
Guillaume Rabusseau, Tianyu Li, Doina Precup

Connecting Weighted Automata and Recurrent Neural
Networks through Spectral Learning

(Supplementary Material)
A Proofs

A.1 Proof of Theorem 2

Theorem. Any function that can be computed by a vv-WFA with n states can be computed by a linear 2-RNN
with n hidden units. Conversely, any function that can be computed by a linear 2-RNN with n hidden units on
sequences of one-hot vectors (i.e. canonical basis vectors) can be computed by a WFA with n states.

More precisely, the WFA A = (α, {Aσ}σ∈Σ,Ω) with n states and the linear 2-RNN M = (α,A,Ω) with n
hidden units, where A ∈ Rn×Σ×n is defined by A:,σ,: = Aσ for all σ ∈ Σ, are such that fA(σ1σ2 · · ·σk) =
fM (x1,x2, · · · ,xk) for all sequences of input symbols σ1, · · · , σk ∈ Σ, where for each i ∈ [k] the input vector
xi ∈ RΣ is the one-hot encoding of the symbol σi.

Proof. We first show by induction on k that, for any sequence σ1 · · ·σk ∈ Σ∗, the hidden state hk computed by
M (see Eq. (1)) on the corresponding one-hot encoded sequence x1, · · · ,xk ∈ Rd satisfies hk = (Aσ1 · · ·Aσk )>α.
The case k = 0 is immediate. Suppose the result true for sequences of length up to k. One can check easily check
that A •2 xi = Aσi for any index i. Using the induction hypothesis it then follows that

hk+1 = A •1 hk •2 xk+1 = Aσk+1 •1 hk = (Aσk+1)>hk
= (Aσk+1)>(Aσ1 · · ·Aσk )>α = (Aσ1 · · ·Aσk+1)>α.

To conclude, we thus have

fM (x1,x2, · · · ,xk) = Ωhk = Ω(Aσ1 · · ·Aσk )>α = fA(σ1σ2 · · ·σk).

A.2 Proof of Theorem 3

Theorem. Let f : (Rd)∗ → Rp be a function computed by a minimal linear 2-RNN with n hidden units and let L
be an integer such that rank((H(2L)

f )
〈〈L,L+1〉〉

) = n.

Then, for any P ∈ RdL×n and S ∈ Rn×dLp such that (H(2L)
f )

〈〈L,L+1〉〉
= PS, the linear 2-RNN M = (α,A,Ω)

defined by

α = (S†)>(H(L)
f )

〈〈L+1〉〉
, A = ((H(2L+1)

f )
〈〈L,1,L+1〉〉

)×1 P† ×3 (S†)>, Ω> = P†(H(L)
f )

〈〈L,1〉〉

is a minimal linear 2-RNN computing f .

Proof. Let P ∈ RdL×n and S ∈ Rn×dLp be such that (H(2L)
f )

〈〈L,L+1〉〉
= PS Define the tensors

P∗ = JA? •1 α?,A?, · · · ,A?︸ ︷︷ ︸
L−1 times

, InK ∈ Rd×···×d×n and S∗ = JIn,A?, · · · ,A?︸ ︷︷ ︸
L times

,Ω?K ∈ Rn×d×···×d×p

of order L+ 1 and L+ 2 respectively, and let P? = (P∗)〈〈l,1〉〉 ∈ Rdl×n and S = (S∗)〈〈1,L+1〉〉 ∈ Rn×dlp. Using the
identity H(j)

f = JA •1 α,A, · · · ,A︸ ︷︷ ︸
j−1 times

,Ω>K for any j, one can easily check the following identities:

(H(2L)
f )

〈〈L,L+1〉〉
= P?S?, (H(2L+1)

f )
〈〈L,1,L+1〉〉

= A? ×1 P? ×3 (S?)>,

(H(L)
f )

〈〈L,1〉〉
= P?(Ω?)>, (H(L)

f )
〈〈L+1〉〉

= (S?)>α.



Connecting Weighted Automata and Recurrent Neural Networks through Spectral Learning

Let M = P†P?. We will show that α = M−>α?, A = A? ×1 M×3 M−> and Ω = MΩ?, which will entail the
results since linear 2-RNN are invariant under change of basis (see Section 2). First observe that M−1 = S?S†.
Indeed, we have P†P?S?S† = P†(H(2l)

f )
〈〈l,l+1〉〉

S† = P†PSS† = I where we used the fact that P (resp. S) is of
full column rank (resp. row rank) for the last equality.

