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A Appendix

Appendix Notation

We use �K to denote the subset of probability simplex i.e.,

�K ⇢

(
↵ 2 RK

���
KX

i=1

↵i = 1,↵i � 0

)
.

Let  `(↵, v) =
PK

i=1 ↵i`(v, i). For the ease of exposition, we define the following function:  ⇤

` (↵) :=
infv2⌦ `(↵, v). We use `b : �K ⇥ S ! R+

[ {0} to denote the following function: `b(↵, S) =
P

i2[K]\S D(Y =
i | X).

B Proof of Theorem 1

Proof. We generalize the result in Zhang (2004) for our proof. For the sake of clarity, we use ↵ to denote the
vector [D(Y = 1|X = x), · · · , D(Y = K|X = x))]. We first state few definitions and auxiliary results required for
the proof. We define the following function:

�R`b, `(✏) = inf

⇢
 `(↵, v)� inf

v2⌦
 `(↵) | `b(↵,Topk(v))� infv2⌦ `b(↵,Topk(v)) � ✏

�
[ {+1}.

The main idea of the proof is to show that �R`b, `(✏) > 0 for ✏ > 0. This essentially proves that the excess risk
based on surrogate loss is non-zero whenever the excess Bayes risk is non-zero, also providing a bound on excess
Bayes risk based on excess surrogate risk. Corollary 26 of Zhang (2004), stated below, formalizes this intuition.

Lemma 3 (Zhang (2004)). Suppose function `b(↵,Topk(v)) is bounded and �R`b, ` > 0 for all ✏ > 0, then

there exists a concave function ⇠ on the domain [0,+1] that depends only on `b and  ` such that ⇠(0) =
0, lim✏!0+ ⇠(✏) = 0 and we have

R(h)� inf
h02H

R(h0)  ⇠(R`(h)� inf
h02H

R`(h
0))

In order to show �R`b, `(✏) > 0 for all ✏ > 0, we need the following result. This follows as a modification of
Lemma 28 in Zhang (2004) and is only included here for the sake of clarity.

Lemma 4. 8✏ > 0, 9� > 0 such that 8↵ 2 �K :

inf
�
 `(↵, v) : vi  v[k]  vj ,↵j  ↵[k]  ↵i,↵j  ↵i � ✏

 
�  ⇤

` (↵) + �.

Proof. The proof is similar to Lemma 28 of Zhang (2004) except for the modification that the infimum is over
the set {v 2 ⌦ | vi  v[k]  vj ,↵j  ↵[k]  ↵i,↵j  ↵i � ✏}.

To prove Theorem 1, we observe the following: Suppose `b(↵,Topk(v)) � infv2⌦ `b(↵,Topk(v))+ ✏ for some v 2 ⌦
and ↵ 2 �K , then there 9i such that vi � v[k] and ↵i  ↵[k] � ✏. To show this, we observe the following:

`b(↵,Topk(v)) = 1�
X

j2 Topk(v)

↵j � inf
v2⌦

`b(↵,Topk(v)) + ✏ � 1�
Pk

j=1 ↵[j] + ✏,

and therefore,
P

j2 Topk(v)
↵j 

Pk
j=1 ↵[j] � ✏. Note that since |Topk(v)| = k, from the above inequality, it is

clear that there exists i 2 Topk(↵), i /2 Topk(v) and j 2 Topk(v), j /2 Topk(↵) such that ↵j  ↵i�
✏
k . Furthermore,

From Lemma 4, we know that inf{ `(↵, v) : vi  v[k]  vj ,↵i � ↵[k] � ↵j ,↵j  ↵i �
✏
k} �  ⇤

` (↵) + �. Therefore,
�R`b, `(✏) > 0. Using Lemma 3, we get the required result.
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C Proof of Lemma 2

Proof. The fact that `snm is a POWL or BOWL is evident from the formula for the random variable L(v, y).

