
Exponential Weights on the Hypercube in Polynomial Time

A Supplementary Proofs

A.1 Exp2 Regret Proofs

First, we directly analyze Exp2’s regret for the two
kinds of feedback.

A.1.1 Full Information

Lemma 19. Let Lt(X) = X>lt. If |ηLt(X)| ≤ 1
for all t ∈ [T ] and X ∈ {0, 1}n, the Exp2 algorithm
satisfies for any X:

T∑
t=1

p>t Lt −
T∑
t=1

Lt(X) ≤ η
T∑
t=1

p>t L
2
t +

n log 2

η

Proof. (Adapted from [11] Theorem 1.5) Let Zt =∑
Y ∈{0,1}n wt(Y ). We have:

Zt+1 =
∑

Y ∈{0,1}n
exp(−ηLt(Y ))wt(Y )

= Zt
∑

Y ∈{0,1}n
exp(−ηLt(Y ))pt(Y )

Since e−x ≤ 1 − x + x2 for x ≥ −1, we have that
exp(−ηLt(Y )) ≤ 1− ηLt(Y ) + η2Lt(Y )2 (Because we
assume |ηLt(X)| ≤ 1). So,

Zt+1 ≤ Zt
∑

Y ∈{0,1}n
(1− ηLt(Y ) + η2Lt(Y )2)pt(Y )

= Zt(1− ηp>t Lt + η2p>t L
2
t )

Using the inequality 1 + x ≤ ex,

Zt+1 ≤ Zt exp(−ηp>t Lt + η2p>t L
2
t )

Hence, we have:

ZT+1 ≤ Z1 exp(−
T∑
t=1

ηp>t Lt +

T∑
t=1

η2p>t L
2
t )

For any X ∈ {0, 1}n, wT+1(X) =

exp(−
∑T
t=1 ηLt(X)). Since w(T + 1)(X) ≤ ZT+1 and

Z1 = 2n, we have:

exp(−
T∑
t=1

ηLt(X)) ≤ 2n exp(−
T∑
t=1

ηp>t Lt +

T∑
t=1

η2p>t L
2
t )

Taking the logarithm on both sides manipulating this
inequality, we get:

T∑
t=1

p>t Lt −
T∑
t=1

Lt(X) ≤ η
T∑
t=1

p>t L
2
t +

n log 2

η

Theorem 3. In the full information setting, if η =√
log 2
nT , Exp2 attains the regret bound:

E[RT ] ≤ 2n3/2
√
T log 2

Proof. Using Lt(X) = X>lt and applying expectation
with respect to the randomness of the player to defi-
nition of regret, we get:

E[RT ] =

T∑
t=1

∑
X∈{0,1}n

pt(X)Lt(X)− min
X?∈{0,1}n

T∑
t=1

Lt(X
?)

=

T∑
t=1

p>t Lt − min
X?∈{0,1}n

T∑
t=1

Lt(X
?)

Applying Lemma 19, we get E[RT ] ≤ η
∑T
t=1 p

>
t L

2
t +

n log 2/η. Since |Lt(X)| ≤ n for all X ∈ {0, 1}n, we

get
∑T
t=1 p

>
t L

2
t ≤ Tn2.

E[RT ] ≤ ηTn2 +
n log 2

η

Optimizing over the choice of η, we get the regret is

bounded by 2n3/2
√
T log 2 if we choose η =

√
log 2
nT .

To apply Lemma 19, |ηLt(X)| ≤ 1 for all t ∈ [T ] and
X ∈ {0, 1}n. Since |Lt(X)| ≤ n, we have η ≤ 1/n.

A.1.2 Bandit

Lemma 20. Let L̃t(X) = X> l̃t, where l̃t =
P−1
t XtX

>
t lt. If |ηL̃t(X)| ≤ 1 for all t ∈ [T ] and

X ∈ {0, 1}n, the Exp2 algorithm with uniform explo-
ration satisfies for any X

T∑
t=1

q>t Lt−
T∑
t=1

Lt(X) ≤ ηE[

T∑
t=1

q>t L̃
2
t ]+

n log 2

η
+2γnT

Proof. We have that:

T∑
t=1

q>t L̃t −
T∑
t=1

L̃t(X) = (1− γ)(

T∑
t=1

p>t L̃t −
T∑
t=1

L̃t(X))

+ γ(

T∑
t=1

µ>L̃t −
T∑
t=1

L̃t(X))