The following derivations then follow from basic tensor algebra:

α = (S†)>(H(L)
f )

〈〈L+1〉〉
= (S†)>(S?)>α = (S?S†)> = M−>α?,

A = ((H(2L+1)
f )

〈〈L,1,L+1〉〉
)×1 P† ×3 (S†)>

= (A? ×1 P? ×3 (S?)>)×1 P† ×3 (S†)>

= A? ×1 P†P? ×3 (S?S†)> = A? ×1 M×3 M−>,

Ω> = P†(H(L)
f )

〈〈L,1〉〉
= P†P?(Ω?)> = MΩ?,

which concludes the proof.

A.3 Proof of Theorem 4

Theorem. Let (h0,A,Ω) be a minimal linear 2-RNN with n hidden units computing a function f : (Rd)∗ → Rp,
and let L be an integer7 such that rank((H(2L)

f )
〈〈L,L+1〉〉

) = n.

Suppose we have access to 3 datasets Dl = {((x(i)
1 ,x(i)

2 , · · · ,x(i)
l ),y(i))}Nl

i=1 ⊂ (Rd)l × Rp for l ∈ {L, 2L, 2L+ 1}
where the entries of each x(i)

j are drawn independently from the standard normal distribution and where each
y(i) = f(x(i)

1 ,x(i)
2 , · · · ,x(i)

l ).

Then, whenever Nl ≥ dl for each l ∈ {L, 2L, 2L + 1}, the linear 2-RNN M returned by Algorithm 1 with the
least-squares method satisfies fM = f with probability one.

Proof. We just need to show for each l ∈ {L, 2L, 2L+ 1} that, under the hypothesis of the Theorem, the Hankel
tensors Ĥ

(l)
computed in line 4 of Algorithm 1 are equal to the true Hankel tensors H(l) with probability one.

Recall that these tensors are computed by solving the least-squares problem

Ĥ
(l)

= arg min
T∈Rd×···×d×p

‖X(T )〈〈l,1〉〉 −Y‖2F

where X ∈ RNl×dl is the matrix with rows x(i)
1 ⊗ x(i)

2 ⊗ · · · ⊗ x(i)
l for each i ∈ [Nl]. Since X(H(l))〈〈l,1〉〉 = Y and

since the solution of the least-squares problem is unique as soon as X is of full column rank, we just need to
show that this is the case with probability one when the entries of the vectors x(i)

j are drawn at random from a
standard normal distribution. The result will then directly follow by applying Theorem 3.

We will show that the set

S = {(x(i)
1 , · · · ,x(i)

l ) | i ∈ [Nl], dim(span({x(i)
1 ⊗ x(i)

2 ⊗ · · · ⊗ x(i)
l })) < dl}

has Lebesgue measure 0 in ((Rd)l)Nl ' RdlNl as soon as Nl ≥ dl, which will imply that it has probability 0 under
any continuous probability, hence the result. For any S = {(x(i)

1 , · · · ,x(i)
l )}Nl

i=1, we denote by XS ∈ RNl×dl the
matrix with rows x(i)

1 ⊗ x(i)
2 ⊗ · · · ⊗ x(i)

l . One can easily check that S ∈ S if and only if XS is of rank strictly
less than dl, which is equivalent to the determinant of X>SXS being equal to 0. Since this determinant is a
polynomial in the entries of the vectors x(i)

j , S is an algebraic subvariety of RdlNl . It is then easy to check that
the polynomial det(X>SXS) is not uniformly 0 when Nl ≥ dl. Indeed, it suffices to choose the vectors x(i)

j such
7Note that the theorem can be adapted if such an integer L does not exists (see supplementary material).



Guillaume Rabusseau, Tianyu Li, Doina Precup

that the family (x(i)
1 ⊗ x(i)

2 ⊗ · · · ⊗ x(i)
l )Nl

n=1 spans the whole space Rdl (which is possible since we can choose
arbitrarily any of the Nl ≥ dl elements of this family), hence the result. In conclusion, S is a proper algebraic
subvariety of RdlNl and hence has Lebesgue measure zero [14, Section 2.6.5].

B Lifting the simplifying assumption

We now show how all our results still hold when there does not exist an L such that rank((H(2L)
f )

〈〈L,L+1〉〉
) = n.

Recall that this simplifying assumption followed from assuming that the sets P = S = [d]L form a complete
basis for the function f̃ : [d]∗ → Rp defined by f̃(i1i2 · · · ik) = f(ei1 , ei2 , · · · , eik ). We first show that there
always exists an integer L such that P = S = ∪i≤L[d]i forms a complete basis for f̃ . Let M = (α?,A?,Ω?) be a
linear 2-RNN with n hidden units computing f (i.e. such that fM = f). It follows from Theorem 2 and from
the discussion at the beginning of Section 4.1 that there exists a vv-WFA computing f̃ and it is easy to check
that rank(f̃) = n. This implies rank((Hf )(1)) = n by Theorem 1. Since P = S = ∪i≤l[d]i converges to [d]∗ as l
grows to infinity, there exists an L such that the finite sub-block H̃f ∈ RP×S×p of Hf ∈ R[d]∗×[d]∗×p satisfies
rank((H̃f )(1)) = n, i.e. such that P = S = ∪i≤L[d]i forms a complete basis for f̃ .

