
A. Ramachandran et al, A recurrent Markov state-space generative model for sequences

1 Appendix

Note: The LSGM parameter set, Φ, which appears in the Main Document is omitted here for conciseness.

1.1 Joint distribution

The joint distribution of an observation sequence X1:T and a state sequence Π1:T is given by the following
expression. Equation 2 uses the LSGM independence assumptions.

logP [X1:T ,Π1:T] =

T∑
i=1

(
logP [πi|Π1:i−1, X1:i−1] + logP [xi|πi,Π1:i−1, X1:i−1]

)
= (1)

T∑
i=1

(
logP [πi|πi−1, X1:i−1] + logP [xi|πi, X1:i−1]

)
= (2)

T∑
i=1

(
log γi−1(πi−1, πi) + log ei(πi)

)
(3)

1.2 Forward, backward, Viterbi recursionss

The forward recursion is derived as follows

et+1(πt+1)
∑
πt

αt(πt)γt(πt, πt+1) = (4)

P [xt+1|πt+1, X1:t]
∑
πt

P [X1:t, πt]P [πt+1|X1:t, πt] = (5)

P [xt+1|πt+1, X1:t]
∑
πt

P [X1:t, πt, πt+1] = (6)

P [X1:t+1, πt+1] = αt+1(πt+1) (7)

The backward recursion is derived as follows (Equation 11 uses the LSGM independence assumptions)

∑
πt+1

βt+1(πt+1)γt(πt, πt+1)et+1(πt+1) = (8)

∑
πt+1

P [Xt+2:T |πt+1, X1:t+1]P [πt+1|πt, X1:t]P [xt+1|πt+1, X1:t] = (9)

∑
πt+1

P [Xt+1:T |πt+1, X1:t]P [πt+1|πt, X1:t] = (10)

∑
πt+1

P [Xt+1:T |πt+1, πt, X1:t]P [πt+1|πt, X1:t] = (11)

∑
πt+1

P [Xt+1:T , πt+1|πt, X1:t] = (12)

P [Xt+1:T |πt, X1:t] = βt(πt) (13)

The Viterbi recursion for the LSGM may be derived as follows. Equation 15 uses the LSGM independence
assumptions.

Pmax
[
X1:t+1, πt+1

]
= (14)

max
πt

Pmax
[
X1:t, πt

]
P [πt+1|πt, X1:t]P [xt+1|πt, X1:t, πt+1] =

max
πt

Pmax
[
X1:t, πt

]
P
[
πt+1|πt, X1:t

]
P
[
xt+1|πt+1, X1:t

]
(15)

Supplementary document 1

A. Ramachandran et al, A recurrent Markov state-space generative model for sequences

Defining the Viterbi recursion variable as τt(k) = Pmax
[
X1:t, πt = k

]
, and locating the transition and

emission terms in Equation 15, we obtain

τt+1(k) = max
j
τt(j)γt(j, k)et+1(k) (16)

1.3 Modified forward recursion for length > 1 emissions

For a state emitting l-symbols at once (such as the motif state), the following recursion replaces the standard
forward recursion. Here we assume that the state πi emits symbol xi, as before, however the state may emit
more than one symbol as a group - in which case xi is the last symbol emitted as a group.

P
[
X1:i, πi = j

]
=
∑
πi−l

P
[
X1:i−l, πi−l

]
P
[
πi = j|πi−l, X1:i−l

]
P
[
Xi−l+1:i|πi = j,X1:i−l, πi−l

]
=
∑
πi−l

P
[
X1:i−l, πi−l

]
P
[
πi|πi−l, X1:i−l

]
P
[
Xi−l+1:i|πi, X1:i−l

]
(17)

=
∑
πi−l

P
[
X1:i−l, πi−l

]
P
[
πi|πi−l, X1:i−l

]
P
[
Xi−l+1:i|πi

]
(18)

Equation 17 gives the modified forward recursion for the first-order full LSGM. Equation 18 provides the
recursion for a half LSGM such as used in our TF-binding experiments.

1.4 Additional details

1.4.1 Multidimensional synthetic data experiments

The HMM has 3 states each emitting 4-dimensional full-covariance Gaussians. This requires 3× (42 + 4) = 60
parameters. In addition, it uses 6 transition probabilities and 2 start probabilities bringing the total parameter
count to 68.

The LSGM uses 65 parameters which are provisioned as follows.

• 1 GRU layer with 1 neuron without bias requiring 3× (4×1 + 12) = 15 parameters. A GRU layer without
bias needs 3(mn+ n2) parameters for m inputs n outputs (as implemented in PyTorch version 0.4).

