Exponential Weights on the Hypercube in Polynomial Time

A Supplementary Proofs

A.1 Exp2 Regret Proofs

First, we directly analyze Exp2’s regret for the two
kinds of feedback.

A.1.1 Full Information

Lemma 19. Let Ly(X) = X 'l;. If [nLy(X)] < 1
for allt € [T] and X € {0,1}", the Exp2 algorithm
satisfies for any X :

T T
> opi L= ) LX) < ”Z JLE +
t=1 t=1

Proof. (Adapted from [11] Theorem 1.5) Let Z; =
ZYG{OJ}" w(Y'). We have:

nlog?

S exp(—nLe(Y)uwi(Y)

Ye{0,1}n

=Z Y exp(—nLy(Y))pe(Y)

Ye{0,1}n

Zt+1 =

Since e ™ < 1 — x + 22 for x > —1, we have that
exp(—nLy(Y)) <1 —nL(Y) +n*Li(Y)? (Because we
assume |[nL:(X)| <1). So,

Zi1 < Zy Z (1= nLe(Y) +1°Le(Y)*)pe(Y)
Ye{o,1}n

= Z(1 —np{ Le +n’p/[ L7)
Using the inequality 1+ = < €%,
Ziyr < Zyexp(—np/ Li+n°p{ L7)

Hence, we have:
T T
Zryr < Zyexp(— Y _np/ L+ > _n’p L})

For any X € {0,1}",  wp41(X) =
exp(— 3/, nLi(X)). Since w(T +1)(X) < Zry, and
Z1 = 2", we have:
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Taking the logarithm on both sides manipulating this
inequality, we get:
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Theorem 3. In the full information setting, if n =

log 2
nT 7

Ezxp2 attains the regret bound:

E[Rr] < 2n%/%\/Tlog?2

Proof. Using L;(X) = X "l; and applying expectation
with respect to the randomness of the player to defi-
nition of regret, we get:

ERr]=> > p(X)Li(X —X*g%nl}nZLt (X*)

t=1 Xe{0,1}"
T

T
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Applying Lemma 19, we get E[Rr] < 772?:1 pf L? +
nlog2/n. Since |L(X)| < n for all X € {0,1}", we
get Zthl pl L < Tn’.

nlog?2

E[Rr] < nTn? +

Optimizing over the choice of 7, we get the regret is
3/2 : _ /log2
bounded by 2n3/2,/TTog?2 if we choose 1 = .

To apply Lemma 19, |nL(X)| < 1 for all ¢t € [T] and
X €{0,1}". Since |L4(X)| < n, we have n < 1/n. O

A.1.2 Bandit

Lemma 20. Let Et(X) = XTit, where [, =
PIX X[ 1. If nLy(X)| < 1 for all t € [T] and
X € {0,1}", the Exp2 algorithm with uniform explo-
ration satisfies for any X

T T T
D oal L= Li(X) <nE Z
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Proof. We have that:
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Since the algorithm essentially runs Exp2 using the
losses Li(X) and |nL;(X)| < 1, we can apply Lemma

19:
T T nlog T
> g/ L= Li(X) < (1—9)( +nY p/L})
t=1 t=1 N t=1
T T
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Apply expectation with respect to X;. Using the fact
that E[l;] = ; and u" Ly — Ly(X) < 2n:

T T
D gL LX) <
t=1 t=1

’Y(Z p'Li— Z Li(X

nlog?2

<nE Z L+ + 2ynT
O
Theorem 4. In the bandit setting, if n = ;‘:1%3, and

v = 4n?n, Ezp2 with uniform exploration on {0,1}"
attains the regret bound:

E[Rr] < 6n%/Tlog?2

Proof. Applying expectation with respect to the ran-
domness of the player to the definition of regret, we
get:

Z Li(X,) — min LX)
X*e{0,1}»

T
g - n%nl}" Z LX)