Since the algorithm essentially runs Exp2 using the
losses L̃t(X) and |ηL̃t(X)| ≤ 1, we can apply Lemma
19:

T∑
t=1

q>t L̃t −
T∑
t=1

L̃t(X) ≤ (1− γ)(
n log 2

η
+ η

T∑
t=1

p>t L̃
2
t )

+ γ(

T∑
t=1

µ>L̃t −
T∑
t=1

L̃t(X))
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Apply expectation with respect to Xt. Using the fact
that E[l̃t] = lt and µ>Lt − Lt(X) ≤ 2n:

T∑
t=1

q>t Lt −
T∑
t=1

Lt(X) ≤ (1− γ)(
n log 2

η
+ ηE[

T∑
t=1

p>t L̃
2
t ])

+ γ(

T∑
t=1

µ>Lt −
T∑
t=1

Lt(X))

≤ ηE[

T∑
t=1

q>t L̃
2
t ] +

n log 2

η
+ 2γnT

Theorem 4. In the bandit setting, if η =
√

log 2
9n2T and

γ = 4n2η, Exp2 with uniform exploration on {0, 1}n
attains the regret bound:

E[RT ] ≤ 6n2
√
T log 2

Proof. Applying expectation with respect to the ran-
domness of the player to the definition of regret, we
get:

E[RT ] = E[

T∑
t=1

Lt(Xt)− min
X?∈{0,1}n

Lt(X
?)]

=

T∑
t=1

q>t Lt − min
X?∈{0,1}n

T∑
t=1

Lt(X
?)

Applying Lemma 20

E[RT ] ≤ ηE[

T∑
t=1

q>t L̃
2
t ] +

n log 2

η
+ 2γnT

We follow the proof technique of [6] Theorem 4. We
have that:

q>t L̃
2
t =

∑
X∈{0,1}n

qt(X)(X> l̃t)
2

=
∑

X∈{0,1}n
qt(X)(l̃t

>
XX> l̃t)

= l̃t
>
Pt l̃t

= l>t XtX
>
t P
−1
t PtP

−1
t XtX

>
t lt

= (X>t lt)
2X>t P

−1
t Xt

≤ n2X>t P
−1
t Xt = n2Tr(P−1

t XtX
>
t )

Taking expectation, we get E[q>t L̃
2
t ] ≤

n2Tr(P−1
t E[XtX

>
t ]) = n2Tr(P−1

t Pt) = n3. Hence,

E[RT ] ≤ ηn3T +
n log 2

η
+ 2γnT

However, in order to apply Lemma 20, we need that
|ηX> l̃t| ≤ 1. We have that

|ηX> l̃t| = η|(X>t lt)X>P−1
t Xt| ≤ 1

As |X>t lt| ≤ n and |X>t X| ≤ n, we get
ηn|X>P−1

t Xt| ≤ ηn|X>Xt|‖P−1
t ‖ ≤ ηn2‖P−1

t ‖ ≤ 1.
The matrix Pt = (1−γ)Σt+γΣµ. The smallest eigen-
value of Σµ is 1/4[8]. So Pt � γ

4 In and P−1
t � 4

γ In.

We should have that 4n2η
γ ≤ 1. Substituting γ = 4n2η

in the regret inequality, we get:

E[RT ] ≤ ηn3T + 8ηn3T +
n log 2

η

≤ 9ηn3T +
n log 2

η

Optimizing over the choice of η, we get E[RT ] ≤
2n2
√

9T log 2 when η =
√

log 2
9n2T .

A.2 Lower Bounds

A.2.1 Full Information Lower bound

In the game between player and adversary, the play-
ers strategy is to pick some probability distribution
pt ∈ ∆({0, 1}n) for t = 1 . . . T . The adversary picks a
density qt over loss vectors l ∈ [−1, 1]n for t = 1 . . . T .
So player picks Xt ∼ pt and adversary picks lt ∼ qt.
The min max expected regret is:

inf
p1...pT

sup
q1...qt

Elt∼qtEXt∼pt

[
T∑
t=1

l>t Xt −min
X

T∑
t=1

l>t X

]

Let EXt∼pt = xt.

inf
p1...pT

sup
q1...qt

Elt∼qt [
T∑
t=1

l>t xt −min
X

T∑
t=1

l>t X]

Theorem 12. For any learner there exists an adver-
sary producing L∞ losses such that the expected regret
in the full information setting is:

E [RT ] = Ω
(
n
√
T
)
.