Let � be a permutation of [K � 1] which sorts the coordinates of v�y in non-increasing order, i.e. v
�y
�(j) � v

�y
�(j0)

for j < j
0. Then we have Note that

✓j = EB

"
BX

i=1

#iI(�(j) 2 B and v�(j) is the i
th largest score in B)

#

=
BX

i=1

#i Pr
B

[�(j) 2 B and v�(j) is the i
th largest score in B]

=
BX

i=1

#i Pr
B

[v�(j) is the i
th largest score in B|�(j) 2 B] ·

B

K � 1
. (4)

Now, if j0 > j, then since v�(j0)  v�(j), we have

PrB[v�(j) is the i
th largest score in B|�(j) 2 B] � PrB[v�(j0) is the i

th largest score in B|�(j0) 2 B].

This is easy to check by comparing the two events. Since the coordinates of # are non-increasing, this implies
that ✓j � ✓j0 , thus establishing that the coordinates of ✓ are also non-increasing.

Next, suppose that #i =
K�1
kB for i 2 [k]. Let j 2 [k]. Note that if �(j) 2 B, then v�(j) is among the top k scores

in B. Thus by (4), we conclude that ✓j = 1/k.

Finally, if #i > 0 for all i 2 [B], then by (4), we have ✓j > 0.

D Proofs of Theorems 2 and 3

Proof of Theorem 2. Consider the (�, ✓)-POWL `. Fix any class y 2 Y. Since � is a non-increasing function,
we have �(vy � v

�y
[j] ) � �(vy � v

�y
[j0]) if j < j

0. Since ✓ has non-increasing coordinates, by the Rearrangement
Inequality, we conclude that for any permutation � of [K � 1], we have

K�1X

j=1

✓�(j)�(vy � v
�y
j ) 

K�1X

j=1

✓j�(vy � v
�y
[j] ) = `(v, y).

Since the above inequality holds for any permutation �, we have

`(v, y) = max
�

K�1X

j=1

✓�(j)�(vy � v
�y
j ).

Note that v 7!
PK�1

j=1 ✓�(j)�(vy � v
�y
j ) is a convex function of v since it is non-negative linear combination of

convex functions of v. Hence `(v, y) is a convex function of v since it is the maximum of convex functions of v.

The proof that the (�, ✓)-BOWL is also convex is very similar and is omitted for brevity.

Proof Theorem 3. First, consider the (�, ✓)-POWL `. Suppose y 62 Topk(v). Then for any j 2 [k], we have
vy  v

�y
[j] , and so �(vy � v

�y
[j] ) � I(vy � v

�y
[j]  0) = 1. Since ✓ is a non-negative vector and � is also non-negative,

we have

`(v, y) �
kX

j=1

✓j�(vy � v
�y
[j] ) �

kX

j=1

✓j · 1 = I(y 62 Topk(v)).

If y 2 Topk(v), then I(v 62 Topk(v)) = 0, and `(v, y) � I(v 62 Topk(v)) since `(v, y) is always non-negative.
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Now, consider the (�, ✓)-BOWL `. We have

`(v, y) = �(vy) +
K�1X

j=1

✓j�(vy � v
�y
[j] ) �

kX

j=1

✓j(�(vy) + �(�v
�y
[j] )) �

kX

j=1

2✓j(�(
1
2 (vy � v

�y
[j] ))).

The first inequality above follows since ✓j = 1/k for j 2 [k] and the fact that � is always non-negative, and the
second inequality by the convexity of �. Now arguing just like in the POWL case, we have

kX

j=1

2✓j(�(
1
2 (vy � v

�y
[j] ))) � 2I(v 62 Topk(v)).

E Proof of Theorem 4

Proof. We first prove the following key order-preserving property of the loss functions in Definition 3 and 4 (the
proof of the result is given in Lemma 5 and Lemma 6).