Applying Lemma 20

E[R7] < nE[Y ¢/ Li] +

t=1

We follow the proof technique of [6] Theorem 4. We
have that:

o Li= )

Xe{0,1}n
— i, P,
=1 XX, P PP X XL,
= (X, L)*X, P71 X,
<n?X,P7'X, =n®Tr(P7 X, X,")

nlog?2
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Taking expectation, we get Elg L?] <
n?Tr(P;,'EIX, X,"]) = n?Tr(P; ' P;) = n®. Hence,

nlog 2

E[Rr] < T + + 2ynT

However, in order to apply Lemma 20, we need that
[nX "l;| < 1. We have that

X Tl =n|(X, )X TPIX <1

T
nlog 2 ~
1= (=, +nEY p/ L7))

t=1

As |X ] < n and |X/X| < n, we get
| X TP X | < ol XX P < || P7Y| < 1
The matrix P, = (1—+)%; +vX,. The smallest eigen-
value of X, is 1/4[8]. So P, = }I, and P! < 21,.
We should have that @ < 1. Substituting v = 4n%n
in the regret inequality, we get:

log 2
E[Ry] < nndT + 8ynT + ——2=

nlog2

< 9T +

Optimizing over the choice of 7, we get E[Rr] <
n?/9TTog 2 when 1 = |/ %2 O

A.2 Lower Bounds
A.2.1 Full Information Lower bound

In the game between player and adversary, the play-
ers strategy is to pick some probability distribution
pt € A({0,1}™) for t = 1...T. The adversary picks a
density ¢; over loss vectors | € [-1,1]" fort =1...T.
So player picks X; ~ p; and adversary picks l; ~ g;.
The min max expected regret is:

inf bup Ei g, Ex,~op, Zl X — manl X

P1---PT ¢ .. —

Let Ex,~p, = %¢.

inf sup Ei g | Zl Ty — mle X]

P1---PT q;.. =1 =1

Theorem 12. For any learner there exists an adver-
sary producing Lo losses such that the expected regret
in the full information setting is:

E[RﬂzQ(nﬁ)

Proof. We choose ¢; to be the density such that [;; is
a Rademacher random variable, ie, I; ; = +1 w.p. 1/2
and l;; = —1wp1l/2forallt =1...T and ¢ = [n].
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For our choice of ¢;, we have E;, [l z;] = 0. So,

T T
. T o T
pind, Bl e —min ) 17 X]
T

= inf E,[- H}}nthT X]

pP1...PT =1

T
= Elt[m)e(mx;ltTX]

Simplifying this, we get:

Here Y is a Rademacher random vector of length T
and z € {0,1}. We have that

T
S
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o oyl vi<o
Y Ve
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T

otherwise

So
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Using Khintchine’s inequality, we have positive con-

stants A and B such that:
T 1/2
<n (30

T 1/2 T
A(ZHIQ) <Ey|d Y
t=1

t=1 t=1

Ey

1
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Hence, the regret is lower bounded by Q(nvT). O

A.2.2 Bandit Lower bound

Theorem 13. For any learner there exists an adver-
sary producing Lso losses such that the expected regret
in the Bandit setting is:

E[Ry] = Q (n3/2\/T) .

Proof. We consider 2™ stochastic adversaries indexed
by X € {0,1}™. Adversary X draws losses as follows:

lwpi
+ Wp%—FE X, =0
; —lwps—e€
ti =
’ 1wp + —
AT A
—lwps+te

Let Iy = [X| 11, XJ y,..., X, I;]. We consider deter-
ministic algorithms, ie X is a deterministic function of
lt—1. So, the only the adversary’s randomness remains.
The obtained result can be extended to randomized al-
gorithms via application of Fubini’s Theorem. Let Fx
denote the expectation conditioned on adversary X.
When playing against adversary X, the vector X is
the best action in expectation. The expected regret
when playing against adversary X.

