ defined as above that satisfies η̂λ(xi) = sign(a0,i)
and ∇η̂λ(xi) = 0. We will use it to construct a non-
degenerate solution to Dλ(y) for small λ and ‖w‖. Now,
f is continuously differentiable, with explicit forms of
∂vf(u, v) and ∂uf(u, v) given in (E.2) and (E.3) in the
appendix, and in particular, ∂uf(u0, 0) is invertible and
f(u0, 0) = 0. Hence, by the Implicit Function Theo-
rem, there exists a neighbourhood V of 0 in R×R2m, a
neighbourhood U of u0 in R2s×X s and a differentiable
function g : V → U such that for all (u, v) ∈ U × V ,
f(u, v) = 0 if and only if u = g(v). So, to establish sup-
port stability for (Pλ(y)), we simply need to estimate
the size of the neighbourhood V on which g is well
defined, and given (λ,w) ∈ V , for (a, Z) = g((λ,w)),
to check that the associated certificate η̂λ,w

def.
= Φ∗pλ,w

with pλ,w
def.
= 1

λ (ΦXa− ΦX0
a0 − w) is nondegenerate.

Indeed, one can prove (see Theorem E.1)
that with probability at least 1 − ρ, V
contains the ball Br(0) with radius r ∼
1√
s

min
(

min{rnear,(CHB)−1}
mini|a0,i| , 1

L̄01L̄12(1+‖a0‖)

)
and

given any v ∈ Br(0), (a,X) = g(v) indeed satisfy the
error bound (9).

Checking that the candidate solution is a true
solution It remains to check that g(λ,w) defines
a valid certificate and is non-degenerate (and hence,∑
i aiδxi is the unique solution to (Pλ(y))) provided

that λ,w satisfy (8). Given (λ,w) ∈ V , let (a,X) =

g((λ,w)). Define η̂λ,w
def.
= −1

λ Φ∗(ΦXa − ΦX0
a0 − w)

and one can show (see Lemma E.1) that

η̂λ,w = η̂X,a + ϕ(·)>ΠX
w

λ
+

1

λ
ϕ(·)>ΠXΦX0a0

where ΠX is the orthogonal projection onto Im(ΓX)⊥.
Note that since we have the error bound (9), our
choice of λ and ‖w‖ ensures that (12) holds and
hence, Theorem 3 implies that η̂X,a is nondegen-
erate with probability at least 1 − ρ. To con-
clude, it is suffices to bound the two remaining
terms so that η̂λ,w remains non-degenerate. Un-
der Ē, ‖Dr [ϕω] (·)‖ 6 L̄r, and for any z ∈ Cm,∥∥Dr [ϕ>z] ·∥∥ 6 L̄r ‖z‖. Therefore, since ΠX is a projec-
tion, we have

∥∥Dr [ϕ(·)>ΠX
w
λ

]∥∥ . εr when ‖w‖ /λ .
εr/L̄r. Finally, since ΦX0a0 =

∑s
j=1 a0,jϕ(x0,j), by

Taylor expansion of ϕ(x0,j) around xj and applying
ΠX (see Lemma E.2 for this computation), we have

‖ΠXΦX0
a0‖ 6 L̄2 ‖a0‖∞ dH(X,X0)2.

Since g satisfies (9) our choice of λ0 = O(s−1)
ensures that we can upper bound this by

L̄2 ‖a0‖∞
s(λ+‖w‖2/λ)

min|a0,i|2
. ε and consequently,

1
λ

∥∥Dr [ϕ(·)>ΠXΦX0
a0

]∥∥ . εr.
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