Lemma. Suppose � satisfies the conditions in Theorem 4. Then for any ↵ 2 �K that satisfies the following

condition:

↵[k] >

Pk+q
l=k+1 ↵[l]

k
Pk+q�1

j=k ✓j

,

for all q 2 [K � k] and v 2 RK
such that  `(↵, v) =  ⇤

` (↵) for ` in Definition 3 and Definition 4 with appropriate

conditions on {✓i}
K�1
i=1 (as specified in Theorem 4), we have

1. vi � vj when ↵i > ↵j and

2. v[i] > v[j] when ↵i > ↵j and i 2 [k] and j 2 [K]\[k].

The proof can be completed by appealing to the order preserving property of  ` in the above lemma. In particular,
consider v0 such that  `(↵, v0) =  ⇤

` (↵), then it is shown that v[i] > v[j] when ↵i > ↵j and i 2 [k] and j 2 [K]\[k].
From this result, it is easy to see that limt!1 `(↵, vt) =  `(↵, v) >  `(↵, v0) = infv2⌦ `(↵, v) =  ⇤

` (↵), thus,
completing the proof.

E.1 Lemmatta for Theorem 4

Lemma 5. Suppose � satisfies the conditions in Theorem 4. Then for any ↵ 2 �K that satisfies the following

condition:

↵[k] >

Pk+q
l=k+1 ↵[l]

k
Pk+q

j=k+1 ✓j

,

for all q 2 [K � k] and v 2 RK
such that  `(↵, v) =  ⇤

` (↵) for ` in Definition 3 with ✓j =
1
k for all j 2 [k] and

✓j 
1
k for j > k, we have

1. vi � vj when ↵i > ↵j and

2. v[i] > v[j] when ↵i > ↵j and i 2 [k] and j 2 [K]\[k].

Proof. We prove the first part by contradiction. Assume 9j1, j2 such that ↵j1 > ↵j2 but vj1 < vj2 . Consider v̄
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such that v̄i = vi for all i 6= j1, j2, v̄j1 = vj2 and v̄j2 = vj1 . Then we have

 `(↵, v̄)� `(↵, v)

= ↵j1

0

@
K�1X

j=1

✓j�(v̄j1 � v̄
�j1
[j] )�

K�1X

j=1

✓j�(vj1 � v
�j1
[j] )

1

A+ ↵j2

0

@
K�1X

j=1

✓j�(v̄j2 � v̄
�j2
[j] )�

K�1X

j=1

✓j�(vj2 � v
�j2
[j] )

1

A

= (↵j1 � ↵j2)

0

@
K�1X

j=1

✓j�(vj2 � v
�j2
[j] )�

K�1X

j=1

✓j�(vj1 � v
�j1
[j] )

1

A

The above equality is due to the definition of v̄. Furthermore, we observe the following: vj2 > vj1 and v
�j1
[j] � v

�j2
[j]

for all j 2 [K � 1]. This is due to the fact that removal of vj2 rather than vj1 from v can only decrease the order
statistic.. Therefore, we have

vj2 � v
�j2
[j] > vj1 � v

�j1
[j] ,

for all j 2 [K � 1]. Since � is non-increasing, it is clear that  `(↵, v̄)� `(↵, v)  0 . Also, note that at least
one vj1 � v

�j1
[j] < 0 since vj2 > vj1 for j 2 [k]. Since � is strictly decreasing on (�1, 0], we can, in fact, obtain

 `(↵, v̄)� `(↵, v) < 0, which is a contradiction to the optimality of v.

We now focus on the second part of the proof. Without loss of generality, suppose ↵1 � · · · � ↵k > ↵k+1 � · · ·↵K .
Suppose vk > vk+1, then the second part follows immediately. Now, consider the scenario:

v1 � v2 � · · · � vk = vk+1 = · · · = vk+q > vk+q+1 � · · · � vK .

We will prove that such a scenario is not possible. We prove this by contradiction. Consider the vector v
0 defined

as follows:

v
0

i =

8
><

>:

vi + �, for i = k

vi � ��, for k + 1  i  k + q

vi, otherwise .