T T
Ex[Rr] = Ex lz 1N X, — min A X*]
t=1 t=1

T T
> Ex lZlZXt_ZZtTX]

t=1 t=1

Zle 1(X; . = X;)/T is the empirical mean of playing
X;. Let J; be a Bernoulli random drawn according to
this mean. Hence,

Ex[Rr] > 27> (1 —Px(J; = X))
i=1

Taking the average over adversaries:

E[Rr] = 2% ZEX [Rr]

> 2eT§n: (1 - 2% > Px(J; = XQ)
i=1 X

Let X% be the vector X with the i’th bit flipped.
Using Pinsker’s inequality, we have that:

1
Px(J; = Xi) < Pxe:i(J; = Xi) + \/QKL(PXW IPx)

Taking the summation, and using the concavity of
square root:

1 1 11
%;PX(Ji =X;) < 5T \/22,1;KL(PX®%'||PX)



Sudeep Raja Putta, Abhishek Shetty

The sequence of observed losses It € {—n,...,+n}7
determines the empirical distribution of plays. Let PL
be the law of I when playing against adversary X. So,
using the chain rule of Kullback Leibler divergence:

KL(Pyei|Px) < KL(PLe,
:KL(]P’X@I PX)

T ~
+30 S B ()KL B () [P ()

t= 2lt—1
= KL(Bo||B'0)1(X1,; = X;)

Y Y R OKLE,

t=T0 10X, =X,

PY)

B )

Here, B;, B’[Fl are sums of at most n Bernoulli ran-
dom variables such that their means agree on all co-
ordinates except i. Using Lemma 24 from [2], we get
that:

16¢€>

KL(B;,_ B}, ) <

Substituting this back into the previous expression, we
get:

ngﬂai (ilztfl)

Py) < 16€2 Z Z

=1 X=X
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Taking the summation, we have:

Py) < 8iT

2% > KL(Pxe:
X

Substituting this in the regret inequality:

- 1 42T
E[R7] > 2eT (1 -5 en

=1

1 T
=2eT'n ( — 2¢ )
2 n

Optimizing over ¢, we get that E[Ry] = Q(n®/2VT)

A.3 {-1,4+1}"™ Hypercube Case

Lemma 21. FExzp2 on {—1,+1}" with losses l; is
equivalent to Exp2 on {0,1}™ with losses 21y while us-
ing the map 2X; — 1 to play on {—1,+1}".

Proof. Consider the update equation for Exp2 on
{_17_,’_1}n

exp(— 7723 1ZTl)
Zwe{ 1,41} exp(— 7727 W)

Z € {—1,+41}" can be mapped to a X € {0,1}" using
the bijective map X = (Z + 1)/2. So:

pe+1(2) =

exp(—n 30, (2X —1)"i,)
Zye{m}n exp(—n Zi=1(2y -1)7L;)

exp(—n Yr_y X' (2l))
 Syveqoaye (-0, YT(2))

This is equivalent to updating the Exp2 on {0,1}"
with the loss vector 21;. O

pe+1(2) =

Theorem 14. Ezp2 on {—1,+1}"™ using the sequence
of losses l; is equivalent to PolyEzp on {0,1}"™ using
the sequence of losses 2l,. Moreover, the regret of Exp2
on {—1,1}" will equal the regret of PolyExp using the
losses 2l;.

Proof. After sampling Xy, we play Z; = 2X; — 1. So
Pr(X; = X) = Pr(Z; = 2X — 1). In full information,
2l; = 2I; and in the bandit case E[?lt] = 2l;. Since
21, is used to update the algorithm, by Lemma 21 we
have that Pr(X;y; = X) = Pr(Z;41 = 2X —1). By
equivalence of Exp2 to PolyExp, the first statement
follows immediately.

Let Z* = el 1+1}n2t L ZTl; and 2X* = Z* + 1.
The regret of Exp2 on {—1,+1}" is:

T
SNl z-z)=
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