Proof. We choose qt to be the density such that lt,i is
a Rademacher random variable, ie, lt,i = +1 w.p. 1/2
and lt,i = −1 w.p 1/2 for all t = 1 . . . T and i = [n].
So,

inf
p1...pT

sup
q1...qt

Elt∼qt

[
T∑
t=1

l>t xt −min
X

T∑
t=1

l>t X

]

≥ inf
p1...pT

Elt

[
T∑
t=1

l>t xt −min
X

T∑
t=1

l>t X

]
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For our choice of qt, we have Elt [l>t xt] = 0. So,

inf
p1...pT

Elt [
T∑
t=1

l>t xt −min
X

T∑
t=1

l>t X]

= inf
p1...pT

Elt [−min
X

T∑
t=1

l>t X]

= Elt [max
X

T∑
t=1

l>t X]

Simplifying this, we get:

Elt [max
X

T∑
t=1

l>t X] = Elt [ max
X1...Xn

T∑
t=1

n∑
i=1

lt,iXi]

= Elt [
n∑
i=1

max
Xi

T∑
t=1

lt,iXi]

=

n∑
i=1

Elt,i [max
Xi

T∑
t=1

lt,iXi]

= nEY [max
x

T∑
t=1

Ytx]

Here Y is a Rademacher random vector of length T
and x ∈ {0, 1}. We have that

max
x

[
T∑
t=1

Ytx

]
=

{
0 If

∑T
t=1 Yt ≤ 0∑T

t=1 Yt otherwise

So

EY

[
max
x

T∑
t=1

Ytx

]
= EY [

T∑
t=1

Yt|
T∑
t=1

Yt > 0]

=
1

2
EY

∣∣∣∣∣
T∑
t=1

Yt

∣∣∣∣∣
Using Khintchine’s inequality, we have positive con-
stants A and B such that:

A

(
T∑
t=1

|1|2
)1/2

≤ EY

∣∣∣∣∣
T∑
t=1

Yt

∣∣∣∣∣ ≤ B
(

T∑
t=1

|1|2
)1/2

Hence, the regret is lower bounded by Ω(n
√
T ).

A.2.2 Bandit Lower bound

Theorem 13. For any learner there exists an adver-
sary producing L∞ losses such that the expected regret
in the Bandit setting is:

E [RT ] = Ω
(
n3/2
√
T
)
.

Proof. We consider 2n stochastic adversaries indexed
by X ∈ {0, 1}n. Adversary X draws losses as follows:

lt,i =



{
+1 w.p 1

2 + ε

−1 w.p 1
2 − ε

if Xi = 0{
+1 w.p 1

2 − ε
−1 w.p 1

2 + ε
if Xi = 1

Let l̃t = [X>1 l1, X
>
2 l2, . . . , X

>
t lt]. We consider deter-

ministic algorithms, ie Xt is a deterministic function of
l̃t−1. So, the only the adversary’s randomness remains.
The obtained result can be extended to randomized al-
gorithms via application of Fubini’s Theorem. Let EX
denote the expectation conditioned on adversary X.
When playing against adversary X, the vector X is
the best action in expectation. The expected regret
when playing against adversary X.

EX [RT ] = EX

[
T∑
t=1

l>t Xt −min
X?

T∑
t=1

l>t X
?

]

≥ EX

[
T∑
t=1

l>t Xt −
T∑
t=1

l>t X

]

= 2ε

n∑
i=1

EX [

T∑
t=1

1(Xi,t 6= Xi)]

= 2εT

n∑
i=1

(
1−

EX [
∑T
t=1 1(Xi,t = Xi)]

T

)
∑T
t=1 1(Xi,t = Xi)/T is the empirical mean of playing

Xi. Let Ji be a Bernoulli random drawn according to
this mean. Hence,

EX [RT ] ≥ 2εT

n∑
i=1

(1− PX(Ji = Xi))

Taking the average over adversaries:

E[RT ] =
1

2n

∑
X

EX [RT ]

≥ 2εT

n∑
i=1

(
1− 1

2n

∑
X

PX(Ji = Xi)

)

Let X⊕i be the vector X with the i’th bit flipped.
Using Pinsker’s inequality, we have that:

PX(Ji = Xi) ≤ PX⊕i(Ji = Xi) +

√
1

2
KL(PX⊕i‖PX)

Taking the summation, and using the concavity of
square root:

1

2n

∑
X

PX(Ji = Xi) ≤
1

2
+

√
1

2

1

2n

∑
X

KL(PX⊕i‖PX)



Sudeep Raja Putta, Abhishek Shetty

The sequence of observed losses l̃T ∈ {−n, . . . ,+n}T
determines the empirical distribution of plays. Let PTX
be the law of l̃T when playing against adversary X. So,
using the chain rule of Kullback Leibler divergence:

KL(PX⊕i‖PX) ≤ KL(PTX⊕i‖PTX)

= KL(P1
X⊕i‖P1

X)

+

T∑
t=2

∑
l̃t−1

Pt−1
X⊕i(l̃t−1)KL(PtX⊕i(·|l̃t−1)‖PtX((·|l̃t−1))

= KL(B0‖B′0)1(X1,i = Xi)

+

t∑
t=T

∑
l̃t−1:Xt,i=Xi

Pt−1
X⊕i(l̃t−1)KL(Bl̃t−1

‖B′ l̃t−1
)

Here, Bl̃t−1
,B′ l̃t−1

are sums of at most n Bernoulli ran-
dom variables such that their means agree on all co-
ordinates except i. Using Lemma 24 from [2], we get
that:

KL(Bl̃t−1
‖B′ l̃t−1

) ≤ 16ε2

n

Substituting this back into the previous expression, we
get:

KL(PX⊕i‖PX) ≤ 16ε2

n

T∑
t=1

∑
l̃1:t−1:Xt,i=Xi

PtX⊕i(l̃1:t−1)

≤ 16ε2

n

T∑
t=1

EX⊕i(1(Xi,t = Xi))

=
16ε2

n
TPX⊕i(Ji = Xi)

Taking the summation, we have:

1

2n

∑
X

KL(PX⊕i‖PX) ≤ 8ε2

n
T

Substituting this in the regret inequality:

E[RT ] ≥ 2εT

n∑
i=1

(
1− 1

2
−
√

4ε2T

n

)

= 2εTn

(
1

2
− 2ε

√
T

n

)

Optimizing over ε, we get that E[RT ] = Ω(n3/2
√
T )

A.3 {−1,+1}n Hypercube Case

Lemma 21. Exp2 on {−1,+1}n with losses lt is
equivalent to Exp2 on {0, 1}n with losses 2lt while us-
ing the map 2Xt − 1 to play on {−1,+1}n.

Proof. Consider the update equation for Exp2 on
{−1,+1}n

pt+1(Z) =
exp(−η

∑t
τ=1 Z

>lτ )∑
W∈{−1,+1}n exp(−η

∑t
τ=1W

>lτ )

Z ∈ {−1,+1}n can be mapped to a X ∈ {0, 1}n using
the bijective map X = (Z + 1)/2. So:

pt+1(Z) =
exp(−η

∑t
τ=1(2X − 1)>lτ )∑

Y ∈{0,1}n exp(−η
∑t
τ=1(2Y − 1)>lτ )

=
exp(−η

∑t
τ=1X

>(2lτ ))∑
Y ∈{0,1}n exp(−η

∑t
τ=1 Y

>(2lτ ))

This is equivalent to updating the Exp2 on {0, 1}n
with the loss vector 2lt.

Theorem 14. Exp2 on {−1,+1}n using the sequence
of losses lt is equivalent to PolyExp on {0, 1}n using
the sequence of losses 2l̃t. Moreover, the regret of Exp2
on {−1, 1}n will equal the regret of PolyExp using the
losses 2l̃t.

Proof. After sampling Xt, we play Zt = 2Xt − 1. So
Pr(Xt = X) = Pr(Zt = 2X − 1). In full information,
2l̃t = 2lt and in the bandit case E[2l̃t] = 2lt. Since
2l̃t is used to update the algorithm, by Lemma 21 we
have that Pr(Xt+1 = X) = Pr(Zt+1 = 2X − 1). By
equivalence of Exp2 to PolyExp, the first statement
follows immediately.

Let Z? = min
Z∈{−1,+1}n

∑T
t=1 Z

>lt and 2X? = Z? + 1.

The regret of Exp2 on {−1,+1}n is:

T∑
t=1

l>t (Zt − Z?) =

T∑
t=1

l>t (2Xt − 1− 2X? + 1)

=

T∑
t=1

(2lt)
>(Xt −X?)