Here � is chosen sufficiently small such that v
0

k+q > v
0

k+q+1 with � = 1
k
Pk+q

j=k+1 ✓j
. When ↵, v are held fixed, with

slight abuse of notation, we use  `(�) to denote part of the function  `(↵, v0) that only depends on �. Let us
denote the remaning part by C↵,v such that  `(↵, v) =  `(0) + C↵,v. More specifically, we have the following:

 `(�) = ↵k

2

4
k�1X

j=1

1

k
�(vk � vj + �) +

KX

j=k+q+1

✓j�1�(vk � vj + �) +
k+qX

j=k+1

✓j�1�(vk � vj + (1 + �)�)

3

5

| {z }
T1(�)

+
k+qX

l=k+1

↵l

2

4
k�1X

j=1

1

k
�(vl � vj � ��) +

KX

j=k+q+1

✓j�1�(vl � vj � ��) +
1

k
�(vl � vk � (1 + �)�)

3

5

| {z }
T2(�)

+
k�1X

l=1

↵l

2

41
k
�(vl � vk � �) +

k+qX

j=k+1

✓j�1�(vl � vj + ��)

3

5

| {z }
T3(�)

+
KX

l=k+q+1

↵l

2

41
k
�(vl � vk � �) +

k+qX

j=k+1

✓j�(vl � vj + ��)

3

5

| {z }
T4(�)

Since, ✓i = 1/k for all i  k,  `(↵, v0) =  `(�) + C↵,v for 0  ��  v
0

k+q � v
0

k+q+1. This follows the fact the the
rank (position when sorted) of of v0i amongst elements in v

0 is same as that of vi amongst elements in v for i > k

for sufficiently small chosen � since the rank of v0k in v
0 can only decrease in comparison to rank vk in v and the
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rank remains same for all i > k. Also, note that  ` is differentiable. Our aim is to show that  0

`(0) < 0, which
implies a contradiction to the optimality of v. To this end, we analyze the differential of aforementioned terms
separately as follows:

T
0

3(�) =
k�1X

l=1

↵l

2

4�1

k
�
0(vl � vk � �) + �

k+qX

j=k+1

✓j�1�
0(vl � vj + ��)

3

5

=
k�1X

l=1

↵l

2

4�1

k
�
0(vl � vk � �) + �

0(vl � vk + ��)�
k+qX

j=k+1

✓j�1

3

5 .

The above equality holds because vk = vi for all i 2 [k + 1, k + q]. From the above equality, we have:

T
0

3(0) =
k�1X

l=1

↵l

2

4

0

@�

k+qX

j=k+1

✓j�1 �
1

k

1

A�
0(vl � vk)

3

5  0.

This is due to the fact that � is non-increasing and following inequality

�

k+qX

j=k+1

✓j�1 �
1

k
.

In a similar manner, it can also be shown that T
0

4(0) = 0. To complete the proof, we need to show that
T

0

1(0) + T
0

2(0) < 0. We observe the following:

T
0

1(�) + T
0

2(�) =
1

k

k�1X

j=1

 
↵k�

0(vk � vj + �)� �
0(vk � vj � ��)�

k+qX

l=k+1

↵l

!

+
KX

j=k+q+1

✓j�1

 
↵k�

0(vk � vj + �)� �
0(vk � vj � ��)�

k+qX

l=k+1

↵l

!

+ �
0((1 + �)�)(1 + �)↵k

k+qX

j=k+1

✓j�1 �
1 + �

k
�
0(�(1 + �)�)

k+qX

l=k+1

↵l

The above equality is due to the fact that vk = vi for all i 2 [k + 1, k + q]. From the above equality we have,

T
0

1(0) + T
0

2(0) =
1

k

k�1X

j=1

�
0(vk � vj)

 
↵k � �

k+qX

l=k+1

↵l

!

+
KX

j=k+q+1

�
0(vk � vj)✓j�1

 
↵k � �

k+qX

l=k+1

↵l

!

