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1 Pseudocode

This section introduces algorithms involved in the pro-
posed CCP layer discussed in Section 4 of the paper.
Specifically, Algorithm 1 illustrates the cluster step
(Figure 2, left in the main paper), whereas Algorithm 2
details the filter step (Figure 2, center in the main
paper)

2 Computational Complexity

Given an input affinity matrix AKm and the de-
sired number of output clusters |Km+1|, the cluster
step has complexity equivalent to O(|Km|2|Km+1| +
|Km+1|2|Km+1|), while the filter step has complex-
ity O(|Km|2|Km+1|). This analysis has been done
without taking into account various possible opti-
mizations, regarding for example multiplications in
presence of sparse matrices. Moreover, the fastest
schema consists in constructing the cluster hierarchy
before the training process begins, then caching all
intermediate AKm and −→N (m+1). This way, the com-
putational complexity for both steps is reduced to
O(|Km+1| × L × dIN × dOUT ). Such complexity con-
stitutes an improvement w.r.t. the one deriving from
Chebyshev [1] O(DAVG × |Am| × L × dIN × dOUT )
(where we indicate with DAVG the average degree in
Am), since DAVG × |Am| ≈ |E| > |Am| > |Km+1|. Dif-
ferently, the same conclusion cannot be easily achieved
comparing our solution to GCN [2], since its cost is
O(|Am| × dIN × (dOUT +DAVG)).

3 Model Analysis

Impact of the input graph. Regarding our pro-
posal, how important is the quality and the integrity of
the underlying graph? In terms of capabilities generali-
sation, what happens if we keep the signals unchanged
and train our architecture on a random graph? Aiming
to answer such questions, we conduct experiments re-

placing the designed shared graph (e.g. for CIFAR-10
the graph representing the 8-connectivity between pix-
els) with a random one, guaranteed to be connected and
characterised by the same number of nodes and edges.
As shown in Tab. 1, we experience a considerable drop
in performance when employing random connections
between nodes (especially in the euclidean domain),
consistently with what observed in [1]. Trivially, for
graph convolutional neural networks, the compliance
of the input affinity matrix with the domain-specific
intrinsic bonds constitutes a crucial term for extract-
ing meaningful features and, consequently, obtaining
good level of accuracy on new and unseen data. In
this respect, two ways may be investigated to improve
such kind of approaches. On the one hand, drawing
from the design principles underpinning kernel methods,
many efforts may be put in designing better affinity
measures between nodes. On the other hand, future
works should move in a different direction, in which
the affinity matrix is learned directly from the data, in
a semi-supervised or completely unsupervised manner.

Adaptation to heterogeneous graphs. Despite
our model being originally conceived to assess a slightly
different problem, we conjecture the possibility to ex-
tend it for heterogeneous graph classification, in which
each example features a different affinity matrix. In-
deed, a potential solution would be replacing the U
matrix in Eq. 7 (in the main paper) with the output
of an auxiliary graph convolutional module, responsi-
ble for cluster memberships computation (given node
features and the affinity matrix). As a consequence,

Table 1: Impact of different graph’s definitions on
CIFAR-10 and Cross Subject NTU RGB+D, in terms
of test set accuracy.

Graph CIFAR NTU-CS
Random 69.0 76.6
Hand-crafted 84.4 80.1
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Algorithm 1 Cluster Step
Input: affinity matrix AKm , number of output clusters |Km+1|
Output: affinity matrix AKm+1

if init then
U (m+1) ← random(|Km|, |Km+1|)

K(m+1) ← rowsoftmax(U (m+1))
AKm+1 ← K(m+1)T(AKm − IN �AKm)K(m+1)

D ← AKm+11|Km+1|

AKm+1 ← D−
1
2AKm+1D−

1
2

Return: AKm+1

Algorithm 2 Filter Step

Input: normalized affinity matrix AKm , input feature maps F (m) ∈
R|Km|×dIN , normalized and reduced affinity matrix AKm+1 , number of output
channels dOUT , filter size L
Output:, output feature maps F (m+1) ∈ R|Km+1|×dOUT

if init then
W, b← random(L, dIN , dOUT ), random(COUT )
α, β ← α ∼ N (µ = 1, σ2

1), β ∼ N (µ = 0, σ2
2)

for k = 1, 2, . . . , |Km+1| do
Given AKm , select top L score points for cluster K(m+1)

k

. φ← (φ(1), φ(2), . . . , φ(L)) ∈ P{1,2...,|Km|}
L

. Rank (V(m)
φ(1) → K

(m+1)
k ) > · · · > Rank (V(m)

φ(L) → K
(m+1)
k )

.
−→
N (l, i)← F (m)

φ(l),i l = 1, 2, . . . , L i = 1, 2, . . . , dIN . where −→N :=
−→
N (m+1)
k

Compute gates’ activations σ : R→ (0, 1) on top scores
. σk,l = σ(α Rank (V(m)

φ(l) → K
(m+1)
k ) + β) l = 1, 2, . . . , L

for j = 1, 2, . . . , dOUT do
F (m+1)
k,j =

∑dIN

i=1
∑L
l=1 Wl,i,j (σk,l ·

−→
N (l, i)) + bj

Return: F (m+1)

affinities would completely depend on learned vertex
representations.

4 Limitations

Since the computational complexity is approximately
quadratic with the number of nodes, it is difficult to
scale our method to very large graphs (e.g. > 105

nodes), in terms of both time complexity and mem-
ory footprint. For this reason, future works should
investigate strategies that avoid expensive computa-
tions implied by manipulations of the affinity matrix.
Further, several experiments did not show a consider-
able benefit (in terms of accuracy improvements) from
learning the cluster hierarchy through the use of infor-
mation coming from the task supervision. This aspect,

which may be due to some sort of lack in the current
implementation, lead the authors to two observations.
Firstly, since labels seem not to encourage preferable
directions in the clusters’ loss landscape, we observed
slight improvements in a fully end-to-end training, with
respect to a two-step optimization of the cluster hier-
archy (LK) and the feature extractors (L0). Secondly,
future studies should look into this matter in greater
depth, trying to understand for which kind of prob-
lems a learnable routing on the underlying graph could
provide considerable improvements against traditional
architectures.
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