Now consider the finite sub-blocks H̃+
f ∈ RP×[d]×S×p and H̃−f ∈ RP×p of Hf defined by

(H̃+
f )u,i,v,: = f̃(uiv), and(H̃−f )u,: = f(u)

for any u ∈ P = S and any i ∈ [d]. One can check that Theorem 3 holds by replacing mutatis mutandi
(H(2L)

f )
〈〈L,L+1〉〉

by (H̃f )(1), (H(2L+1)
f )

〈〈L,1,L+1〉〉
by H̃+

f , (H(L)
f )

〈〈L,1〉〉
by H̃−f and (H(L)

f )
〈〈L+1〉〉

by vec(H̃−f ).

To conclude, it suffices to observe that both H̃+
f and H̃−f can be constructed from the entries for the tensors H(l)

for 1 ≤ l ≤ 2L+ 1, which can be recovered (or estimated in the noisy setting) using the techniques described in
Section 4.2 (corresponding to lines 2-12 of Algorithm 1).

We thus showed that linear 2-RNNs can be provably learned even when there does not exist an L such that
rank((H(2L)

f )
〈〈L,L+1〉〉

) = n. In this setting, one needs to estimate enough of the tensors H(l) to reconstruct a

complete sub-block H̃f of the Hankel tensor H (along with the corresponding tensor H̃+
f and matrix H̃−f ) and

recover the linear 2-RNN by applying Theorem 3. In addition, one needs to have access to sufficiently large
datasets Dl for each l ∈ [2L+ 1] rather than only the three datasets mentioned in Theorem 4. However the data
requirement remains the same in the case where we assume that each of the datasets Dl is constructed from a
unique training dataset S = {((x(i)

1 ,x(i)
2 , · · · ,x(i)

T ), (y(i)
1 ,y(i)

2 , · · · ,y(i)
T ))}Ni=1 of input/output sequences.

C Leveraging the tensor train structure for computational efficiency

The overall learning algorithm using the TIHT recovery method in TT format is summarized in Algorithm 2.
The key ingredients to improve the complexity of Algorithm 1 are (i) to estimate the gradient using mini-batches
of data and (ii) to directly use the TT format to represent and perform operations on the tensors H(l) and the
tensors X (l) ∈ RM×d×···×d defined by

X i,:,··· ,: = x(i)
1 ⊗ x(i)

2 ⊗ · · · ⊗ x(i)
l for i ∈ [M ] (3)

where M is the size of a mini-batch of training data (H(l) is of TT-rank R by design and it can easily be shown
that X (l) is of TT-rank at most M , cf. Eq. (4)). Then, all the operations of the algorithm can be expressed in
terms of these tensors and performed efficiently in TT format. More precisely, the products and sums needed
to compute the gradient update on line 6 can be performed in O

(
(R+M)2(ld+ p) + (R+M)3d

)
. After the

gradient update, the tensor H(l) has TT-rank at most (M +R) but can be efficiently projected back to a tensor
of TT-rank R using the tensor train rounding operation [33] in O

(
(R+M)3(ld+ p)

)
(which is the operation

dominating the complexity of the whole algorithm). The subsequent operations on line 10 can be performed
efficiently in the TT format in O

(
R3d+R2p

)
(using the method described in [26] to compute the pseudo-inverses

of the matrices P and S). The overall complexity of Algorithm 2 is thus in O
(
T (R+M)3(Ld+ p)

)
where T is

the number of iterations of the inner loop.



Connecting Weighted Automata and Recurrent Neural Networks through Spectral Learning

Algorithm 2 2RNN-SL-TT: Spectral Learning of linear 2-RNNs in tensor train format
Input: Three training datasets DL, D2L, D2L+1 with input sequences of length L, 2L and 2L+ 1 respectively,

rank R, learning rate γ and mini-batch size M .
1: for l ∈ {L, 2L, 2L+ 1} do
2: Initialize all cores of the rank R TT-decomposition H(l) = JG(l)

1 , · · · ,G(l)
l+1K ∈ Rd×···×d×p to 0.