+ (1 + �)�0(0)

2

4↵k

k+qX

j=k+1

✓j�1 �
1

k

k+qX

l=k+1

↵l

3

5

From the above equality, we can see that T
0

1(0) + T
0

2(0) < 0. This is due to the fact that � is non-increasing with
�
0(0) < 0 and the following inequalities:

↵k > �

k+qX

l=k+1

↵l =

Pk+q
l=k+1 ↵l

k
Pk+q

l=k+1 ✓j

↵k

k+q�1X

j=k

✓j >
1

k

k+qX

l=k+1

↵l.
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Therefore, we have  0

`(0) = T
0

1(0) + T
0

2(0) + T
0

3(0) + T
0

4(0) < 0. This is a contradiction to the optimality of v.
Hence, the scenario

v1 � v2 � · · · � vk = vk+1 = · · · = vk+q > vk+q+1 � · · · � vK ,

is not possible. This completes the proof of second part of the lemma.

Lemma 6. Suppose � satisfies the conditions in Theorem 4. Then for any ↵ 2 �K that satisfies the following

condition:

↵[k] >

Pk+q
l=k+1 ↵[l]

k
Pk+q

j=k+1 ✓j

,

for all q 2 [K � k] and v 2 RK
such that  `(↵, v) =  ⇤

` (↵) for ` in Definition 4 with ✓j =
1
k for all j 2 [k] and

✓j 
1
k for j > k, we have

1. vi � vj when ↵i > ↵j and

2. v[i] > v[j] when ↵i > ↵j and i 2 [k] and j 2 [K]\[k].

Proof. We prove the first part by contradiction. Assume 9j1, j2 such that ↵j1 > ↵j2 but vj1 < vj2 . Consider v̄

such that v̄i = vi for all i 6= j1, j2, v̄j1 = vj2 and v̄j2 = vj1 . Then we have

 `(↵, v̄)� `(↵, v) = (↵j1 � ↵j2)

0

@�(vj2) +
K�1X

j=1

✓j�(�v
�j2
[j] )� �(vj1)�

K�1X

j=1

✓j�(�v
�j1
[j] )

1

A

The above equality is due to the definition of v̄. Furthermore, we observe the following: vj2 > vj1 and v
�j1
[j] � v

�j2
[j]

for all j 2 [K � 1]. This is due to the fact that removal of vj2 rather than vj1 from v can only decrease the order
statistic. If vj1 is non-positive, then �(vj2) < �(vj1) and �(�v

�j2
[j] )  �(�v

�j1
[j] ) as �

0(✏) < 0 for all ✏  0 and � is
non-increasing, which is a contradiction to the optimality of v.

We now consider the case where vj2 > vj1 > 0. It is not hard to see that v
�j1
[j] = v

�j2
[j] whenever v

�j1
[j] < vj1 .

Furthermore,
PK�1

i=1 v
�j1
[j] >

PK�1
i=1 v

�j2
[j] . From the above two facts, we get v

�j1
[j] > v

�j2
[j] for some j such that

v
�j2
[j] > 0. For this j, �(�v

�j2
[j] )  �(�v

�j1
[j] ) as �0(✏) < 0 for all ✏  0. Since � is strictly decreasing on (�1, 0], we

can, in fact, obtain  `(↵, v̄)� `(↵, v) < 0, which is again a contradiction to the optimality of v. This completes
the first part of the proof.

We now turn our attention to the second part. For the ease of exposition, suppose ↵1 � · · · � ↵k > ↵k+1 � · · ·↵K .
The proof is along similar lines as that of pairwise comparison method. Suppose vk > vk+1, then the second part
follows immediately. Now, consider the scenario:

v1 � v2 � · · · � vk = vk+1 = · · · = vk+q > vk+q+1 � · · · � vK .