• 1 dense neuron taking the GRU output as input and providing a single output. Requires 1 × 1 + 1 = 2
parameters.

• Emission layer accepting the dense neuron’s output and providing means and diagonal covariances for 3
states. The covariances use a single bias value per state. This requires 1 × 12 + 12 parameters for mean
and 1× 12 + 3 parameters for variance for a total of 39 parameters

• Transition layer accepting the dense neuron’s output and providing 9 outputs representing the transition
matrix. The transition network doesn’t use biases. This needs 1× 9 = 9 parameters

We performed the experiments over five times for each case, and took the average performance on the test
set.

1.4.2 Multidimensional synthetic data generator parameters

• ~µ1 = (0, 0, 0, 0)T , ~µ2 = (1, 1, 1, 1)T , ~µ3 = (−1,−1,−1,−1)T

• ~σ2
1 = ~σ2

2 = ~σ2
3 = (0.01, 0.01, 0.01, 0.01)

Supplementary document 2

A. Ramachandran et al, A recurrent Markov state-space generative model for sequences

• The diagonal covariance from f is limited to between 0.01, 0.04 using sigmoid activation and scaling. f
uses 33 GRU units

• apq = {0.7, if p = q, 0.15 otherwise}

1.4.3 Synthetic scalar sequence generation

The algorithm for generating scalar synthetic sequences is given below. After this procedure is run, numpy
(numpy.mean, numpy.var) is used to determine mean and standard deviation of all the datapoints in all the
sequences, and then the sequences are normalized as synthetic−µ

σ

Algorithm 1 Synthetic scalar data generation

1: procedure chooseTransition(runningSum)
2: α = 10
3: β = 30
4: if runningSum < α then
5: ~p = [0.9, 0.05, 0.05]T

6: end if
7: if α ≤ runningSum < β then
8: ~p = [0.1, 0.8, 0.1]T

9: end if
10: if β ≤ runningSum then
11: ~p = [0.05, 0.05, 0.9]T

12: end if
13: return ~p
14: end procedure
15: procedure Emit(seed,state)
16: K = 1.2
17: if state = 0 then
18: return seed×K
19: end if
20: if state = 1 then
21: return seed
22: end if
23: if state = 2 then
24: return seed/K
25: end if
26: end procedure
27: procedure genSyntheticData(Length)
28: synthetic = empty list
29: seed = random between 1e− 2, 1
30: counter = 0
31: for 0 < counter < Length do
32: if counter > 0 then
33: r = sum of last 10 items in synthetic
34: ~p = chooseTransition(r)
35: else
36: ~p = [1/3, 1/3, 1/3]T

37: end if
38: state = Sample from multinomial distribution ~p
39: seed = Emit(seed,state)
40: Add seed to synthetic
41: end for
42: return synthetic
43: end procedure

Supplementary document 3

A. Ramachandran et al, A recurrent Markov state-space generative model for sequences

1.4.4 Details of experiments with synthetic scalar sequences

We trained HMMs with 3 to 60 states on 1000 sequences of length 25 generated using the procedure above
using Expectation Maximization, similar to the method for Multidimensional synthetic data. The model that
achieved the best BIC had 52 states. This corresponds to 52 × 51(transitions) +52 × 2 (means, variances;
emissions) + 51 (start probability) = 2807 parameters. We selected this model and reran the experiment with
the model five times that gave an average log-likelihood of 1.416. This value was relatively stable across the
five experiments.

We trained a single LSGM model with 2 GRU units and 10 states following the same architecture as for
the case of multidimensional synthetic data. This model has a total of only 284 parameters, almost a tenth the
size of the HMM. The model gave an average log-likelihood per data point of 2.259 with a sample standard
deviation of 0.662 over five runs. While the model seems to be sensitive to initialization, it also provided better
performance on average with a significantly lower parameter count.

1.4.5 Details of architecture search for TF-binding experiment

The following architectures were searched for the TF-binding experiment.

Table 1: Model parameters explored

Parameters DeepBind DeeperBind LSGM HMM

Num motifs 5,16 5 5 5
Motif length 11,24 11 11 11
LSTM layers NA 1,2 2 NA
LSTM units NA 20,32,64,128 64,128 NA
Dense layers 2 1,2 2 NA
Dense units 32 128,256 =LSTM units NA
F(x) NA NA exp(x), (ReLU(x))2, (ReLU(x))4 =LSGM

1.4.6 Music modeling LSGM architecture

Supplementary document 4