// Note that all the updates of H(l) stated below are in effect applied directly to the core tensors G(l)
k , i.e.

the tensor H(l) is never explicitely constructed.
3: repeat
4: Subsample a minibatch

{((x(i)
1 ,x(i)

2 , · · · ,x(i)
l ),y(i))}Mi=1 ⊂ (Rd)l × Rp

of size M from Dl.
5: Compute the rank M TT-decomposition of the tensor X = X (l) (defined in Eq. (3)), which is given by

X = JIM ,A1, · · · ,AlK where the cores are defined by (Ak)i,:,j = δijx(i)
k and (Al)i,: = x(i)

k (4)

for all 1 ≤ k < l, i, j ∈ [M ], where δ is the Kroencker symbol.
6: Perform the gradient update using efficient addition and product operations in TT format (see [33]):

(H(l))〈〈l,1〉〉 = (H(l))〈〈l,1〉〉 + γ(X )>〈〈1,l〉〉(Y− (X )〈〈1,l〉〉(H
(l))〈〈l,1〉〉)

7: Project the Hankel tensor H(l) (which is now of rank at most R+M) back onto the manifold of tensor
of TT-rank R using the TT rounding operation (see again [33]):

H(l) = TT-rounding(H(l), R)

8: until convergence
9: Let P = (JG(2L)

1 , · · · ,G(2L)
L , IRK)〈〈L,1〉〉 and S = (JIR,G(2L)

L+1, · · · ,G
(2L)
2L+1K)〈〈1,L+1〉〉 (observe that

(H(2L))〈〈L,L+1〉〉 = PS is a rank R factorization).
10: Return the linear 2-RNN (h0,A,Ω) where

α = (S†)>(H(L)
f )

〈〈L+1〉〉

A = ((H(2L+1)
f )

〈〈L,1,L+1〉〉
)×1 P† ×3 (S†)>

Ω> = P†(H(L)
f )

〈〈L,1〉〉

by performing efficient computations in TT format for the products [33] and pseudo-inverses (see e.g. [26]).



Guillaume Rabusseau, Tianyu Li, Doina Precup

D Real Data Experiment on Wind Speed Prediction

Besides the synthetic data experiments we showed in the paper, we have also conducted experiments on real data.
The data that we use for the these experiments is from TUDelft8. Specifically, we use the data from Rijnhaven
station as described in [30], which proposed a regression automata model and performed various experiments
on the dataset we mentioned above. The data contains wind speed and related information at the Rijnhaven
station from 2013-04-22 at 14:55:00 to 2018-10-20 at 11:40:00 and was collected every five minutes. To compare
to the results in [30], we strictly followed the data preprocessing procedure described in the paper. We use the
data from 2013-04-23 to 2015-10-12 as training data and the rest as our testing data. The paper uses SAX as a
preprocessing method to discretize the data. However, as there is no need to discretize data for our algorithm,
we did not perform this procedure. For our method, we set the length L = 3 and we use the general algorithm
described in Appendix B. We calculate hourly averages of the wind speed, and predict one/three/six hour(s)
ahead, as in [30]. For our methods we use a linear 2-RNN with 10 states. Averages over 5 runs of this experiment
for one-hour-ahead, three-hour-ahead, six-hour-ahead prediction error can be found in Table 1, 2 and 3. The
results for RA, RNN and persistence are taken directly from [30]. We see that while TIHT+SGD performs slightly
worse than ARIMA and RA for one-hour-ahead prediction, it outperforms all other methods for three-hours and
six-hours ahead predictions (and the superiority w.r.t. other methods increases as the prediction horizon gets
longer).

Table 1: One-hour-ahead Speed Prediction Performance Comparisons

Method TIHT TIHT+SGD Regression
Automata ARIMA RNN Persistence

RMSE 0.573 0.519 0.500 0.496 0.606 0.508
MAPE 21.35 18.79 18.58 18.74 24.48 18.61
MAE 0.412 0.376 0.363 0.361 0.471 0.367

Table 2: Three-hour-ahead Speed Prediction Performance Comparisons

Method TIHT TIHT+SGD Regression
Automata ARIMA RNN Persistence

RMSE 0.868 0.854 0.872 0.882 1.002 0.893
MAPE 33.98 31.70 32.52 33.165 37.24 33.29
MAE 0.632 0.624 0.632 0.642 0.764 0.649

Table 3: Six-hour-ahead Speed Prediction Performance Comparisons

Method TIHT TIHT+SGD Regression
Automata ARIMA RNN Persistence

RMSE 1.234 1.145 1.205 1.227 1.261 1.234
MAPE 49.08 44.88 46.809 48.02 47.03 48.11
MAE 0.940 0.865 0.898 0.919 0.944 0.923

8http://weather.tudelft.nl/csv/