We will prove that is not possible through proof by contradiction. Consider the vector v
0 defined as follows:

v
0

i =

8
><

>:

vi + �, for i = k

vi � ��, for k + 1  i  k + q

vi, otherwise ,

where � is chosen sufficiently small such that v0k+q > v
0

k+q+1 with � = 1
k
Pk+q

j=k+1 ✓j
. When ↵, v are held fixed, with

slight abuse of notation, we use  `(�) to denote part of the function  `(↵, v0) that only depends on �. Let us
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denote the remaning part by C↵,v such that  `(↵, v) =  `(0) + C↵,v. More specifically, we have the following:

 `(�) = ↵k

2

4�(vk + �) +
k+qX

j=k+1

✓j�1�(�vj + ��)

3

5

| {z }
T1(�)

+
k+qX

l=k+1

↵l

2

4�(vl � ��) +
1

k
�(�vk � �) +

l�1X

j=k+1

✓j�(�vj + ��) +
k+qX

j=l+1

✓j�1�(�vj + ��)

3

5

| {z }
T2(�)

+
k�1X

l=1

↵l

2

41
k
�(�vk � �) +

k+qX

j=k+1

✓j�1�(�vj + ��)

3

5

| {z }
T3(�)

+
KX

l=k+q+1

↵l

2

41
k
�(�vk � �) +

k+qX

j=k+1

✓j�(�vj + ��)

3

5

| {z }
T4(�)

Since, ✓i = 1
k for all i  k,  `(↵, v0) =  `(�) + C↵,v for 0  ��  v

0

k+q � v
0

k+q+1 and  `(�) is differentiable as
argued for POWL. Our goal is to show that  0

`(0) < 0, which implies  `(↵, v0) <  `(↵, v), thereby contradicting
the optimality of v. With our choice of �, it can be shown that T 0

3(0)  0 and T
0

4(0) = 0 using the same argument
for corresponding terms for POWL. To complete the proof, we need to show that T

0

1(0) + T
0

2(0) < 0. We observe
the following:

T
0

1(�) + T
0

2(�) = ↵k�
0(vk + �) + �↵k

k+qX

j=k+1

✓j�1�
0(�vk + ��)

+
k+qX

l=k+1

↵l

2

4���
0(vk � ��)�

1

k
�
0(�vk � �) + �

k+q�1X

j=k+1

✓j�
0(�vk + ��)

3

5

The above equality is due to the fact that vk = vi for all i 2 [k + 1, k + q]. From the above equality we have,

T
0

1(0) + T
0

2(0) = ↵k�
0(vk) + �↵k

k+qX

j=k+1

✓j�1�
0(�vk) +

k+qX

l=k+1

↵l

2

4���
0(vk)�

1

k
�
0(�vk) + �

k+q�1X

j=k+1

✓j�
0(�vk)

3

5

=

 
↵k � �

k+qX

l=k+1

↵l

!
�
0(vk) +

k+qX

l=k+1

 
↵k

k+qX

l=k+1

↵l � ✓k+q

k+qX

l=k+1

↵`

!
��

0(�vk) < 0.

The last inequality is due to the following:

↵k > �

k+qX

l=k+1

↵l =

Pk+q
l=k+1 ↵l

k
Pk+q

l=k+1 ✓j

.

✓k+q 
1
k and the fact that at least one of �0(�vk) and �

0(vk) is strictly negative as �0(✏) < 0 for ✏  0. Therefore,
we have  0

`(0) = T
0

1(0) + T
0

2(0) + T
0

3(0) + T
0

4(0) < 0. This is a contradiction to the optimality of v. Hence, the
scenario

v1 � v2 � · · · � vk = vk+1 = · · · = vk+q > vk+q+1 � · · · � vK ,

is not possible. This completes the proof of second part of the lemma.

F Proofs of Theorems 5 and 6

Proof of Theorem 5. Our generalization bounds are based on the work of Lei et al. (2015), who give general
purpose bounds in terms of Lipschitz constants and range of the loss. In particular, suppose that |`(v, y)|  �0.
Further, suppose that for any y 2 Y, ` satisfies an L2-Lipschitzness condition of the form:

|`(v, y)� `(u, y)|  L1kv � uk2 + L2|vy � uy|,
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and an L1-Lipschitzness condition of the form:

|`(v, y)� `(u, y)|  L3kv � uk1.

Then Lei et al. (2015) prove (see Theorems 2 and 6 in their paper5) that the generalization error is bounded with
probability at least 1� � by

Õ

⇣
min

n
L1KGS̄(H) + L2GS(H), L3

p

KRS̄(H)
o⌘

+ 3�0

r
log(2/�)

2n
.

For OWLs, Lemma 7 provides the required Lipschitz constants. Next, it is easy to check that the setting
�0 = k✓k1� is a valid bound on the range of the losses. The claimed generalization bound follows by plugging in
the values of the Lipschitz constants and �0.

Lemma 7. Let �(·) be L-Lipschitz. Let u, v 2 RK
be two score vectors. Then the (�, ✓)-POWL ` satisfies the

following Lipschitzness conditions, for any y 2 Y:

|`(v, y)� `(u, y)| 

(
Lk✓k2kv � uk2 + Lk✓k1|vy � uy| (L2-Lipschitzness)

2Lk✓k1kv � uk1 (L1-Lipschitzness)

Furthermore, the (�, ✓)-BOWL ` satisfies the following Lipschitzness conditions, for any y 2 Y:

|`(v, y)� `(u, y)| 

(
Lk✓k2kv � uk2 + L|vy � uy| (L2-Lipschitzness)

L(k✓k1 + 1)kv � uk1 (L1-Lipschitzness)

Proof. We first consider the (�, ✓)-POWL `. Let p 2 {2,1}. Then we have

|`(v, y)� `(u, y)| =

������

K�1X

j=1

✓j(�(vy � v
�y
[j] )� �(uy � u

�y
[j] ))

������



K�1X

j=1

✓j · L(|vy � uy|+ |v
�y
[j] � u

�y
[j] |)

 Lk✓k1|vy � uy|+ Lk✓kpkṽ
�y

� ũ
�y

kp/(p�1).

The first inequality above follows from the L-Lipschitzness of � and the triangle inequality, and the second by
Hölder’s inequality. Then applying the bounds from Lemma 8, we get the claimed bounds.

The claimed bounds for the (�, ✓)-BOWL are obtained using an almost identical analysis and is omitted for
brevity.

Lemma 8. Let u, v 2 RK
be two score vectors, and let ũ, ṽ 2 RK

be sorted versions of u, v respectively with

coordinates in non-increasing order. Then we have

kṽ � ũk2  kv � uk2 and kṽ � ũk1  kv � uk1.

Proof. The first inequality is an easy consequence of the Rearrangement Inequality after squaring both sides. As
for the second inequality, let ✏ := kv � uk1, and let k 2 Y be any index. Then note that for any j 2 Topk(u), we
have vj � uj � ✏, and hence ṽk � ũk � ✏. Similarly, ũk � ṽk � ✏. These two inequalities imply that |ṽk � ũk|  ✏,
and thus the claimed bound follows.

Proof of Theorem 6. Consider the (�ramp,⇢, ✓)-POWL ` where ✓k = 1 and ✓j = 0 for all j 6= k. Thus, this loss can
be rewritten as `(v, y) = �ramp,⇢(vy � v

�y
[k] ), and hence for a given hypothesis h and an example (x, y), we have

`(h(x), y) = �ramp,⇢(⇢h(x, y)). The claimed margin bound then follows by applying the bound from Theorem 5
using the facts that k✓k1 = k✓k2 = 1, L = 1

⇢ , � = 1, and I[u  0]  �ramp,⇢(u)  I[u  ⇢] for any u 2 R (and in
particular, for u = ⇢h(x, y)).

5
While these results assume a specific linear structure of the hypothesis class, it is easy to verify that the results hold in

the more general setting described here.


